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Resonant carrier capture by semiconductor quantum weiis

J. A. Brum and G. Bastard
Groupe de Physique des Solides de I"Ecole Normale Su~rieure, 24 rue Lhomond,

F-7523'1 Paris Cedex 05, France

(Received 11 March 1985)

We present the results of a quantum-mechanical calculation of r, the average capture time of a carrier by
a quantum well. The capture is induced by the emission of longitudinal optical phonons. The time ~

displays strong oscillations versus the well thickness. These oscillations are associated with the binding of a
new state by the weB and with the occurrence of a quantum-well virtual bound state within one LO phonon
energy from the edge of the quantum-well continuum. Holes are calculated to be more efficiently captured
than electrons.

Semiconductor quantum wells are known to efficiently
collect carriers. This may be one of the reasons for the im-
proved performance of quantum-well lasers over conven-
tional double-heterostructure lasers. ' Recently, time-
resolved cathodoluminescence2 and photoluminescence ex-
periments3 have been interpreted in terms of carrier capture
times as short as 0.1 (Ref. 2) or 50 ps.3 The energy relaxa-
tion within bound quantum-well (QW) states has already
been discussed4 5 as well as the giant capture cross sections
of traps in bulk materials. ~ However, to our knowledge, the
only existing theory of carrier capture by a QW is due to
Shichijo et al. 7 and Tang et al. s These authors have per-
formed a classical calculation of the LO phonon-scattering-
limited carrier mean free path 1~ in bulk GaAs and have
concluded that, if the GaAs well thickness J. of a GaAs-
Gai „Al„As structure was larger than I~, the carrier collec-
tion should be efficient.

In this Brief Report we report the results of a quantum-
mechanical calculation of the average time v for a carrier
energetically located within one LO phonon energy (llcujo)
of the edge of the QW continuum to be captured by the
well. The allowance of the quantum aspects of the problem,
i.e., of the discrete nature of the QW bound states as well as
of the intricacies of the QW continuum states lead to results
which are markedly different from the classical analysis. '
The capture time 7 is an oscillating function of the weil
width L The oscillations originate either from the binding
of a new bound state by the QW or by the existence of a
QW virtual bound state situated within teuto of the QW
continuum edge.

We consider a QW structure which consists in a semicon-
ductor layer (thickness L) clad between two thick semicon-
ductor layers which act as potential barriers. The total
thickness of the structure is Wand W)& L &is a macro-
scopic quantity (&=1 p, m), whereas L is of the order of
100 A. %e denote by z the growth axis of the structure.
%e will neglect any band™structure effects: The carrier has
a constant effective mass m throughout the w'hole structure
and its dispersion relations in each layer are taken as para-
bolic and isotropic upon the wave vector k. The energy
zero is taken at the onset of the QW continuum. Thus, as-
suming flat band conditions, the potential energy is constant
inside the well ( —Vb) and in the barriers (0). The QW
structure has a finite number~of bound states of negative

energies:

1 + jnt(2nt VbL2/~2g2)

where int(x) denotes the integer part of x. In addition to
these bound states, virtual bound states (or, equivalently,
transmission resonances) of positive energies occur in the
QW continuum. b Compared with other continuum states,
they correspond to an accumulation of the integrated proba-
bility of finding the particle in the well and, in this respect,
act like true bound states. '0 The transmission resonances
are narrower when their energies approach zero. At the
continuum edge, they match with the true QW bound
states. In addition to the z motion, the carrier is free to
move in the layer plane. The in-plane wave vector will be
denoted by kt= (k„,k„). Thus, a QW bound state will be
labeled by Inks'), where n(n=1, 2, . . .) is the index of
the bound level associated with the carrier z motion. The
wave functions of the QW continuum states along the z axis
are linear combinations of plane waves, either in the weil
(wave vector k ) or in the barrier (wave vector kb). These
wave functions are normalized over the length W of the
structure. In the layer plane the wave functions are plane
waves (wave vector kt). The QW continuum states will be
labeled I kb, kt). For a given energy and a given kt, there
exist two degenerate continuum states Ikb, kt) which corre-
spond to a carrier moving along the z axis either from the
left to the right or vice versa. It will be convenient to use
the symmetric IS,kb, kt) or antisymmetric IA, kb, kt) com-
binations of these two states. When the nth QW bound
state [parity ( —1)"+'] has popped in the continuum to be-
come a transmission resonance and when this resonance is
narrow enough, the virtual bound state largely retains the
parity property of the original bound state. If n is odd (even
bound states) the symmetric combination of continuum
states IS,kb, kz) displays an enhanced probability of being in
the well. Instead, the antisymmetric combination I A, kb, kt)
is repelled by the well and consequently corresponds to a
very small integrated probability of finding the carrier in the
weil.

%e are interested in calculating the transition probability
per unit time IV(kb, kq) that a carrier in the initial state
Ikb, kq) emits a LO phonon and becomes captured by the
well. We assume that the electron-phonon coupling is
described by the Frohlich Hamiltonian. To the Born ap-
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proximation ~(kq, Ir1) is given by

h2 8 k'2
W(kb, kg)- g )(X,kb, itt, 1 ~H, ,h(n, kg, 0„) [ g „(kp2+kf) tc—aLo+ Vp —e„—

2m'
n, kg, q

A,S

~here q is the three-dimensional phonon wave vector, ~„
the confinement energy of the nth bound state (0~a„
~ Vs), and where ~X, kb, Itq), where X= A or 5, denote the
symmetric or antisymmetric combinations of continuum
states of barrier wave vector k& (kb & 0). In Eq. (1), the
dispersion of the LO phonons has been neglected as well as
the difference between the f~Lp's in the well and in the bar-
rier. %e shall denote by v the average capture time of the
carrier. r ' is defined as the average of W(kb, kz) over all
the continuum states weighted by a distribution function
f(kb, k1.). W'e have considered a steady-state situation: f is
constant for all continuum states with energy smaller than
A QJLp and vanishes elsewhere. To facilitate the discussion

' will be written as ~~ '+ 7 q '„~here v&, r~, respective-
ly, correspond to initial continuum states which are either
odd or even with respect to z -0, the center of the QW
slab.

Before discussing the L dependence of v ~, 7 q, we want to
stress that ~~, v~ are proportional to the total structure
thickness W(as long as L &(W). This is not surprising in-
sofar as the initial states are delocalized over& ~hereas all
the final states are essentially localized over L For multiple
quantum-well structures consisting in p QW's rz, rs would
be proportional to&/p if the captures by different wells are
incoherent and if pL &&W

Figures l(a) and 1(b) present the calculated results for
Ts, Tg vs L keeping AaoLo, V&, m,', and Wftxed (36 meV,
0.3 eV, 0.067ntc, and 1 p, m, respectively). In these curves,
the normalizing constant of the distribution function f has
been taken equal to
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cause only a single continuum state can recombine with the
single n =1 QW bound state of vanishing binding energy.
When L increases the n = 1 QW bound state deepens in the
well and thus the number of initial states available for cap-
ture increases as well as the number of final states; v~ ' and
Tq ' both increase. %hen V~ —~~ comes to exceed faoLp it
is no longer possible to have efficient quasi-one-dimensional
capture events which are characterized by zero initial and fi-
nal kj's. Accordingly, 7~ ' and vq

' decrease. 7~ ' stops

where 5 is the sample area. Our normalization is exact at
L 0 but becomes only approximate if L~0; we consider,
however, the resulting errors as small since L &&~

The most striking features of the results shown in Figs.
1(a) and 1(b) are the pronounced oscillations displayed by
7~ ' and 7g vs L These oscillations, of quantum origin,
are closely linked to the existence of QW bound and virtual
bound states. Those labeled 1, 2, 3, . . ., show up irrespec-
tive of the parity of the initial state, whereas those labeled
82&+~, j~0 are seen only in v, ' and those labeled A2g+2,
j~ 0 are only seen in ~~ . The first kind of oscillations
(n-1, 2, . . .) corresponds to discrete bound states enter-
ing into the well and, by increasing L, becoming more tight-
ly bound to finally move outside of the reach (-fcuLo) of
any continuum state which would allow a capture event with
zero kq, kq. The second kind of capture resonances
(+pl+ f &2J+2) is associated with the drop of QW virtual
bound states within AcvLp of the continuum edge. As these
states are narro~ enough, they largely retain the parity prop-
erty of the QW state into which they will transform at larger
L Consequently, a virtual bound state of even n will siz-
ably enhance Tq ' but will not affect 7~ ' and vice versa if n

1s odd.
Starting at L =0, v&

' and vq ' are very small. This is be-
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FIG. 1. The inverses of the average electron capture times (a)
7s ' and (b) ~„' are plotted vs the quantum-we11 thickness L (solid
lines). The maxima labeled (1,2, . . .) are associated with the cap-
ture events ending into the nth QW bound state which stays within
-A~Lp from the top of the dwell. The maxima labeled {a) R3 R5
and (b) R2, R4 correspond to capture events ~hose initial states in-
clude the (a) n-3, n-5 or (b) n-2, n-4 virtual bound states.
The curves dragon ~ith symbols labeled n -1,2, . . . are the contri-
butions of the capture events to (a) rs ' or (b) r„', whose final
states correspond to the n 1, 2, . . . QW bound states. The verti-
cal bars labeled 2, 3, . . . drawn on the L axis are the QW
thicknesses beyond which the nth QW virtual bound state stays
within kao~p of the continuum edge (dashed bars) and beyond
which this nth state has become a true QW bound state (solid bars).
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decreasing when the n -2 virtual bound state comes within

AmLo of the continuum edge. For this L and onward, the
capture events associated with odd continuum states are
enhanced due to the increasing probability of finding the
particle in the quantum well. On the other hand, ~q ' keeps
decreasing since all the even continuum states are repelled
by the well, inhibiting the capture. At still larger L, the
n =2 virtual bound state becomes a true bound state and
the scenario at L =0 is repeated (irrespective of the parity
of the initial states). However, there now exists two kinds
of final states which are, respectively, associated with the
n -1, n -2 QW bound states. Both n = 1 and n -2 contri-
butions decrease (when Vt,

—e2P ttcLo), until the n = 3 vir-
tual bound state comes within tcuLo of the continuum edge.
Since n -3 is the reminiscence of an even bound state r~ '

is markedly enhanced, whereas v~ ' keeps decreasing. Then
the n-3 level becomes bound by the QW and the whole
cycle starts again.

Figure 2 presents a comparison between the L depen-
dences of the electron and hole capture times ~„7~. For
the holes, we took mq' 0.45m0, V~ 0.2 e~; otherwise, the

Vb =03eV
m, = 0.067me
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FlG. 2. The average capture times for electrons and holes ~„v&

{in ps) are plotted vs the QW thickness L The minima labeled

n 1,2, . . . correspond to capture events ending into the nth QW
bound state which stays within -A'~&o of the top of the well. The
minima labeled R~,R3, . . . correspond to capture events whose ini-

tial states include the n 2, 3, . . . QW virtual bound state. The
dashed and solid vertical bars drawn on the L axis have the same

meaning as in Figs. 1{a)and 1{b}.

same parameters as used in Figs. 1(a) and 1(b). Clearly,
v„7& vary with I. in the same qualitative way, exhibiting
oscillations versus the well width. Quantitatively, however,
the holes are found four times more rapidly captured than
the electrons. %e attribute this fact, which may be of im-
portance for the understanding of QW based devices, to the
larger density of final states for holes in the capture events.

In addition, it can be seen in Fig. 2(b) that the amplitudes
of the ra oscillatLons are smaller than those of r, . Indeed,
beyond L —30 A, 7I, is rather smoothly varying. %e be-
lieve the latter feature evidences the transition from a truly
quantum regime, where the QW binds few levels and where
v oscillates strongly, to a quasiclassical regime, where the
QW binds so many levels that they form a quasicontinuum,
in such a way that the binding of a new QW state little af-
fects the total number of available final states for the cap-
ture events. Note that in the quasiclassical regime, the
analysis of Shichijo et al. ' is likely to become correct.

To our knowledge, there is no precise experimental or
theoretical insights about the energy dependence of the dis-
tribution function of continuum states in semiconductor
quantum ~elis. To obtain Figs. 1 and 2 we took an
equirepartition of continuum states up to AeoLo for the sake
of definiteness. This f roughly mimics a situation where
carriers, after having been injected high in the continuum,
have quickly cascaded down (through phonon-assisted in-

tracontinuum transitions) to stay within teuLo from the con-
tinuum edge without thermalizing among themselves.

To check whether the pronounced oscillations shown in

Figs. 1 and 2 are independent of the assumed f, we have
also investigated the r vs L relationship when f is taken to
be a Maxwell-Boltzmann distribution function, characterized
by the effective temperature ? . Such an f may result from
a fast thermalization among carriers. e found that, com-
pared with the results shown in Figs. 1 and 2, the capture
times „rraare increased by a factor —1.4-6 when T'
ranges from 100-10 K. Moreover, our calculations have
demonstrated that the oscillations labeled 1,2, . . . , associ-
ated with the binding of a new state by the QW, show up ir
respective of ? . On the other hand, the oscillations labeled
R2,R3, . . ., weaken and tend to move closer from those la-

beled 2, 3, . . ., in a r vs L plot when T" decreases. This is

hardly surprising since low T"s (i.e., ks? ((it~Lo, where

ks is the Boltzmann constant) exponentially cut off the con-
tinuum states which are beyond ks? from the continuum
edge. Thus, the virtual bound states 2, 3, . . . have neces-
sarily to be within ks T' (instead of &coLo like in Figs. 1 and
2) from the continuum edge to give rise to a capture reso-
nance, i.e., R2,R3, . . . have to move closer from 2, 3, . . .
than shown in Figs. 1 and 2, if a Boltzmann f is used in-

stead of an equirepartition.
Our calculations have not included the thermally activated

carrier escape from the QW to the continuum due to the ab-
sorption of LO phonons, a process which takes place in the
same L range as the resonant capture. Thus, strictly speak-
ing, our calculations can only be applied to low-temperature
experiments where no LO phonons are present. In room-
temperature operating devices, the resonant capture mill be
smoothed out due to the simultaneous occurrence of carrier
escape. This feature may eventually be corre1ated with the
rather smooth I. dependence of lasing threshold observed
by Hersee et al. ' in QW lasers operating at room tempera-
ture.

There is only a single experimental result with which our
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calculations can reasonably be compared. Gobel et a/. ' have
fitted their time-dependent photoluminescence experiments
with a single capture time: ~=50 ps for a single GaAs-
gaos2AlotsAs quantum well of nominal parameter L =50
A, &=1 p, m. Taking V, =135 meV, V&=90 meV (i.e., V,
equal to 60'lo of the band-gap difference between GaAs and
Gat „Al,As), m, = 0.074mo (to account for nonparabolicity)
and mI, =0.45mo, we have found 7, =180 ps and ~q=45 ps.
~e consider these values to be in good agreement with the
experiments of Gobel et al. , especially in view of the uncer-
tainties of the fitting procedure (a single r) and of the as-
sumption of the equirepartition of the continuum states. In
any event, a more systematic study of the r vs L depen-
dence is required to ascertain whether our approach of the
carrier capture is correct. The experiments of Christen
et al. were performed on multiple quantum wells and, thus,
cannot be safely compared with our one-well theory.

In conclusion, we have presented the results of
quantum-mechanical calculations of the carrier capture by
idealized semiconductor quantum-well structures. e have
shown that in contrast with classical calculations, the capture
time exhibits marked oscillations upon the well width, which
we have sho~n to be associated either with the binding of a

new bound state by the QW or with the occurrence of a. vir-

tual bound state within AcoLo from the continuum edge. %e
have found that the holes are more efficiently collected than
the electrons by the QW due to the larger density of states
of holes for final states. %e believe that the inclusion of
band-structure effects (effective-mass mismatch, band non-
parabolicity, etc.) cannot qualitatively alter the conclusions
of our paper which are ultimately based on the existence of
two genuine QW features: the bound and virtual bound
states. Finally, the pronounced oscillations of the capture
time will have an impact on the design of more efficient
QW devices, if the device performances are closely linked to
the capture phenomena.
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