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Plasmon bands in periodic conducting heterostructures
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A hydrodynamic approach is used to develop a theory of the collective modes of a periodic system con-

sisting of alternate degenerate semiconductor or metallic layers characterized by different equilibrium densi-

ties. The plasma modes propagate within the lo~-density layers, but not in the high-density ones. Due to
the periodicity of the system, the modes in different layers interact to form plasmon bands.

Bulk plasmons in a simple metal or degenerate semicon-
ductor of uniform elecron density n satisfy a dispersion rela-
tion to2 = cos2+P21ql2, where tos- (4n ne2/m)'i2 is the Plasma
frequency, p is a stiffness constant proportional to the Fer-
mi velocity, and q is the wave vector of the plasmon. In a
simple local theory p is set equal to zero and the frequency
of a plasmon is independent of its wavelength. For a thin
metallic film embedded in a dielectric two types of plasma
modes exist. One type, which occurs even in a local theory,
consists of the symmetric and antisymmetric linear superpo-
sitions of the surface plasmons of each of the metal-
dielectric interfaces. The second type consists of bulk
plasmons propagating in the thin film. If the film has thick-
ness a in the z direction, these propagating or wave-guide-
like plasma modes have frequencies to2=tos2+P2(q2+ k„'),
~here q is the component of the wave vector along the layer
and k„= nm/a (for integral n) are the allowed values of the
component of the wave vector in the z direction. If the
dielectric host is replaced by a metal of high plasma fre-
quency, the boundary conditions at the interfaces are some-
what modified. The density fluctuations which are prop-
agating waves in the low electron density film must decay
exponentially with distance into the high electron density
host, and this modifies the allowed values of k„.

For periodic metallic heterostructures the effect of spatial
periodicity on the dispersion of plasma modes has been
studied previously in the local limit, '2 and hence only for
the first type of mode mentioned. The different consti-
tuents of the superlattice were there described by local
dielectric functions. Here we will include nonlocal effects
by using a hydrodynamic approach deve1oped by Ying3 and
first applied to the study of plasmons in systems of nonuni-
form electron density by Eguiluz and Quinn. 4

%'e consider a periodic system consisting of alternate
layers characterized by different bulk-plasma frequencies co&

and ~q and by thicknesses a and b, respectively. The period
of the system is d = a+ b. The equation of motion for the
fluctuation nI(r, i) = n~(z)e'er '"' in the number density of
electrons is5
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The stiffness p, which is related to the compressibility of
the electron gas, is given in the random-phase approxima-
tion by
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In the light of this, Eq. (I) takes the following form:
1
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to to) P$ q2 — —
2

n—)(z) =0, z & [a,d]2 d2

z' (5b)

where n j (z) is assumed
n)(z+ nd) = e~n, (z)

In the regime ~~ & ao & cu&

of motion can be written

to obey Bloch's condition

the solutions of the equations

~here

z 6 [O,a]

z E [a,d]

and

p2= Pw

p8=q +Pa (to/2 —to ).

p2 3 u2 (3~2n )2/3
5m

Since the last two terms in (I) are different from zero at the
interfaces only, one can account for their effects by requir-
ing both ni and the current density j, to be continuous at
the interfaces. 5

j, is obtained from the equation of continuity, and is
given by" 5
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By making use of the Bloch condition and applying the
boundary conditions at z 0 and z a, one obtains a set of
equations for the constants A, 8, C, and D. The dispersion
relation is then given by the zeros of the determinant of the
coefficients. In the expression (4) for j„E,t'i has to be

I

evaluated at z- a, d by using the ansatz (6) in (3). If we in-
troduce the decomposition

E,(z) - Eq (z)A + Ee(z)8+E,(z) C+ ED(z)D,

then the secular equation becomes
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where

Eq (a) —2vr ee ~I++S'+ 2m eel + (S —1)
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and S' is the complex conjugate of S. If co~ && co~, and if b
is large, then nearly independent plasmon excitations of
each low-density layer can occur at frequencies satisfying

b/a= 5 na= 2nA
qQ = 05 A8 = 2flA
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FIG. 1. ~ vs q for k 6 [O, m/d). The parameters used are
described in the text.
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FIG. 2. The frequency of the band edges vs b, the thickness of
the high density layers, for qa -0.5.
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m'-=cu]+P](nm/a)', where n is a positive integer. These
single-well excitations are just the plasmon waveguide
modes discussed earlier; they propagate along the low-

density layer with wave vector q, awhile the wave number in
the direction of the superlattice must be roughly m/2 times
an integer. The excitations are confined to the individual
wells as long as m && co~. Due to the periodicity of the sys-
tem in the superlattice direction, the wave-guide-like modes
interact to form bands. Very narrow bands (weak coupling
between layers) occur when qb » 1 and &us » cu. Figure
1 is a plot of cu vs q for k 0 and m/d. The system has
~&-2.33x10" cm 3, ns=2nq, a 100 A, and b/a 5.
The bands with very small bandwidth (weak coupling
between layers) are single-well excitations obtained by con-
sidering a system consisting of a single A layer between two
infinite 8 layers. This weak dispersion will occur when
aoq && cu and the parity of the single-well plasmon is even.

The reason for this is that by symmetry the contributions to
the electric field due to distant slabs tend to cancel in an
even plasmon oscillation. Figure 2 is a plot of the frequen-
cy of the band edges as a function of b, the width of the
high density layers. For large qb with eo &( ~8, the bands
are very narrow, as expected. The qualitative characteristics
of the plasma bands described here should be relatively in-
sensitive to the details of the spatial variation of the periodic
electron density. However, metallic or degenerate semicon-
ducting superlattices which come close to the simple model
we have assumed can be fabricated. In this situation either
electron energy-loss spectroscopy or inelastic light scattering
would be possible tools for studying the plasmon bands.
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