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Localized phonons in stage-disordered graphite intercalation compounds
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The effect of stage disorder on [OOlj I. phonons in intercalated graphite is studied. The energies of local-

ized phonons and the phonon density of states as a function of disorder are predicted for stage-4 potassium

graphite.

Phonons in one-dimensional disordered atomic chains
have been extensively studied theoretically in the past. '

This is a class of simple models where important ideas such
as Anderson localization can be applied. Yet we are not
a~are of any experimental realization of such models. It is
well known that [001) longitudinal phonons in alkali-

metal-graphite intercalation compounds (AGIC's) can be
thought of as vibrations of a one-dimensional chain of
stacked graphite and alkali-metal layers. Stage-ordered sam-
ples (here a stage-n compound is an ordered sequence of
stage-n units, each consisting of n graphite and one inter-
calant layers) have been studied experimentally and this
simple picture was fully verified. ~ 5 At the same time, stage
disorder has only recently attracted a great deal of atten-
tion. ' Here the disorder is characterized by a random dis-
tribution of stage-(n +1), (n k-2), . . . , (n & 2) units in

the stage-n compound. It is the purpose of this work to
point out that the stage-disordered AGIC's are a unique
realization of the disordered atomic chains. Moreover, this
novel type of disorder is interesting in its own right. There-
fore we study the localization of phonons in stage disor-
dered GIC's.

The model adopted here is similar to that of Ref. 4. It
consists of an array of N stage-n units. Each stage unit con-
sists of one effective intercalant atom of mass M& and n

graphite atoms of mass Mc. Spring constants between the
intercalant and graphite layers are denoted by Qc., and
between graphite layers by $c c and are taken to be the
same for every stage unit. The classical equation of motion
for the atom is

stage-n units in a stage-no compound can well be approxi-
mated by a Gaussian,

f„,(n) = exp( —[n/2(n —no) ]'I (2)

where e contains all information about the system. The
fraction f„(n) can also be directly measured by x-ray

scattering. ' Here we assume that f is appreciable only for
n = 3 and n = 5, as is the case in Refs. 6 and 7.

The quantity of interest here is the phonon density of
states. For disordered chains composed of two different
masses, it is known that infinitesimal gaps occur in the fre-
quency spectrum for certain ranges of the parameters. s %e
will not be concerned with this in our work. The density of

where Mi and u&(t) = uiexp( —irot) are the mass and dis-
placement of the 1th atom and $,. describes the force con-

stant for atoms I and I'. For the stage-ordered chain with
periodic boundary conditions there is one acoustical (A)
and n optical (Ol, . . . , On) phonon branches. They are
shown in Fig. 1 for the values of parameters n = 4,
M, =3.25 amu, Me=12 amu, Qc.x=3450 dyn/cm, and

$c =c8250dyn/cm. The force constants and effective
masses are those obtained by Magerl and Zabel4 for stage-3
potassium graphite, C36K, and we expect them to describe
realistically stage-4 (CqsK) compounds as well. We have
chosen stage 4 here because stage disorder increases with
stage number, and disorder in stage-4 C48K has been ob-
served by x-ray scattering. ' The disorder is introduced by
replacing at random a fraction of stage-4 units by other
stage units awhile keeping the total number of intercalant
atoms constant. According to Kirczenow, a fraction of

0.5
K /'(Tr/a)

FKJ. 1. The dispersion relation for an ordered stage-4 chain.
There is one acoustical (A ) and four optical (0) branches. a is the
stage-4 repeat distance,
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states can be computed using a well-known numerical algo-
rithm based on Sturm sequences and discussed in detail by
Dean. 9 The method requires fixed-end boundary condi-
tions. '0 It yields very accurately the distribution G(co2) of
the eigenvalues of Eq. (1), which is related to the density of
states g(co) by g(ao)=2cuG(«P). We shall use G(co') as
the density of states (DOS) in what follows. The reader is
reminded that this is a partial density of states due to (00l)
longitudinal phonons only.

Before we turn to the effect of disorder we calculate the
energies of localized phonons associated with single stage-3
and stage-5 impurity units. %e start with a single impurity
unit and then build a chain by adding stage-4 units on both
sides of the impurity. At every step a distribution of eigen-
modes of the system is calculated and plotted as a function
of the chain length in Figs. 2(a) and 2(b). The thick lines
give the boundaries of the phonon bands in an infinite or-
dered stage-4 system and broken lines show the evolution
of normal modes of the isolated impurity (we do not show
the highest frequency branch in the vicinity of the 04 pho-
non branch because it is not affected by disorder in any in-
teresting way). Note that the energies of every stage-3
mode lie in the stage-4 energy gaps. They do not vary with
the increase of the size of the system, giving an approxi-
mate localization length of about two stage-4 units. Much
of this is true for a stage-5 impurity except for the lowest
energy phonon mode denoted by u5. The energy of this
mode lies within the stage-4 acoustical band. This is a reso-
nance mode, an analog of a resonance mode associated with

a heavy-atom impurity in a monoatomic chain. On the basis
of this analysis we conjecture that for a given stage no,
stage-(n ( no) units will generate localized gap modes,
while stage-(n ) no) units will generate both gap and reso-
nance modes, but clearly every case has to be carefully ex-
amined before any quantitative conclusion can be drawn.
Note that resonance modes which lie within a band are not
accessible through the density-of-states calculations. This
has been circumvented by the method described above.
Table I summarizes the numerical values of the localized
phonon energies together with the energies corresponding to
the band boundaries.

We now turn to the effect of disorder on the (00I) pho-
non density of states. Figure 3(a) shows the density of
states G(cu2) for a chain of N stage-4 units (N = 2500) with
single stage-3 and stage-5 impurity units. The density of
states is in excellent agreement with the DOS calculated for
an infinite system. Gap modes are indicated by the arrows.
The modes in the lowest energy gap are not shown here, as
they are not distinguishable from the band edges on this
scale. Also, the high-energy modes are not shown here, as
they are affected little by disorder. Figures 3(b), 3(c), and
3(d) show the evolution of the DOS as a function of the
fraction of stage-3 and -5 units [f4(3)=f4(5) =f]." The
effect of small disorder (f=0.05) is essentially the increase
in intensity of the peaks corresponding to isolated stage-3
and -5 units. Otherwise, the overall structure is essentially
that of an ordered chain. As the amount of disorder is in-
creased (f=0.10) we observe gradual closing of a low-
frequency gap and appearance of many new modes in higher
frequency gaps. The structure due to stage-3 and -5 units is
clearly visible. For the highest amount of disorder
(f=0.25) the only structure is due to the high-frequency
modes of both stage-3 and -5 units. It is interesting to com-
pare the density of states of a highly disordered sample with
the random mixture of potassium and graphite atoms as
shown in Fig. 3(e). While there is no essential difference in
the low-frequency region, the high-frequency part of the
stage-disordered spectrum exhibits more structure due to
the high degree of local order. As a consequence the
bandwidth is also smaller in case of stage disorder as com-
pared to the random mixture.

In summary, we have discussed for the first time the ef-
fect of stage disorder on [001] L phonons in intercalation
compounds. The energies of localized phonons and the
density of states are calculated as a function of disorder for
stage-4 potassium graphite. Our predictions can be verified
by the inelastic neutron scattering, and we hope that our
work will stimulate such experiments. It would also provide
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TABLE I. The energies of localized phonons of stage-3 and -5
units in stage-4 potassium graphite together arith phonon band
edges.

~W

0 2

0 ~

0

j
I2 0 2 4 6

NO STAG =-4 UNITS

IO

Lo~er band
edge (meV)

Stage-3
unit (meV)

Stage-5
unit (meV)

Upper band
edge (meV)

FIG. 2. Distribution of eigenvalues of a chain ~ith a single irn-

purity as a function of host chain (stage-4) length. (a), stage-5 im-
purity; (b), stage-3 impurity. Solid lines indicate band edges of the
pure stage-4 chain. b5 enters the band gap at longer lengths.
o)0= 16.15 meV.
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FIG. 3. The density of states of a stage-4 chain with stage-3 and stage-5 impurities. (a), ordered chain with single stage-3 and stage-5 im-

purity modes indicated; (b), f-0.05; (c), f-0.10; (d), f-0.25; (e), random atomic arrangement. coo-16.15 meV.

an independent check on the stage disorder distribution
function f.

These preliminary results form a necessary step toward
the understanding of the effect of stage disorder on infrared
and Raman absorption and c-axis thermal conductivity.
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