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The expression reported recently as a new solution of the Korteweg—de Vries equation is discussed and
reinterpreted. It is shown that depending on the choice of sign one obtains two different solutions corre-
sponding to an interaction of rational quasistatic singularity with regular or singular solitons, respectively.
In both cases the interaction can be described in terms of a two-soliton collision. The two interacting ob-
jects can preserve or exchange their identities; they are, however, neither annihilated nor created during

In a recent paper' Au and Fung (hereafter referred to as AF) discussed a new solution of the Korteweg~de Vries (KdV)

equation:
U+ 12uuy + o =0 . (1)
Starting with the static rational solution u = — 1/x? and applying the Bicklund transformation, AF obtained the following,

rather complicated expression:!
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where 'ensure a real value of the In function. Note, however, that
in the particular case of Eq. (2) the logarithm enters the for-
f=x+ 1 In [Vax —1] —4rt A>0 malism through the exponential function. As a result, both
VA Vax +1] ’ ’ positive and negative values of the argument + (vxx —1)/

Unfortunately, both the mathematical form of Eq. (2)
and its physical interpretation give rise to serious doubts.
From the mathematical point of view, expression (2) satis-
fies the KdV equation in three separate regions
(x < =1/VX, =1/Vx<x <1/VX, x > 1/JX); it is, how-
ever, discontinuous at the boundaries x = +1/v/X. Thus,
strictly speaking, Eq. (2) cannot be regarded as a solution of
the KdV equation valid over the whole x axis.

On the other hand, the Bicklund transformation may be
described roughly as a procedure of adding a new soliton to
the already existing “‘old”’ solution.? In this context, the
very complicated analysis reported by AF (annihilation and
creation of a soliton, additional disturbance interpreted as a
‘““message’’) is unclear and physically ambiguous.

In this clarifying Comment we show that the above
doubts follow simply from the misinterpretation of Eq. (2).
In fact, we deal with fwo distinct solutions, and the interac-
tion between a soliton and a rational quasistatic singularity
can be easily described in well-known terms as a limiting
case of the two-soliton solution.

The detailed derivation of Eq. (2) is not given by AF, but
it seems that the absolute value of the argument in
In(|[vxx = 1}/|vxx +1|) has been introduced in order to
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(VAx +1) lead to a real solution u (although the logarithm
itself may be complex). The above observation is crucial
for the further analysis and enables us to explain the main
misunderstanding in Ref. 1.

Indeed, let us assume in Eq. (2) In[(vVxx—-1)/
(V'Ax +1)] over the whole x axis. It can be easily checked
that the resulting solution is real and continuous for all x
(except for singularity). After some algebraic transforma-
tions we obtain the following simple form:

2exp(20) —2[2(kx)*+1]exp(8) +1
[(kx —1) exp(8) + (kx +1)]?
where 0 =2kx — 8k3t; k =V\.

Similarly, assuming in (2) In[(1—=+vxx)/(1++vVax)]1, we
have

, 3)

u=—k

B exp(20) +2[2(kx)2+1lexp(0) +1 @
[(kx — 1) exp(8) — (kx +1)]2

The solution (4) is again real and continuous for all x (ex-
cept for singularities). It is, however, essentially different
from the solution (3).

It is interesting that Eqs. (3) and (4) can be derived in a
much simpler way from the well-known multiple-soliton for-
mula.>* Indeed, for the KdV equation given by (1), the
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two-soliton solution can be written in the Hirota form as

u=(nflg , 5)
where

S=1+exp(n) +exp(n) +exp(n+m+412) ,

expAdiz= (ki —k2)¥/ (ki +k2)?

mi=kix —kPt+2{%, i=1,2;

ki, n{® are arbitrary constants.
For k; and n,-“” real, Eq. (5) describes a nonlinear interac-
tion of two regular solitons having an asymptotic form

Tk sech?[5 (kix — k0] .

However, for k; real and Im7® = =, instead of regular soli-
ton we obtain a singular soliton of the type - %—k,2
x csch?[ 5 (k;x — kt)]. The singular-soliton solution can be
further transformed into a rational static form* by taking the
limit k;,— 0:

— sktesch?[ 3 (kix — kPt)]— —1/x? .

Let us assume 7{”=0, ¥ =im, k,— 0. In other
words, we transform the second soliton into rational form,
while keeping the first one unchanged. According to Eq.
(5) we obtain

fe (4= kix)exp(n) —kix , 6)
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FIG. 1. Solution (3) as a function of x for k=1 and = —1,
—0.2, —0.1, +0.1. For r=0 the moving soliton becomes infinitely
tall, while its width tends to zero.
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where n=k;x — k{t. Changing the variables x — x +2/k,,
t — t +2/k{, and substituting k; = 2k, we have

S (1—kx)exp(8)— (1+kx) , )

where 6=2kx —8k3t as in (3). It can be easily verified that
(Inf ) for f given by (7) yields the solution which is iden-
tical with Eq. (3). (Note that the proportionality factor is
unimportant in the logarithmic derivative of f.)

Similarly, one can show that the substitution ={®
=ni=iw, k,— 0 leads to a nonlinear interaction of a
singular soliton with rational component,

Sfe (kx —1)exp(8) — (kx +1) . ®

In this case, the resulting solution (Inf ), is identical to Eq.
).

It should be mentioned here that Eq. (3) is equivalent to
the ‘‘quasisoliton’”® and ‘‘pole-soliton’*® solutions reported
some years ago. On the other hand, the solution (4) has
not been quoted so far in the literature, but its existence
can be deduced from general considerations on the Hirota
multiple-soliton formula.’

The time evolution of Egs. (3) and (4) for k =1 has been
shown in Figs. 1 and 2, respectively. It is clear that the in-
teraction between two ‘‘objects’’ is much simpler than that
reported by AF. In accordance with the derivation of Egs.
(7) and (8), Fig. 1 represents a nonlinear superposition of a
regular soliton and quasistatic rational singularity, while in
Fig. 2 we can see similar (asymptotically the same) quasi-
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FIG. 2. Solution (4) as a function of x for k=1 and t= —2,
-1,0, +1.
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FIG. 3. x-t graph corresponding to Eq. (3). Solid line, trajec-

tories of two interacting objects; dashed line, asymptotes for
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static singularity interacting with a singular rather than regu-
lar soliton.

In order to discuss the interaction process in more detail,
the trajectories corresponding to Egs. (3) and (4) have been
shown in Figs. 3 and 4, respectively. For singular objects
we have identified their positions in the x-t plane with the
corresponding poles of Eqs. (3) and (4). The position of
the regular soliton, however, has been determined uniquely
by the (x,¢t) coordinates of its peak. Such an approach
seems more reasonable than the criterion ¢ =0 suggested by
AF, although other definitions of the soliton position are
also possible.®

It should be noted that for both (3) and (4) the net phase
shift of the moving soliton is zero; i.e., the trajectory tends
asymptotically to the line x —4t=0 for |t|— . On the
other hand, the quasistatic rational singularity experiences a
shift by Ax = —2. Such behavior is in complete agreement
with general features of multiple-soliton collisions.’ Indeed,
for two interacting solitons the phase shift measured along
the x axis can be expressed as follows:

Ax,=—An/k,, Axy=+Aplky, ki>k; , 9)

where 4,; has been defined in (5). As shown earlier, Egs.
(3) and (4) can be derived from the two-soliton solution by
taking the limit k;— 0. Thus, substituting into (9) k;=2k,
k,— 0, we obtain the following for k=1: Ax;=0,
AX; =—2,

The question of whether solitons maintain or exchange
their identities is still open. Recently, Bowtell and Stuart®
have shown, on the basis of pole dynamics in the complex
domain, that two regular KdV solitons exchange rather than
maintain their identities during an interaction. A similar sit-
uation is illustrated in Figs. 2 and 4, where the incident
singular soliton decelerates and eventually stops at x = — 1,
while another singular object (being a stationary rational
solution for t — — o) starts from x =1 and accelerates, at-
taining asymptotically the shape and velocity of the incident
soliton. The problem becomes more complicated for the in-
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FIG. 4. The same as in Fig. 3, but for Eq. (4).

teraction described by Eq. (3) (see Figs. 1 and 3), since the
trajectories cross each other. However, careful analysis in
the complex domain shows that the regular soliton simply
passes through the singularity and the two objects maintain
their identities for all #. Thus, two different mechanisms of
the interaction are possible, depending on the singular or
regular nature of interacting objects.

In summary, in this Comment we have shown that Eq.

(2) reported by AF represents, in fact, two distinct solu-
tions, (3) and (4). Both solutions can be easily obtained
from the well-known multiple-soliton expression by per-
forming an appropriate limiting procedure. In this formal-
ism the quasistatic rational singularity may be viewed as a
limiting case of a singular-soliton solution, and there is no
eason to interpret u = —1/x? as an ‘‘interaction field.”
‘or both (3) and (4) we deal with two well-defined objects
vhich (a) exist for each ¢, (b) interact according to the
~ell-known principles of multiple-soliton collisions, and (c)
either preserve or exchange their identities during the in-
teraction.

Thus, it seems that the far-reaching conclusions drawn by
AF on the annihilation and creation of KdV solitons, uni-
fied description of particles and fields, etc., are misleading
or at least premature. On the other hand, the soliton veloc-
ity and shape varying as a function of x are nothing new,
since similar phenomena are also observed in multiple-
soliton collisions. The difference is merely quantitative,
since the effective interaction region is much larger for the
rational solution u = —1/x? than for the rapidly decreasing
soliton profiles.

Finally, it should be mentioned that the above discussion
shows clearly the usefulness of the Hirota method for ob-
taining and interpreting various solutions of the KdV equa-
tion. As pointed out in Ref. 7, the Hirota multisoliton ex-
pression can describe in a unified way regular and singular
solitons, rational solutions as well as their various combina-
tions. The two solutions discussed in this Comment belong
to the above class and can be named ‘‘rational-regular soli-
ton’’ and ‘‘rational-singular soliton,’’ respectively.
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