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Theoretical studies of the dynamic structure function of liquid 4He
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The dynamic structure factor S(k,cu) for liquid He is studied with the use of perturbation theory
in a correlated basis generated by the Feynman-Cohen (FC) excitation operator acting on the in-

teracting ground state. %e consider the coupling of one FC excitation to two FC excitations and
sum the important contributions to all orders in perturbation theory. S(k,co) is calculated for many

o o l
values of k in the interval (0.8 A, 4.5 A ). %e find a low-energy 5-function peak which corre-
sponds to the phonon-maxon-roton spectrum and report its energy e(k) and Z(k) as a function of
k, "Two-quasiparticle" peaks are also found and they may be identified as roton-roton, maxon-
maxon, and maxon-roton contributions. At high k, most of the strength of S(k,co) is distributed in
the neighborhood of qussifree scattering energy to=fPki/2m, and the results are comparable with
results of the impulse approximation. Semiquantitative agreement is found between the calculated
S{k, co) and that inferred from neutron inelastic scattering experiments.

I. INTRODUCTION

Experimentally, the density fiuctuations of liquid He
are studied by means of neutron inelastic scattering. In a
linear-response regime the probability for scattering is
proportional to the dynamic liquid structure function
S(k,co).

The measured S(k,co) in the range of momentum
transfers 0& k &2 A ' has a well-defined first peak, a
broad structure at intermediate energies, and a high-
energy tail. The first peak corresponds to one-
quasiparticle excitation, and the intermediate-energy
structure and the high-energy tail are attributed to multi-
quasiparticle excitations. For very high momentum
transfers the measured S(k, to) has a broad peak in the vi-
cinity of the free-particle energy A k2/2m. At intermedi-
ate momentum transfers (k-2.5 A '), S(k,co) has com-
plex structure.

The origin, the energy dispersion curve e(k), and the
strength Z(k) of the one-quasiparticle peak (first peak)
are more or less understood. '

There is evidence from Ratnan scattering experimentss
that in the long-wavelength limit there is a bound state of
two paired rotons with opposite momenta. Zawadowski,
Ruvalds, and Solana~ (ZRS) have suggested that the
intermediate-energy structure of S(k,co) may be explained
by considering the excitation of roton-roton bound states.
However, Svensson et al. find no indication that it is
necessary to invoke the existence of two-roton bound
states to explain the intermediate-energy structure in their
neutron scattering data. En addition, Basting and Bailey
have shown that no ZRS model can provide a quantitative
account of the intermediate-energy structure of S(k, to).

Jackson has studied S(k,to) with microscopic theory,
using a set of nonorthogonal correlated multiphonon
states defined by

&=p(k )p(k ) p(k„} I 0&,

Where p(k} is the k Fourier transform of the density
operator and

I
0& is the ground state. He considered the

one- and two-phonon contribution to S(k,co), calculated
the one-particle Green's function in perturbation theory,
and related the spectral function to S(k,co}. In this calcu-
lation the peaks of S(k,co) appear at much higher energies
than do the experimental ones.

The interplay between the one-quasiparticle and two-
quasiparticle contributions to S(k,to) has also been exam-
ined using its various to moments. Within the framework
of this approach, using the sum rules, one can place con-
straints on the multiquasiparticle contribution.

Recently we studied the one-quasiparticle excitations
in liquid He using perturbation theory in the Feynman-
Cohens (FC) basis. A nonorthogonal set of correlated
basis functions (CBF's) is generated by the FC excitation
operator:

N i~ f]
N

pB(k)= g e ' 1+i g k rtri(rJ)
i=1 j (+i)

(1.2)

ri(r) is the backfiow velocity potential determined in Ref.
2 by means of variational calculations. The CBF n-

quasiparticle state is defined as

I
n&—=pB(kl}pB(k2} pB«n} Io&

The diagonal elements of the Hamiltonian matrix in this
basis constitute the unperturbed part Ho and the off-
diagonal elements form the perturbation Ht. The zeroth
order (unperturbed) one-quasiparticle states and energies
are the FC variational results. In Ref. 2 we carried out a
detailed variational calculation of the one-quasiparticle
spectrum using the FC ansatz in conjunction with the
hypernetted-chain (HNC) technique. We found that the
FC states are accurate for the phonons but the maxon and
roton energies are -20% too high. We calculated the
second-order corrections due to the coupling of one-FC-
quasiparticle state to two-FC-quasiparticle states. These
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corrections improve the agreement with the experiment
significantly; the theoretical e(k) is within 5% of the ex-
perimental spectrum and the calculated strength Z(k) is
within -30% of the experimental strength.

In this paper we calculate the one- and two-
quasiparticle contribution to S(k,co). A perturbative ex-
pansion of the density correlation function is developed in
the correlated basis (1.3). We consider only the coupling
of one FC excitation to two FC excitations and sum the
important contributions to all orders in perturbation
theory. The S(k,co) is trivially obtained from the density
correlation function.

We calculate S(k,co) for k in the interval (0.8 A ', 4.5
A ) and find that the one-quasiparticle excitation is well
defined at all values of k. It exhausts more than half of
the strength of S(k,co) for 0& k &2 A '; however, its
strength Z(k) becomes very small for k greater than 3
A '. We also find smaller peaks at intermediate energies
that can be identified as simultaneous excitations of two
rotons or two maxons and one maxon plus one roton. For
2 A ' &k &3 A ', a two-peak structure is found for
S(k,co); the first peak is the continuation of the "one-
quasiparticle" branch, while the second is close to the
Feynman-phonon energy of iri k /2mS(k). For k) 3
A most of the strength is distributed in the neighbor-
holl of irPk /2m. For k~4 A ' the calculated S(k,co)
is comparable to that obtained using the momentum dis-
tribution and the impulse approximation. The main

D(k, ru)—= (0 ~ p„O), (2.1)

where Ep is the ground-state energy and we take the limit
0. It is known' that

S(k,co) =—Im[D(k, co)] .
I

(2.2

We write the many-body Hamiltonian H as

H =Hp+HI,
where

(n iHp im)—=5„(n iH in),
(n

I
HI

I
m) =(1—5„)(n

I
H

I
m),

(2.3)

(2.4)

(2.5)

and
I

m ),
I
n), . . . are orthonormalized FC states (1.3).

On performing a Goldstone-type perturbative expansion
for D(k, co) we obtain

features of the experimental S(k,co), over a wide range of
k and co, are semiquantitatively explained by this micro-
scopic theory.

The theoretical calculation of the density correlation
and dynamic liquid structure functions using CBF pertur-
bation theory is discussed in Sec. II, and the results are
given in Sec. III.

II. THEORY
The density correlation function is defined as

D(k, ra)= g ( —1)" 0 pi,
1 H 1

pg 0
„(~p) Hp —Ep —co —ig Hp —Ep —co —i g

(2.6)

For the moment, we allow only for one- or two-FC-
quasiparticle intermediate states

I
k) and

I
l, m). These

are obtained by orthonormalizing the following FC states:

Gi '(k, ai)=
ea(k) ai ir/— —

where ea(k) is the FC one-quasiparticle energy, i.e.,

(2.13)

I
I)=p (k) I 0),

I
2& =pa(/)pa(m) I

o&

I
k) =

I 1)/(Ni )'

I/m)= I2) — Il)

¹J=(iig) .

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

ea(k) =—& k
I
H —Eo

I
k &, (2.14)

G2 '(/, m, co) = I
ea (/)+ e~(m ) co ir/— —(2.15)

The vertices are given in Figs. 1(c)—1(e). We define

ki«) = &o
I p~ I

k& = &k
I p~ I

o& (2.16)

and a double line labeled 1, m denotes the propagator of
the two-FC-quasiparticle state

The coupling of one-FC-quasiparticle to two-FC-
quasiparticle states is real and is defined as

a(k, l, m)=(k
I
H Eo I/, m) =(/, m

I

—H Eo
I
k) . —

and

(2(k, /, m ) —= & 0
I pi I
™&

=
& / m

I pi I
0 & (2.17)

(2.12)

The terms of the series (2.6) are represented by dia-
grams such as those of Figs. 1(a) and 1(b). A single line

labeled k denotes a one-FC-quasiparticle propagator:

Note that both gi and gi are real. In this notation, for ex-
ample, the contribution of Fig. 1(a) is given by

gi(k)GP'(k, co)a (k, , /m)Gz '(/, m, co)$2(k, /, m),

and a summation over the two-quasiparticle momenta l, m
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(a)

~m~
(b)

a(kg, m)

D)~{k,(uI =

k
&zi'"

(c)

D&&{k,w) = OK ~ +
ITl

((k) — Cx = F/Q. 2. Vanous contributions to D(k, )

(cI )

(k,g, m)

where

8(k, co)= ——,
' g g2(k, E,m)G2 '(E, m, co)a (k, l, m),

1,m

(2.22)

(e) Dpi(k, co) =D,2(k, co) . (2.23)
FIG. 1. Diagrammatic representation of terms appearing in

D(k, c0) [Eq. (2.6)].

(2.19)

where

is assumed. We can have the following three types of
terms.

(i) First, there are terms having (0
~ pq ~

k) on the left
and (k~pk ~0) on the right. The contribution of such
terms is denoted by D~~(k, co), and it is the sum of the
terms in Fig. 2(a}. We obtain

g'((k)
Dii(k, co) =

ea(k)+ Xp(k, co) co iq— —

8 (k,co)

ea(k) +Xp(k, co) co i ri— —

In this approximation

(2.24)

D(k, co) =D()(k,a))+2D)2(k, co)+Dye(k, co),

and we can combine the g&, 2/|8, and 8 terms to obtain

(2.25)

(iii) Finally we have the terms of Fig. 2(d) with
&0 I pk I E,m) on the left and (E',m

I pk I 0) on the right.
Their contribution is given by

D2~(k, co) = 2 g ~
gq(k, E,m)

~
G2 '(E, m, co)

l, m

Xo«,~)= ——,
' g la(k, i, m) ('G,"'(E,m, ~) . (2.20)

Here, we define Xp(k, co) as the self-energy insertion (2.20);
we reserve the notation X(k,co) for the next, improved ap-
proximation.

(ii) Second, terms having (0
~ pk ~

k) on the left and
(E,m

~ p~ ~
0) on the right [Fig. 2(b}] and vice versa [Fig.

2(c)] are denoted by D)2(k, co) and D2((k, co), respectively.
Their contribution is given by

[ko« ~)]'
D(k, co) = +Do(k, a)),

ea k +Xp k, co co iri— —
vrhere

go(k, co) =gr(k) +8(k,a) )

Dp(k, a))= —,
' g ~

$2(k, l, m)
~

Gp '(E, m, co) .

(2.26)

(2.27)

(2.28)

(2.21)
g)(k)8(k, co)

Di2(k, co)=
ea(k)+Xp(k, co) c0 i q

'—— By using Eq. (2.2} the dynamic structure function is sim-

ply given by

(2.29)

S(k,co)=n '[2Re[go(k co)] 1m[go(k~a))) Iea(k)+Re[Xo(k, co)]—co] —Im[Xo(k, co)](IRe[go(k co)]J —IIm[go(k co)] j )]
X([ea(k)+Re[Xp(k, co}]—co] + IIm[Xo(k, a})]I ) '+1m[Do(k, co)],
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where

Re[gp(k, co)]=pi(k) ——,
' g (2(k, l, m)a (k, l, rn) Re[62 '(l, m, co)],

l, m

Im[gp(k, co)]= ——,
' g gz(k, l,m)a (k, l, rn) Im[62 '(I,m, co)] .

(2.30)

(2.31)

Re[6' '(l, m, co)]=P
es 1+ca m —co

(2.32}

Similarly, in calculating the real and imaginary parts of
XQ(k, co) and Dp (k,co) we take the real and imaginary part
of G2 '(l, m, co) inside the sums of Eqs. (2.20) and (2.28),
respectively. Here

pression for the Z(k) used in Ref. 2; namely,

I «I} If{k}&I'

where f(k) is the perturbed one-quasiparticle state given

by

Im[62 '(l, m, co)]=n5(co —es(l) —ez(m)) . (2.33) I
Q(k)) = Ik) ——, ga(k, l, m)62 '(l, m, co)

I
l,m) . (2.37)

The symbol P stands for the Cauchy principal value. In
this appraximation the ane-quasiparticle pole of D(k, co)
is at co=e(k} given by

e (k}=es(k}+Xp(k, e (k) ), (2.34)

gp'(k co)

aX,(k,~)1—
, ru=e(k)

(2.35)

and the contribution from the pole to S(k, co) is
Z (k)5(co —e (k) ).

~e note that the expression (2.34) for e(k) is the
Brillouin-Wigner perturbation formula used in Ref. 2.
Moreover, the expression (2.35} is also identical to the ex-

and if the Im[Xp(k, co)]=0 and Im[gp(k, co)]=0, the resi-
due of the pole is

Notice that the denominator of {2.35) is identically equal
to the narm of 11(k).

In this calculation, the results for the one-quasiparticle
contribution are identical to those of Ref. 2. In Ref. 2 we
have seen that the differences between the variational (FC)
and the experimental one-quasiparticle spectnitn are
essentially removed by the inclusion of the second-order
correction given by Eq. {2.34}. However, this approxima-
tion does not describe well the two-quasiparticle contribu-
tian to S(k,co), because the two-quasiparticle propagator
[Eq. (2.15)] has poles at the FC energies. This is a conse-
quence of our approximation to include only one- and
two-FC-quasiparticle intermediate states. To obtain the
two-quasiparticle contribution at reasonable energies we
must consider self-energy insertions in the propagation of
the double lines. On including soine of the simpler self-
energy insertions shown in Fig. 3, the two-quasiparticle
propagator is modified as

Gi(l, rn, co) = 1

e~(1)+Xp(1 co —ez(m))+eir(m)+Xp(m, co es(l—}) co —irl —' (2.38}

and, hence, the quantities Xp(k, co), gp(k, co), and Dp(k, co)
entering in the expression for D(k, co) [Eq. (2.26)] are,
respectively, modified as

X(k,co)= ——,
' g Ia(k, l, m)

I G2(l, m, co),
Ism

(2.39)

g(k, co)=g'i(k) ——,
' gg2(k, l, m)G2(l, m, co)a(k, l, m),

I,m

'D( , k}c=o—,' g I g,(k, l, m) I'G, (l, m, ~) .
l, m

(2.41)

S(k,co) in this approximation is still given by Eq. (2.29)
by replacing the real and imaginary part of Xp(k, co),
gp(k, co), and D'(k, co) by those of Eqs. (2.39)—(2.41}. The

FIG. 3. Self-energy insertions in the two-quasipartiele propa-
gator 62.
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real and imaginary parts of the above quantities come
from the real and imaginary parts of G2(l, rn, co) given by

e2(l, m, co) —co
Re[ G2(l, m, co)]= ~, (2.42)

[e2(l, rn, co) —a)]t+ I'2(l, rn, a) )
'

I 2(l, rn, co}
Im[Gz(l, rn, co}]=-

[et(l, m, co) co—] + I 2(l, m, co)

(2.43)

where

e2(l, m, r0) =eII(l)+Re[Xo(1, co es—(rn))]

+es(rn)+Re[XO(rn, co —es(1))], (2.44)

On the other hand we divide the range of k into the fol-
lowing three regions.

0

(i) The region of k &2.2 A, where the main peak is
the one-quasiparticle peak and peaks of secondary impor-
tance are the two-quasiparticle excitations.

(ii) The region k & 2.7 A, where the main peak is the
"quasifree" peak and there are other secondary peaks of
two-quasiparticle excitations at lower energies.

(iii) In the narrow interval 2.2 A '&k &2.7 A ' the
strength of the one-quasiparticle peak decreases very fast,
while that in the quasifree region increases. At k=2.5
A ' we have two peaks of comparable strength; the low-
energy one is on the continuation of the phonon-maxon-
roton curve, while that at high co is close to the quasifree.

I'g(l, rn, nr) =Im[XQ(l, co —es(m))]

+Im[Xo{rn, ro —es(l))] . (2A5)

If I'z(l, rn, co)=0, then of course

Re[ 62(l, rn, c0)]=P 1

eq(l, rn, co) nr—
1m[62(l, m, to}]=ms(tu —e2(l, rn, c0)) .

(2.46)

(2.47)

To calculate S(k,co) we need the matrix elements (i) of
the Hamiltonian, i.e., es(k) and a(k, l, rn), (ii) of the unit
operator, i.e., NI/, and (iii) of the density operator, i.e.,
{0I pt I

1 } and {0
I pt I

2} All of them have been calcu-
lated in Ref. 2 and we use them here.

The numerical calculation of the real and imaginary
parts of the quantities entering in the expression of
S(k,r0) is explained in the Appendix.

A. The one-quasiparticle peak

The D(k, co) has a pole at co=e(k) where the
Im[X{k, e (k) }]=0. This gives the so-called one-
quasiparticle contribution Z(k)5{co—e (k)) to S(k,co).
The e(k) is obtained by solving the Eq. (2.34) with the
full X instead of the Xo, and the Z(k) from Eq. (2.35)
with g and X instead of go and Xo. The calculated ener-
gies e (k) for the values of k & 3.0 A ' are shown by the
+ signs in Fig. 4. The open circles are the experimental

data and the solid line (from Ref. 2) is obtained by solving
Eq. (2.34) using Xo. Figure 5 presents the calculated
Z(k &3.0 A '). [+ signs for the full calculation, solid
curve (from Ref. 2) for calculation with go and Xo, and
the dashed curve for the experimental data". ] We see
from Figs. 4 and 5 that the effect of the self-energy inser-

III. RESULTS AND DISCUSSION

Using the two-particle propagator with the self-energy
insertions, we have calculated S(k,c0) for various values
of k in the interval 0.8 A '

& k &4.5 A '. For smaller
values of k the total strength of S(k,co) is almost exhaust-
ed by the one-phonon peak at energy e(k)=Ack and
strength Z(k) —S(k)=(A'/2rnc)k, where c is the sound
velocity. In general we find the following three different
kinds of peaks in S(k,co).

40—

30—

r I '
(

' ) & I
)

) I I

I

I
I

I
I I

/
I I

I

free part(cle —~'
I

I
I

I
I

/
I I

/ /

Feynmon-Cohen, /

I /
/

/ II II
I

(i} There is a well-defined 5 function peak at energy
e (k) for all values of k in the above interval.
S(k, co & e (k) } is zero. This peak corresponds to the exci-
tation of one quasiparticle out of the condensate. Its
dispersion e (k) gives the phonon-maxon-roton-endon
spectrum (the excitations at k & 2.4 A ' are often called
endons). The strength Z(k) of this peak becomes very
small for large k ( & 3 A ).

(ii) There are peaks which presumably can be identified
as a result of simultaneous excitation of two quasiparti-
cles.

(iii) At high k we find that the main peak in the calcu-
lated S(k,co} is a somewhat broad peak in the vicinity of
R k2/2m as may be expected from the impulse approxi-
mation and sum rules. We call this peak the quasifree
peak.

IO

0
0

FIG. 4. The one-quasiparticle spectrum. The dashed line is
the free-particle spectrum A2/2m and the dashed-dotted line
is the Pe~xnan-Cohen variational spectrum. The solid line and
+ signs represent the e(k) obtained ~ith Xo and X, respective-

ly, and the 0's show experimental data {Ref. 11).
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s I s ! I I l I ( / i I I

S~k)~'
Q.QQ5 e

I ' i; f I+ I l '
t

I

I

l

I

I

I

t

I

I

I

k = 0.825A
k) =0.2I

1.0
0,004-

0.005—

0.002—

0.5
\

+

~11

0.00 I—

0
0 IQ 20

Cd (K)
30 40

0
0

k(i 1)

FIG. 5. The strength Z(k). The solid line and + signs give
the results of calculations with 62 ' and 62 respectively. The
dashed and dashed-dotted lines are the experimental Z(k) and
S(k), respectively.

FIG. 6. The S(k=0.825 A,~). The dashed and solid lines
correspond to the calculations with G~' and 62, respectively.
The numbers in boxes give the strengths of the 5 function, and
the two-quasiparticle contribution to S(k,co). The values of k
and S(k) are given in the top-right corner.

2

N NS, co
2p7l

(3.2}

tions in 62 is not too significant for the one-quasiparticle
contribution.

The total strength of S(k,co) is given by S(k):

f dcoS(k, co)=S(k) . 3

The contribution to the above sum rule from the one-
quasiparticle excitation is Z(k); the rest, S(k)—Z(k),
comes from two or more quasiparticle contributions.
S(k} is also plotted in Fig. 5 (dashed-dotted curve}. We
can see from this figure that in the range k & 2.3 A ' the
one-quasiparticle excitation gives the major contribution
to S(k,co). For k )2.5 A ', however, the contribution of
this excitation is relatively small.

The f sum rule

0.01—
I

3

V)

0
0 10

I&
I
I
I

I

I

I

I

I

I

I
I

I
I

I

I

I

RKih

I
I
I
I
I
I

I

I
I
I

0
S

I

I

S

I

20
Cd (K)

k=1.125A-'

S(k) =0.51

50

is satisfied by the exact S(k,sii). The one-quasiparticle
contribution to it is given by Z(k}e(k). If one assumes
that the one-quasiparticle contribution exhausts the sum
rules (3.1) and (3.2), then Z(k)=S(k) and e(k) is given
by the Bijl-Feynman energy A k /2mS(k).

FIG. 7. The S(k=1.125 A, co); see caption of Fig. 6 for de-
tails.

B. Two-quasiparticle peaks

We find several peaks which may be identified as two-
quasiparticle excitations. These never become the major
structures of S(k,co}. For 0.8 A ' &k(2.0 A '

they
provide intermediate-energy structure in the range 14 K
(co(30 K; and contribute 10—20% of the overall
strength. The results are shown in Figs. 6—9. The verti-
cal lines in these figures show the one-quasiparticle 5-
function contribution. The strength Z(k) is given in a
box on the line. The strength of the rest of the contribu-
tion is given in a box under the two-qsT~~iparticle peaks
and the total strength S(k) is given along with the value
of k in the top right-hand corner. The results of our cal-
culations with the 62 ' are shown by dashed lines in Figs.
6 and 7. We note that as expected the self-energy inser-

k = 1.525A

S(k ) =0.6

3

cn 0.01—

0 IQ 20
Cd (K)

FIG. 8. The S(k=1.525 A, co); see caption of Fig. 6 for de-
tails.
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Q
0 20

(HAIK)

30

FIG. 9. The S(k= 1.925 A, m); see caption of Fig. 6 for de-

tails.

1 1
p2(k~co)= ——g 5g, t+m5(co e(1—) e(m—)) .N2i (3.3)

It is instructive to understand the structure of the DOS.
The one-quasiparticle DOS diverges at the roton
minimum and maxon maximum. Therefore, we expect
that combinations of the above extrema to give large con-
tributions to the two-quasiparticle DOS and study them in
detail.

a. Two rotons. We consider two rotons on the roton
sphere as shown in Fig. 10(a) with center of mass momen-
tum k=1+m (

I
l

I

=
I
m

I
=k„, k, is the location of the

roton minimum) and total energy c0=2co„where co,
denotes the roton energy. As long as k remains finite
(+0) there is only one angle 8 for which k=1+m; name-

ly, that with cos8=k 1=k/2k„. If k=0, 8 can take any

tions in Gi have a significant effect on the energies of the
two-q~~asiparticle peaks.

In order to understand the origin of the various peaks
in this interval, we study the two-quasiparticle density of
states (DOS} defined as

p, (k,~) ~ —ln (3.4)

The results of the numerically calculated DOS are
shown in Fig. 11. We used the experimental dispersion
curve with a momentum cutoff such that l and m are
both less than 2.4 A ' [e(2.4 A ')=15.5 K]. The in-
clusion of states with higher momenta (greater than 2.4
A ') does not modify the pz(k, co) for co & 24 K, but it will
of course alter the DOS for higher co. We can see that the
main peak is at the maxon plus roton energy co=22.5 K.

In Fig. 12 we present the matrix elements

value from 0 to ir. In this case, p2(k, co} diverges. In the
case k&0 (k &2k, ), however, the phase space is limited
and the two-roton DOS is finite at co =2co, .

b. Tue maxons. The analysis here is identical to the
two-roton case, i.e., for k=0 there is a singularity at
c0=2co, where co is the maxon energy, but for k&0
(k&2k; k is the maxon momentum) the DOS at
co =2' is finite.

c. One maxon plus one roton. If k, k—&k &k„+k
(i.e., 0.8 A '&k &3 A '), a simultaneous excitation of
one roton and one maxon can contribute to the two-
quasiparticle DOS in the vicinity of co=co„+co . There
are a lot of degenerate states which have the above energy.
We can demonstrate this as follows. We put a particle at
the roton minimum and another at the maxon peak, so we
create the state

I
A ) =

I k„,k ). Next we move the first
particle a little away from the roton minimum and at the
same time we let the maxon move to a neighboring state
so that the energy of the new two-particle state B [Fig.
10(b)] is the same as that of the state A. If
k, —k &k &k, +k, we can always choose the direc-
tions of the momenta of the new state to satisfy the
momentum conservation. Hence, there is a large (ulti-
mately infinite) number of two-quasiparticle states in the
neighborhood of co=co„+co . In fact, if one approxi-
mates the spectrum in the vicinity of the roton and maxon
by two parabolas, it is easy to show that there is a loga-
rithmic singularity in the two-quasiparticle DOS for
CO N~ +CO~:

0.8—

20

IO

CD

0.5

3~" 0.4
~OJ

0.3

oo

k(a )
(b)

Q. I

Q
(5 20 30

FIG. 10. {a) 1 and m are the momenta of the two-particles

on the roton sphere and k is their total momentum. {b) The
two two-quasiparticle states A and B that have the same energy.

FIG. 11. Two-quasipartiele density of states at various values

of k.
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both maxons (a ), both rotons (a ), and a maxon and a roton
(a, ), as a function of k.

FIG. 13. The calculated S(k,co) (solid line) is compared with
the experimental data (dashed line) at k =0.8 A

and

a (k)=a(k,
(
I) =k„)m( =k, ),

a (k)=a(k, [l (
=k, Jmf =k ),

a, (k)=a(k,
~

l
~

=k,
~

m
~

=k„)

for the cases of roton-roton (rr}, maxon-maxon (rnm},
and maxon-roton (mr) states, respectively. The contribu-
tion of these states to S(k,co) is proportional to the prod-
uct of the DOS and the matrix element a.

The solid curve in Fig. 6 shows the calculated S(k,co)
for k=0.825 A . The two-quasiparticle contribution
has various peaks. The main peak occurs at co=25 K and
it is due to a one-maxon plus one-roton contribution.
Two other peaks, one at m 20 K and the other at co 28.5
K, are due to roton-roton and maxon-maxon contribu-
tions, respectively. Those three peaks come in our calcu-
lation at somewhat higher energies from the ones that can
be found by summing the corresponding one-quasiparticle
energies, because our two-quasiparticle propagator (2.38)
has the pole at the solution of the following equation:

eg(l)+Xp(l, co ea(m))+ea(m)—+Xp(m, co ea(l))=co . —

(3.5)

The solutions of the above equation for I,m being the
roton-roton, maxon-maxon, and maxon-roton rnomenta
are systematically higher than e (l)+e(m). We note that
in principle the maxon-roton peak in S(k,co) should be
singular. However, in the results of numerical calcula-
tions shown in the figures it is not singular, due to crude
resolution of numerical methods discussed in the Appen-
dix.

At k=1.12S A ' the maxon-roton peak dominates the
two-quasiparticle contribution to S(k= 1.125,co) (Fig. 7).
In S(k=1.525, co) (Fig. 8} the maxon-roton and roton-
roton peaks are of comparable strengths, while at
k=1.92S A there is no maxon-roton peak in the
S(k=1.925, co) (Fig. 9), but there is a strong maxon-
maxon and a relatively weaker roton-roton peak.

We can understand these changes from the behavior of

the a (k, l, m) and the DOS. In the neighborhood of k —1

A ' the matrix elements a~, a~~, and a~, have compar-
able magnitudes and so, as a result of the structure of the
DOS (Fig. 11), the peak with higher intensity in S(k,co) is
the maxon-roton. For k —1.5 A ' the matrix element

~

a
~

is approximately twice as large as the
~

a „~ and

~

a „~ and so the roton-roton peak has comparable inten-

sity with the maxon-roton peak even though it is not there
in the DOS. At k —1.9—2.0 A ' the a „ is very small,
while the a is significant and the a~ is very big.

The S(k=0.825 A ', co) has another peak at co=15 K.
This is due to two-phonon states which are in the neigh-
borhood of co=ck. The multiple-peak structure around
16—18 K of S(k=1.525, co) is presumably due to roton-
phonon and maxon-phonon states.

In Fig. 13 we compare the calculated S(k=0.825, co)
with the experimental S(k,co) at k=0.8 A '. The
lowest peak of the experimental S(k,co) has to have zero
width, but it is broadened by the instrumental resolution.
In fact, the experimental resolution is essentially given by
the width of this peak. The measured S(k=0.8, co) has a
second broader and inuch weaker peak in the two-
quasiparticle energy region at co=23 K, and a high-energy
tail. The theoretical S(k,co) has more structure in the
two-quasiparticle energy region and the main peak is at
the maxon-roton frequency co=25 K. A much better in-
strumental resolution is necessary to see this structure in
experiments. A crude numerical broadening of the
theoretical S(0.825,co) with the present experimental
resolution removes most of the structure. The theoretical
two-quasiparticle peaks appear at somewhat higher co

(8—9% higher). This disagreement may be removed by
the inclusion of self-energy corrections which involve
four-FC-quasiparticle states. The inclusion of these states
make the numerical calculation much more complicated
and we leave them out in this work. The high-energy tail
of the observed S(k,co) is presumably due to three and
more quasiparticle excitations omitted in this study.

C. The "quasifree" peak

In a neutron scattering experiment, if the momentum
transfer k is very high, the neutron "sees" the individual
helium atoms distributed with the microscopic momen-
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S~(k,co)= I n(p)5 co—
(2~)3p 2m

where n (p) is normalized as

d p n(p) =1 .
2% p

Thhe structure of n (p) is as follows:

(3.6)

(3.7)

turn distribution n (p). In this casen 's case the dynamic structure
or may approximated b th

tion (IA)
y the impulse approxima-
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FIG.G. 15. The calculated S(k=2.975 A, co).

m+ ~ k p dp pn (p +0) (3.9) FIG.. 16. The calculated S(k=3.475 A, a) ).
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S(k}

TABIE L Compte{coo of the ce{co{etedmomeote to 1o{kt=I doS{k o), t {k)=f dmod{k, ert

of S(k, r0) with exact ones: S(k) and fi k2/2m, respectively. The columns Z(k) and Z(k)e(k) give
contributions of the one-quasiparticle states to Ip and I&, respectively.

k (A ) Z(k) Ip(k) Z(k)e(k) (K) I$(k) (K) A k /2m (K}

0.825
1.125
1.525
1.925
2.475
2.975
3.475
3.975
4.475

0.14
0.19
0.41
1.09
0.35
0.09
0.06
0.05
0.03

0.17
0.25
0.53
1.25
0.96
0.75
0.74
0.73
0.71

0.21
0.31
0.60
1.35
1.09
0.94
0.96
0.99
1.00

1.73
2.55
4.72
9.7
4.8
1.4
0.96
0.90
0.77

2.51
4.05
7.50

13.6
26.0
34.6
44.5
55.1

68.7

4.12
7.67

14.1

22.5
37.1

53.6
73.2
95.7

121.3

tice. The calculated S(k=2.475, ro) shown in Fig. 14 has
two main peaks. A 5-function peak at the energy co=14
K and strength Z=0.34, and a broad peak with some
structure in the region of r0Qp ——37 K. In Figs. 14 to 18
the value of c0Qp is given in the top-right corner. The
dashed line in Fig. 14 gives the experimental
S(k =2.5, co} taken from Fig. 6 of Ref. 1 and normalized
in order to satisfy the sum rule (3.1). The two peak struc-
ture is present also in the experimental data. The theoreti-
cal and experimental strength of the peaks agree to a
reasonable accuracy. The energies of the peaks of the cal-
culated S(k =2.475, ro) appear at somewhat different en-

ergies from those of the experimental peaks.
The calculated S(k,ro)= at k=2.975 and 3.475 A

(Figs. 15 and 16) has broad structures in the region of
co —coQp These contain most of the strength. However,
there are one or two significant peaks at lower r0. The
contribution of the "one-quasiparticle" excitation has be-
come insignificant.

The calculated S(k=3.975 A ', ro) and S(k=4.475
A, ro) are compared with the impulse-approximation re-
sults in Figs. 17 and 18. The S~(k,ro) (dashed-dotted
line} has a 5-function peak at R ki/2m with strength n,

and another broad peak at the same place. In S(k,co)
(solid line) we find a sharp peak at irr k2/2m and a broad
structure in the neighborhood of this peak and at lower
energies. The dashed curve in Fig. 18 shows the experi™
mental S(k,c{i) taken from Ref. 11. This curve has a
broad peak at a lower value of co=100 K. Therefore the
experimental data must have a very long energy tail in or™
der to obtain an average energy co=121 K

required
from

the sum rule (3.2). It appears that k=4.5 A is still low
for the impulse approximation to be valid.

In Table I we give the calculated values of Z(k) and
the total integral Io(k) of the calculated S(k,ro) to be
compared with S(k}. We also give the one-quasiparticle
contribution to the sum rule (3.2) and Ii(k)
= f drocoS(k, ro) to be compared with irPk /2m. We find
that the sum rule (3.1) is violated by 7—29%%uo and the sum
rule (3.2) by 30—47%%uo. To correct for this presumably
one needs to consider higher contributions in the S(k,co).
Some of the neglected vertices and terms are given in
Figs. 19(a)—19(d). Their contributions become more and
more important as one tries to satisfy higher c0 moments
of S(k,ro}. In the spirit of this theory the next terms to
be included should be those with three-phonon states.

TABLE II. The numerically calculated taro-particle density
of states, using Eq. (4.2), for k=0.885 A and co=20 K, as a
function of e and h.

2.0
2.0
2.0

A(A )

0.05
0.025
0.0125

p2(k, co)

0.399
0.339
0.339

1.0
1.0
1.0

0.05
0.025
0.0125

0.328
0.328
0.328

(c) 0.4
0.4
0.4

0.05
0.025
0.0125

0.319
0.323
0.322

FIG. 19. Some of the neglected vertices and terms that con-

tribute to the D(k, co) and S(k,u }.

0.2
0.2
0.2
0.2

0.05
0.025
0.0125
0.00625

0.317
0.330
0.322
0.322
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The new vertices at this level are shown in Fig. 19(a) and
some of the new D(k, co) contributions are illustrated in
Fig. 19(b). The still higher level of accuracy should in-
clude four-phonon states illustrated in Figs. 19(c) and
19(d). Hopefully the contribution of the various diagrams
to S(k,co) decreases rapidly as the number of interacting
phonons increases. Nevertheless, the present calculation
with only one- and two-phonon states seems to give a

semiquantitative description of the S(k,co} over a wide
range of k and co.
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APPENDIX

1. Calculation of the density of states

The two-quasiparticle DOS is defined by Eq. (3.3). If we consider the following representation of the 5 function:

5,(x)= —(x/e)2e (Al)

where 5(x) is the limit of the above distribution for e~0, the DOS may be written as

1 k+1
pe(kee)= llm J d(( f 1mm5, (m —e(()—e(m))

8 pk tk —j
i

(A2)

In practice we calculate pi at a chosen value of e and test the convergence of the lim, o by recalculating the pi with an e
that is smaller by approximately a factor of 2. The numerical integral is calculated with a grid spacing h for the I and m
mesh. As e is reduced, it is necessary to decrease h to assure accuracy of the numerical methods. The limit e~0 is
achieved when the results are stable with respect to variations in e and the grid spacing h of the integration. The results
of the integral (A2) for k=0.885 A and co=20 K are shown in Table II. We notice that the convergence is achieved
for e=0.4 K and h =0.025 A

Another representation of the 5 function may be the following:

5,(x)=—1 e
')r e +x

(A3)

A calculation of p2(k, co) with the representation (A3) shows that the convergence is much slower and the required values
of e and Ii are smaller. Therefore, the form (Al) is more convenient for practical reasons.

2. Calculation of Xo(k, ru)

From Eqs. (2.20} and (2.32)—(2.33) we may write

Xo(k, ro) =Re[xo(k,oi)]+i lm[Xo(k, ro)], (A4)

Im[Xo(k, co)]=——g ~
a(k, l, m)

~

5(co es(1) —es(m)—),
/, I

1 ~ lm[Xo(k, co') ]
Re[Xo(k,c0)]=—f da)'

N —N

We calculate the Im[Xo(k, co)] using the expression

co k+ 1

Im[Xo(k, co)]=— f dl I f dm m
~
a(k, l, m)

~
5,(co ez(l) ez(m)), — —

8+pk 0 (k —1(

where 5,(x) is the representation (Al) and e=0.4 K.
The real part of Xo(k, co) may be written as

Re[zo(k, rll)]= ——' y ' ' 6(
~
es(l)+es(m) —Q7

~

—7))+—f dco'( a(k, l,m) j
~

1 Im[Xo(k, co'}]

ez(l)+es(m) —co l~' —~l &n co' —m

(A5)

(A6)

(A7)

(AS)

For small g the second term is approximated by

alm[Xo(k, ~)]—2n
7T Bco

(A9}

The value rl =0.4 K is used in the calculations. The contribution of the second term of Eq. (A8) is very small for this
value of rl, and we have verified that the results do not change when g is reduced to 0.2 K.
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3. Calculation of X(k, ro)

The real and imaginary parts of X(k,~o) are given as follows:

(A10)
Re[X(k ro)] 1 ~ a+i )& Re[Gt(l, m, ro)],
1m[X(k,co)] g~pk o

~
k —&

~

dl1 dmm ~a(k, l, m)
~ X Im[G, (l,m, ro)],

where if I 2(l, rn, ro) [Eq. (2.45)] is greater than e, the Re[Gz(l, m, ro)] and 1m[62(l, m, co)] are given by Eqs. (2.42} and
(2.43). If I q(l, m, co) is less than e we use Eqs. (2.46) and (2.47) for the real and imaginary part of Gz(l, rn, ro) The fol-
lowing representations are used for the principal values and 5 function:

1
Re[ 62(l, m, ro)] = 1 —exp

eg(l, m, ro) —ro

et (I,m, ro }—ro
(A 1 1)

Im[62(l, m, ro)] =n exp
1 e2(l, m, ro) —ro

(A12)

We use the value of e=0.2 K for calculating X(k,ro), and the integrals over 1 and rn are done with grid spacing
h =0.0125 A . The integrals g(k, ro) and D'(k, ro) [Eqs. (2.40) and (2.41)) are also evaluated in a similar fashion.
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