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Porous-membrane second-sound transducers for superfluid He
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(Received 1 July 1985)

A systematic analysis of porous-membrane second-sound transducers for superfluid 4He is
presented, based on the case of two transducers, one serving as generator, the other as detector,
situated at opposite ends of a resonant cavity. Included in the analysis are the effects of viscous slip
of the normal-fluid component in the pores of the membrane and the effects of the inertia of the
fluid in the pores. The transducers are found to obey reciprocity relations connecting their efficien-
cies as generators and as detectors, for both first and second sound. The results are illustrated by
numerical calculations for representative cases as functions of temperature and frequency.

I. INTRODUCTION

Vibrating porous-membrane second-sound transducers
were introduced a number of years ago by Sherlock and
Edwards' and by Williams et al. and have been widely
used since then. A number of recent articles have given
valuable insight into the properties of such transduc-
ers. " These articles include both theoretical treatments
and experimental studies. They have dealt with both the
linear regime, in which the fluid flows remain subcritical,
and, more lately, the nonlinear, supercritical regime.

The purpose of the present article is to give a somewhat
more systematic development of the theory of the linear
regime than has so far appeared. Although we use a num-
ber of simplifying assumptions similar to those used in
the past, we allow for viscous slip of the normal-fluid
component with respect to the membrane and we include
the effects of the inertia of both fluid components fiowing
through the membrane. Thus we avoid the assumption
that there is a vanishing chemical-potential difference be-
tween opposite faces of the membrane. As a result, our
analysis should be applicable to membranes of any porosi-
ty, including the case of an impermeable membrane as a
limit. In addition, our analysis should be applicable at
higher frequencies than analyses which omit such inertial
effects.

We show that, consistent with a reciprocity principle,
the behavior of a transducer as a detector of first or
second second is very closely related to its behavior as a
generator of such sound. Our treatment is based on the
case in which two transducers are coupled by a resonant
cavity, and this coupling is treated explicitly. Our results
are illustrated by representative numerical calculations.
These calculations are compared where possible with
those of Giordano, who has given a review of earlier work
and presented a detailed analysis of transducer behavior in
the linear regime.

II. THEORY

p„=—— VP p,sVT+ri„[V —v„+—,
' V(V.v„)],t p

Bp +p, V v, +p„V v„=—0,

—(ps)+psV v„=0 .

Here, p„p„, and p are, respectively, the superfluid,
normal-fluid, and total densities, v, and v„ the superfluid
and normal-fiuid velocities, P the pressure, T the tem-
perature, s the entropy per unit mass, and g„ the normal-
fiuid viscosity. We will assume that the thermal-
expansion coefficient of the fiuid is zero.

In the arguments to come, we make frequent use of the
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shown in Fig. 1. Assume that the walls of the chamber
are rigid and thermally insulating and that the chamber is
completely filled with superfluid He. Assume further
that the membranes may undergo small pistonlike
sinusoidal oscillations about their equilibrium positions.
Let xo and x& denote the positions of the ends of the
chamber and xi through x4 the positions of fixed imagi-
nary planes dividing the chamber into five parts, as shown
in the figure.

We use the following linearized hydrodynamic equa-
tions, the only dissipative term included being the g„ term
in the second equation

t)vs ps
p, = — VP+p, sVT,

t p
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Consider a cylindrical chamber with two porous-
membrane diaphragms located near opposite ends, as

FIG. 1. Schematic drawing of the chamber with transducers
and cavity.
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following expressions for the velocities Q1 and Q2 of first
and second sound:

(5)

Tlp [pnQ2/ipgS t~(&b/Q2)]wlp (14)

Similar relations are obtained for the detector back re-

gion between x4 and x5.

v=(p, v, +p„v„)/p,
w=—p, (v„—v, )/p, (8)

instead of with v, and v„, since for first sound w-=0 and
for second sound v=—0.

Throughout, we will assume sinusoidal variation at a
single angular frequency pi, with the time dependence of
any variable A being given by the real part of Ape
where Ap is a complex amplitude. Except near (and
within) the membranes, we will assume uniform condi-
tions over any cross section of the chamber with velocities
directed parallel to the chamber axis, the positive direc-
tion lying to the right.

B. Motion in the five regions

The back regions

We refer to the regions between xp and x 1 and between

x4 and x5 in Fig. 1 as the back regions. Although the ex-
perimental back regions are typically the very thin (and
often irregular) regions formed when the transducer mem-
branes are stretched tightly over slightly uneven back
plates, we will at the outset place no restriction on the
thicknesses of these regions.

Consider the generator back region between xp and x &.

Let its thickness be b. Neglecting dissipation, we have for
that region the wave equations

d P 2d'P dP 2BU
2

—Qi 2, ——PQ1„ (9)
dx

BT 2dT BT pn Q2Bw
Bt p& s Bx

Sinusoidal solutions to the first pair of equations represent
first sound and take the form

Ps sT
Q2=

Pn &p

where ~, is the (isentropic) compressibility and c& is the
heat capacity per unit mass (at constant density). In deal-

ing with first and second sound it is convenient to work
with the velocities

V v, p(r)=0,

V X v, p(r) =0 .

(15)

(16)

If we assume, in addition, that the superfluid circulations
around all of the circuits threading the pores of the mem-
brane are zero, these equations, together with the
geometry of the region and the values of v, p and v

determine v, p(r) uniquely. Because the differential equa-
tions satisfied by v, p(r) are linear in v, p(r) and because
v, p(r} is linearly dependent on the boundary-condition
amplitudes u, p and u p, we may write, by superposition,

2. The membrane regions

We refer to the regions between xi and x2 and between

xi and x4 as the membrane regions. For the purpose of
this development we assume that the inembrane surfaces
remain far enough away from the boundaries of the re-

gions so that at these boundaries we may neglect the
departures from uniformity in the fiuid velocities at fixed
x which occur near the membranes. At the same time we
assume that the membrane regions are thin enough so that
we may neglect any changes in the mass and entropy den-
sities of the fiuid in them and thus assume separately in-

compressible flows of the superfluid and normal-fluid
components through these regions. In experiment, the
scale of the irregularities in the back plates, the
thicknesses of the back regions and of the membranes,
and the distances between the pores of the membrane are
typically of a similar magnitude. Thus the assumptions
that we are making about the back and membrane regions,
in order to make the analysis tractable, may not be accu-
rately satisfied in practice.

In the following sections we consider the generator
membrane region of thickness e with a membrane of
thickness d.

a. SQperflQid motion. Our assumption of incompressi-
ble superfiuid flow in the membrane regions implies the
assumption that v, (t) is the same at xi and x2. Let v, (t)
be given there by u, pe

'"' and the membrane velocity
v~ (t) by v pe '"'. Under these conditions v, (r, t)
throughout the membrane region will be of the form
v, p(r)e

The amplitude v, p(r) is governed by the differential
equations

—ICrit
i {k)x—cut) s ( —k )x —apt)

u =uoe ' '=v+pe ' +u pe (12)
v, p(r) =a, (r)v, p b, (r)v p—, (17)

Pip ——[pQ, li tan(cob/Q1)]v, p . (13}

Analogous solutions to the second pair of equations,
with k2 ——co/Q2, represent second sound, and we find the
following relation at xi between Tp and wp.

w11ele k 1 =CO/Q 1 aild P+p =+pQ 1U+p. Settlilg Up =0 at
xp, we find the following relation at x1 between Pp and
up.'

where a, (r) and b, (r) are unique dimensionless functions
which are independent of v, p and v~p. Note that because
membrane motion involves moving boundaries, our argu-
ments here are only strictly valid to first order in U p.

However, a, (r) and b, (r) are not independent of each
other. Consider the case in which v p

——u, o. In this case
the superfluid in the membrane region will undergo solid-
body oscillation with v, p(r)=xv~p ——xv, p, where x is a
unit vector in the x direction. Hence we have in general
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a, (r) —b, (r) =x, (18) v„p(r) =xu„p+b„(r)(u„p—u p), (26)

and we may write

(19)v p(r)=xv, p+b (r)(u p
—u p} .

Thus, b, (r) describes the alteration in v, o(r) due to the

presence of the membrane.
We now integrate Eq. (1}from xi to xq along any path

in the fiuid. With some rearrangement we obtain

1
(Pro —Pio) —s (Tzo —Tio) =i~u vso(r)'dr

p 1

where b„(r) is a unique dimensionless function. Integrat-
ing Eq. (2) along any path in the fluid from xi to xi, we
find

1 Ps—(Pro —Pio)+ i (T,o —T,o)
P Pn

= lieu„o+Etpdy„(u„p —u p), (2p)

where y„ is a dimensionless parameter defined as

=t tpeu, o+itpdy, (ugo v~—o),

(21)

2 gz 2

y„=—f b„(r) dr+ " f Vzb„(r) dr .
l codp~

(28)

where y, is a dimensionless parameter defined as

2

y,
—=—f b, (r) dr.

1
(22)

The parameter y, depends on the geometry of the mem-
brane. For a totally porous membrane, we would have

b, (r) =0 and y, =0. On the other hand, consider the case
of a membrane with porosity (fractional open volume) a
in the form of cylindrical channels with axes perpendicu-
lar to the membrane surface. An exact calculation of y,
might be difficult for this case, particularly for channels
of noncircular cross scetion. However, let us make the
simplifying assumptions that plug flows occur in the
channels and outside the membrane, and that the transi-
tions between these flows which occur near the surfaces of
the membrane (Saslow's "fuzzy" regions ) can be ignored.
Then a brief arguinent yields

Like y„y„will be difflcult to determine precisely. For
a totally porous membrane and zero fiuid viscosity, we
would have b„(r)=0 and y„=0. For a membrane with
porosity a in the form of cylindrical channels with axes
perpendicular to the membrane surface, we can consider
two limits. VA'th zero viscosity we would have an inertial
contribution given by

y„—= (1/a) —1,

just as for the superfiuid under similar approximations.
On the other hand, if the viscous term in Eq. (28) dom-
inates in the channels, and we have channels of circular
cross section of radius a in which we may assume para-
bolic steady-state velocity profiles at each instant, and if
we may ignore the transition regions near the membrane
surfaces, a brief argument yields

y, =(1/a) —1, (23)

V v„p(r) =0,
icoV Xv—„p(r)=(q„/p„)V [VXv„o(r)] .

(24)

(25)

These follow from the incompressibility assumption and
Eqs. (2) and (4). We assume that these equations, together
with the boundary conditions, which include the specifica-
tion of u~p and of the magnitude u„p of v„p(r} at xi and
xz, determine a unique solution for v„p(r).

The argument now proceeds in close analogy to that for
the superfluid, and we obtain the equation

which is always greater than zero.
Note that in Eq. (20) the left-hand side equals the

difference p, ip —p, io in chemical potential per unit mass
between x2 and x, . We see that this difference may be
nonzero as a result of the inertia and acceleration of the
superfluid in the membrane region. While in many prac-
tical situations this difference may be negligibly small, as
has been assumed to some degree in most other analyses,
our treatment allows for the possibility that this may not
be the case, such as when a is made quite small or when m

becomes large, and includes the case of the impermeable
diaphragm as the limiting case when a~O.

b iiiormal fiuid. motion U-sing par. allel notation, we
proceed for the normal fluid as we did for the superfluid.
The differential equations governing the amplitude v„p(r)
are

45„=l
cop„a a a a

(30)

f—k(x —x ~)=—dp (1 a)v— (31)

where p is the density of the solid material in the rnem-

where 5„=2il„/cop„ is the square of the normal-fluid
viscous penetration depth. We will use the sum of Eqs.
(29) and (30) as an approximate interpolation formula for
VN'

c. Membrane motion. Let f be the net force per unit
area exerted by the membrane on the fiuid, and let P be
the force per unit area exerted on the membrane by exter-
nal means, such as an electric field. Assume, in addition,
that the membrane is subject to an elastic restoring force
per unit area —k (x~ —x~ ~), where k is the force con-
stant per unit area and x~,q is the equilibrium value of
the membrane position x . In practice, the membrane is
supported by its edges and perhaps by random protrusions
from the back plate, and the restoring force is provided by
the membrane's elasticity. Our assumption of a pistonlike
motion for the membrane with a Hooke's law restoring
force is only a rough approximation to such a case.

With our assumptions, the equation of motion of the
membrane is
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f—(P2 P—i ) =ep, u, +ep„u„—dp(1 a )iI (32)

where u, and v„refer to the velocities at xi and x2.
Eliminating f between Eqs. (31) and (32), we obtain for
sinusoidal motion

brane. Overall momentum balance for the fiuid in the
generating region (with separately incompressible com-
ponents) gives us to first order

~0 ~20 ~10 ~~ePs Vso ~~ePn Vn 0

k+E cOdp
N dp

Vmo s (33)

where r = (1——a)(p p)—lp.
We may now collect the resulting equations for the gen-

erator membrane region and rewrite them in terms of up

and tvp, in place of v„p and u, p, as follows:

e
P20 Pip =t~d P +Ps) s+Pn'Yn "0+Pn( Yn 'r. )~0 (P—.r.+P.r. )umo

d
(34)

t tud pn e
~20 Tio Pn(rn rs }"p+ P +Pn Ys+Ps Yn tvp Pn(rn rs)"mo

P~ Ps
(35)

—~0=i'osd —(Psrs+PnYn)"0 Pn(rn rs)top+ Psrs+Pnrn 2 +P" umo ~

t'd d
(36)

A similar set of equations applies to the detector mem-
brane region, for which P p would usually be zero.

Pn ~2
T20 (~20,out tu20, in) ~

ps S
(49)

3. The cavity region

(37)

ik1X2 —ik1x2
V20, out —=V+Oe ~ V20, in =V —Oe

we have

(38)

~20 —~20,out+~20, in ~

V2O=V2O, Out+V2O, ln s

20 Pit 1(v20,out u20, in) .

Further, letting

(39}

(40)

(41)

ik1X3
~30, in =~+Qe

—lk 1x3
~30,out =~—Qe (42)

If for the moment we neglect dissipation in the open
cavity between x2 and x3, we have the same wave equa-
tions and the same general solutions for this region as we
have for the back regions. Starting with Eqs. (11)and (12)
for first sound, and letting

lk1x2 —lk1 X2
20, out =~+0 ~20, jn =~—0

T30 T30 out+ 30 ln ~

30 130,out+30, in s

Pn ~2
T30 = (tu30, in tu30, out ) .

ps S

(50)

(51)

(52)

So far we have ignored any dissipation in the cavity.
However, in order to allow for such dissipation, as it
might infiuence the width of a cavity resonance, let us
make the following ad hoc modifications to our solutions
in the cavity, ignoring any departures from uniformity
over any cross section of the cavity. We replace k, wher-
ever it appears above by ki+iai, where ai is a small at-
tenuation coefficient for first sound, a, &~ki', and k2 by
k2+ia2, where a2 is a corresponding coefficient for
second sound.

With these modifications, the local relationships at x2
and x3 given by Eqs. (39)—(41) and (44)—(52) are not
upset. However, we obtain the following interconnections
between x2 and x3.

lk1X3
V30, in =V+Qe

we have

—lk1x3
V30 out =V —Qe

a1X2 —lk1X2 1X3 —lk1Z3
V+Q V20, oute e V3Q, jne

—a1x2 iklx2 —a1X3 lk1X3
V —Q V2Q in e V3Qout

(53)

(54)

~30 ~30,out+~30, in 3

V30 V30,out+ V30, in ~

P30 P~1( 3 iVn OV30, out) .

(44)

(45)

(46)

a2X2 —ik2Z2 a2x3 —ik2X3
W+0 =&20 ute e =W30;„e e

—a2x2 ik2x2 —a2X3 lk2Z3
W —Q W20 ine e 30pute (56)

For second sound we have analogous relations. In par-
ticular, we have

C. Solution of the equations
T20 T20,put+ T20, in ~

20 W20, out+20, in 3

(47}

(48)
The problem now before us is one of gathering together

the linear algebraic equations for the various regions and
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solving for the relationships between the amplitudes of in-

terest. In particular, our goal is to determine the value of
u 0 for the detector membrane for any given value of Wo

applied to the generator membrane at any given value of
pi, and to relate the amplitudes of the first and second

sound transmitted by the cavity to these amplitudes. Be-

cause of the large number of variables and equations, we
proceed in stages.

1. The generator: Reciprocity

We begin by eliminating Pip and Tip among Eqs. (13),
(14), (34), (35), and (36). We then easily find

~2O

Epidp

Q) 1 Ps'Vs+Pn'V n e Pn
)+ +d V2o+ (r. r—, )w20—

psls+pnln
(57)

sT20 pn Pn 1 pnrs+ps7n e
~

d
(rn rs)V20+ ~

d
~

t ( y/ )
+ +

d
W20

I

pn (r. r.—)v o (58)

ego

lcpdp

Ps'Ys+Pn'Yn Pn ps'Vs+ pn'V n
V2o — yn —'Ys w2o+

p p p

k +r v~o
tv dp

(59)

In writing these equations we have arranged them so as
to make evident the symmetry of the matrix of coeffi-
cients on the right-hand side. This symmetry, or that of
the inverse matrix, gives rise to reciprocal relations of the
type described by Rayleigh in which the terms on the left
are regarded as "forces" and u20, w20, and ump as corre-
sponding "displacements. "'

However, for our purposes it is more suitable to elim-
inate ~2o T2o U2o and moo and to introduce U2o, ;„,
U2p o„t, w20;„, alld w20 o„t, using Eqs. (40), (41), (48), and
(49). We then solve for "outputs" u2p t, W2p t, and v

in terms of the "inPuts" v20;„, w20;„, and Pp. This steP
involves lengthy but straightforward algebra. Neverthe-
less, it is possible to show without carrying out the full
solution in detail that it has the form

V20, out =Bwu20, in+Butsw20, in+Bum(Ps/2PPnu2)~0 ~ (63)

W20 out =Btwu20 in+BuuoW20 i +n8 (toPms/2PPnu2)~0 ~ (64)

an especially significant form. In particular, the equality
of A„and A „means that the same coefficient governs
the effectiveness of the "generator" as both a generator
and detector of first sound, while the equality of A m and
A „means the same for six:ond sound.

For the purpose of further discussion emphasizing
second sound, it is useful to rewrite the equations above in
the following less symmetric form:

i/id)V20, out Aw "20,in+Autow20, in

+A„P0/2i pid p,
(pnu2/psid)W20, out Atw "20,in+Aussw20, in

+A..~o/2t~dp,

Vmo=Amuv2o in+AmtsW20 in+ Amm~o/&'PidP ~

(60)

(61)

(62)

Vm 0——Bmu V20;n+Bmts W20 in +Bmm (Ps /2PPn "2)~0 (65)

The coefficients of primary interest to us are 8„,B„m,
8 „, and 8 . Note that 8„=(p„u2/p, ui)A„,

8„=(p„u2/p, ui)8 „and 8 =8 . Hence once 8 „
and Bm are determined, 8, and 8 follow immediate-
ly, from these relations.

For Bm„and 8 we find the following expressions:
where the A coefficients form a symmetric matrix.

Hence with the proper (although nonunique) choice of
variables [eg., (uilioid)V20out in place of V20o«] we have
found for the generator a new set of reciprocal relations of

B„=N„/D, 8 =N /D,
~here

(66)

.Ps'Vs+Pn'V n e Ps) s+Pnj'n
Xm„——2i tanp, (1 i tanp2) ——2i y,y„+— 52 tanPi tanP2,

p d p

.pn e(y„—y, ) tant82 1 i tanpi ——5i tanpi-
p

(68)
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k

co dp

Ps Ys+Pn Xn—T— ( 1 —i tanp, )( 1 i—tan pi )
P

ps'Ys +Pn'Vn e+
p d

+— k e Ps'Vs+Pn'Yn-- —r +— 5]tanp]( 1 i —tanp2)
mdp d p

Pn 'Ys +ps Yn e+ +-
p d

k e PsYs+Pn'Vn
+'Ys'Yn + 52 tanp2(1 i ta—np] )

co dp d p

e e+ rsr. +
d (rg+r. )+ k e e Ps'Ys +Pn Yn

'YsYn— 5]52 tanp] taupe .
p]dp d d p

(69)

Here we have introduced the dimensionless parameters
P]=p]b/u], P2=Nb/u2, 5] =cod/u], 'a]id 52 =cod—/u2

The relative efficiency of first- and second-sound pro-
duction by the generator can be measured by the ratio
U2p «, /w2p «, for a given P p in the absence of U2p;„and
w2p;„. This ratio equals 8„ /8 . In agreement with
Saslow5 and others, we find that to a first approximation
this ratio equals p„ui/p, u ] « 1 for some range of condi-
tions, showing that such transducers are much more effi-
cient generators of second sound than of first sound.
However, in Sec. III we point out that significant devia-
tions from this approximation can occur in practice.

The relative efficiency of first- and second-sound recep-
tion by the generator can be measured by the ratio of v p

for a v2p ] of a given magnitude„ in the absence of w2p;„
and Wp, to u p for a wzp;„of the same magnitude, in the
absence of u2p;„and P p This ra.tio equals

8 „/8 =(p, u]/p„u2)8„ /8

In agreement with Liu, we thus find to a first approxima-
tion that this ratio equals u2/u] «1 for some range of
conditions. Such transducers are thus also much less sen-
sitive to first sound than to second sound when used as
detectors, but the discrimination is not as great as it is for

generation.
In their dependences on m, both B „and 8 are

peaked at the resonance frequency of the transducer, due
to the forms of their denominators D. The resonant mode
can be thought of as an oscillation of the membrane, with
inertial contributions from both the membrane itself and
the accompanying fiuid fiow, under the infiuence of re-
storing forces provided both by the membrane elasticity
and the pressure difference in the fiuid. This resonance
was rceognized by Sherlock and Edwards, ' who called it a
Helmholtz resonance, but we believe that this name is
somewhat misleading in view of the importance of mem-
brane motion and inertia. ' Care should be taken to note
that their simple derivation of the resonance frequency is
carried out in a low-temperature approximation. Further
consideration of this resonance occurs in Sec. III. If b
were to be made much larger than is usual, so that it
could be of the same magnitude as the wavelength of first
or second sound, then the transducer might possess more
than one resonance.

In addition to 8~„and 8, we will need the coeffi-
cient of refiection for second sound 8 . We obtain

(70)

where

k Ps'Ys +Pn Yn
(1—i tanp])(1+i tanp2)

co dp P

ps'Ys +Pn Yn e+-
p d

k e Ps'Vs+Pn'Yn+ 5, tanpi(1+i tanpz)
p]dp d p

pn Xs+psYn e+
p

k e Ps'Ys+Pn'Yn—~ +y,y„+— 52 tanp2( 1 i tanp] )—
co dp d p

e er,r. +
d (r, +r.)+, k e e Ps'Ys+Pn Xn

'Y 'Y 5]52 tanp] tanp2 .
~dp d d p

(71)
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We find, as did Giordano, that to a good approximation
in many cases 8 =- —1, but we return to this point in
Sec. III.

2. The detector

If we now derive equations for the detector analogous
to Eqs. (63), (64), and (65) in terms of U3Q i„& U3p Oats N3Q i„p
and w3o,„„wefind that they are identical in form to Eqs.
(63), (64), and (65) with subscript 2 replaced by subscript
3. Hence no further separate treatment of the detector
need be carried out, and our remarks about detection by
the generator apply equally well to the "detector. "

3. Overall soIutioa

20, 0ut Bung (g) to20 in +B~ttt (g)(p, /2pp„u 2 )Wo(g), (72)

m30, out Bww(tf)to30, in &

ottto(tf) =Bmtt (tf)to3o, itt

(73)

(74)

where the argument g denotes the generator and d the
detector. When these equations are combined with Eqs.
(55) and (56) for the cavity, we obtain

~ IKZ

U o(d) = „.„,8 (&)8 (g)
1 B~(d)B~(g—)e '"'

X Wo(g),
ps

2pp„u2
(75)

where «=k2+ia2 and z=xs —x2. The entire influence
of the cavity is contained in the factor

A general solution for U Q of the detector and for the
sound-wave amplitudes in the cavity resulting from a
given P Q applied to the generator is complicated because
of the simultaneous presence of both first and second
sound in the cavity. However, let us now use the fact that
the transducers typically will be much better generators
and detectors of second sound than of first sound. Fur-
ther, let us restrict our attention to solutions near second-
sound resonance peaks, which, except for accidental situa-
tions, will not coincide with first-sound resonances.
Under these conditions, we will neglect first sound. The
relevant equations for the generator and detector then be-
come

-=I/[( I —
[ 8 (d)8 (g) )

e )]—= . (77)
zkco

Here,
~

C ~,„can also be expressed in terms of the quali-
ty factor of the resonance Q =co,„/bro, where ro,„ is
the valueofco at which

~

C [
=

~

C
~

III. NUMERICAL EVALUATION

For illustration, we have evaluated our results numeri-
cally for representative experimental conditions. For
comparison with Giordano's extensive calculations, we
chose the same set of Nuclepore filter membranes that he
studied. ' The properties of these are listed in Table I.
%e assumed the generator and detector to be identical
in construction, with b = 10 pm, e= 10 pm, and
k =566)& 10 N/m corresponding to Giordano's
E =100X10 g/s for all the calculations, except as not-

It should be remarked that with b comparable to d, the
assumptions of the model are not well satisfied. The
choice of e above represents a rather artificial compro-
mise, since e should be larger than d by an amount suffi-
cient to allow for transitional flow near the membrane
surfaces, but small compared to b, insofar as the separate
compressions of the fiuid components play important
roles in the back regions but are assumed not to occur in
the membrane regions. However, we were reassured to
find that an increase in e to 15 pm (or a decrease to 5 pm
for the two thinner membranes) has a negligible effect on
our results.

Thermodynamic data at saturated vapor pressure be-
tween 1.20 and 2.15 K were taken from the tables of May-
nard, ' supplemented at temperatures between 1.00 and
1.20 K by data from the work of Brooks and Donnelly, '

adjusted to make smooth connections to Maynard's data.
The values of the normal-fluid viscosity used were those
given by Wilks, ' interpolated with the aid of data given
by Donnelly. '

We have carried out calculations up to a frequency of
100 kHz. For a second-sound velocity of 10 m/s, nearly
the lowest value for which we have made calculations, the
wavelength of second sound at this frequency is

TABLE I. Nuclepore filter membrane properties.

e llCZ

1 —8 (d)8 (g)e '"' (76) Pore
diameter d

(pm)

p =950 kg/m"
Membrane Areal density
thickness e of pores

(pm) (pm ) Porosity c
which exhibits the cavity resonance peaks.

For the purpose of coinparing Eq. (75) with experiment
it is useful to note that for the case of narrow cavity reso-
nances, a simple relationship exists between the maximum
value of

~

C
~

at a resonance peak
~

C ~,„and the width
of the peak bc@, defined as the interval between the values
of ro at which

~

C
)
=

~

C ~,„/v 2. For narrow
resonances, for which we have a2z ~& 1 and

~
8~(d)8 (g)~ -=1 and the frequency dependence of

~

C
~

over a peak is dominated by the frequency depen-
2ik2z .

dence of e ' in the denominator, we find

0.05
0.10
0.20
0.40
1.00
5.00

58

5a

10
10
10
10

6
3
3
1

0.2
0.004

0.012
0.024
0.094
0.13
0.16
0.079

'%'e have used these values for uniformity arith Giordano (Ref.
7). A recent catalog of the Nuclepore Corporation lists the bulk
density of Nuclepore polycarbonate membrane material as 1200
kg/m3 and the thicknesses of the 0.05- and 0.10-pm-diameter-
pore polycarbonate membranes as 6 pm.
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100 pm, still long compared to b, d, and e but perhaps
just at the limit for the assumption of separate incompres-
sibility to be vahd in the membrane region.

IO I I
I

[
I

I
' [ '

I

A. Ratio of first-sound to second-sound generation
and detection

Consider the ratios 8„ /8~, giving the ratio of Uo to
too produced by the generator, and 8 „/8, giving the
relative amplitude sensitivity of the detector to Grst and
second sound. We have compared calculated values of
these ratios to their simple approximations given in So:.II
by calculating the quantity

R =
I
B.m/B~m I /(px&z/ps&f) =

I Bm. /Bm~ I /«2/»)

E
CQ

II

E
CQ

-2
lo

lo

Q.QS-Q.2 p, m

Ii

&s' ''e 0 e

I.Qp, m

as a function of frequency from 0.1 to 100 kHz for all

pore sizes at a representative sample of temperatures 1.1,
1.6, and 2.1 K. Figure 2 shows some representative plots
of R versus frequency at 1.6 K.

For frequencies of 1 kHz and below, R was found to lie
within the range from 0.97 to 1.12, showing the simple
approximations to be relatively accurate there. As fre-

quency increases, the approximations become less valid.

At 10 kHz, R ranges from 0.3 to 5 and at 100 kHz, from

2 to 300.

B. Generation of second sound

The generation of second sound is governed by the coef-
ficient 8, which equals (2pp„u2/p, )(wo«, /3 0) for
uo;, ——0 and too;„=0. Figure 3 shows plots of

I
8

versus temperature at 4 kHz for all of our pore sizes.

5.Qp. m

lO& I I I I I I I I I I I

0.8 I.O I.2 l.4 l.6 I.8 2.0 2.2

FIG. 3. Magnitudes of the second-sound generation and

detection coefficients
I
B

I
=

I
B

I
versus temperature for

the various pore diameters at 4 kHz.

These results may be compared to Giordano's results for
I ui,„,/iFo

I
shown in Fig. 9 of his work by computing

(p, /2pp„ti2) I B~ I
/A, where A = (ir1. 5) /24 cm2 is the

The two sets of results are
qualitatively very similar and at 1.0 K nearly coincide for
all but the largest pore size. Otherwise, our values tend to
he below Giordano's by factors of up to 2.

It is important to keep in mind that 8 is strongly
frequency dependent. Figure 4 shows the variation of

I
8

I
at an intermediate temperature of 1.6 K for three

2lo ' I I I I '[ I 'I I I [ I I I I [
I I I I
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FIG. 2. Quantity R, which compares the relative efficiency
for the generation or detection of first and second sound to a
simple approximation for that quantity, versus frequency at 1.6
K for several pore diameters.

f(kHz)

FIG. 4. Magnitudes of the second-sound generation and
detection coefficients [B [

= [B „[ versus frequency for
several pore diameters at 1.6 K.
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representative pore sizes. At this temperature, in the in-
terval from 0.1 to —10 kHz,

~

8
~

ranges from varying
as f for the smallest pores to varying as f for the largest.
The peaks which occur between 10 and 100 kHz reflect
the transducer resonance. Similar behavior is seen at 1.1
and 2.1 K.

C. Detection of second sound

The detection of second sound is governed by the coef-
ficient 8 „, which equals U 0/wo;„when Wo ——0 and
vo;„——0. Because 8 equals 8, the form of

~

8
also is illustrated in Figs. 3 and 4. Our results of Fig. 3
can be compared directly with Giordano's results for

~
U~/ui;„~ shown in Fig. 10 of his work. '

Our curves are qualitatively similar to Giordano's, ex-
cept that for the 1.0-p,m-diameter pores we find much less
rise and fall. In general, our curves tend to lie above
Giordano's. For pore sizes other than 1.0 pm, the
discrepancy is no larger than a factor of 2 and is consider-
ably smaller over much of the range. For 1.0-pm pores
the discrepancy becomes as large as a factor of 8.

D. Overall response

Equation (75) relatlllg U~p(d) to Po(g) contains the
product 8 (d)8 (g), which for identical generator and
detector is just 8 We .have compared our results for
this quantity with Giordano's results for

f
u.„,hE, ) [

U /u;„f

shown in Fig. 11 of his paper by computing

(Ss/2'. i 2) I B~m I

'/~

The discrepancies noted earlier between our results and
his for the generation and detection processes compensate
each other to some extent. In summary we find that our
values range from a factor of 3 smaller to a factor of 4
larger than Giordano's values.

It is particularly important here to note the strong fre-
quency dependence of

~
8

~

'. Consistent with what we
have said earlier about

~

8 ~, at frequencies from 0.1 to
—10 kHz,

~
8

~
ranges from varying as f for the

smallest pores to varying as f for the largest.
The ratio of U 0(d) to Po(g) also depends on the cavity

factor C. Note that C depends both on the transducers,
through the product B~(d)B~(g), and on the cavity it-
self, through the exponential e' . We have evaluated the
reflection coefficient 8~ between 1.00 and 2.15 K at 4
kHz for all of our pore sizes. We find that for the three
smaller pore diameters,

~
8

~
drops below unity by at

most 0.001 and for the three larger, by at most 0.011. The
departures of

~

8
~

from unity tend to increase with fre-
quency. At 4 kHZ the phase of 8~ departs from m radi-
ans by a small amount which for all of our pore sizes in-
creases with temperature, remaining less than 0.03 rad up
to 2.00 K and increasing to 0.06 rad at 2.15 K.

E. Dependence on elastic constant

We have investigated the dependences of our numerical
evaluations on the elastic constant k of the membrane.

For comparison with corresponding results obtained from
Giordano's Figs. 6, 7, and 8 for the generation and detec-
tion of second sound, we chose a pore diameter of 0.4
pm, a frequency of 4 kHz, and values for k of 22.6&(10,
113X10,and 566X10 N/m to agree with his choices
for E of 4X10, 20X10, and 100X10 g/s . Our results
are qualitatively similar to Giordano's over the full range
of temperatures studied by him, with discrepancies up to a
factor of 2 in both directions. We also investigated the
frequency dependence of these effects. A reduction of k
enhances the generation and detection of second sound at
4 kHz and below by an amount which increases as the fre-
quency is decreased and tends to lower the resonant fre-
quency of the transducer. Note, however, that the ratio of
first- to second-sound generation or detection is not infiu-
enced by k.

F. The inertia of the fluid in the pores of the membrane

We have investigated the influence of the inertia of the
fiuid in the pores of the membrane by performing calcula-
tions in which y, and the inertial part of y„were set arti-
flcially to zero. For reference, the values of these terms
computed from Eqs. (23) and (29) and used for the main
body of our calculations ranged from 5.3 to 82.3 for the
various pore sizes. The length e was also set to zero in
these calculations.

With the inertial terms set to zero, the normalized ra-
tios R of first- to second-sound generation and detection
amplitudes discussed above in Sec. III A are very close to
unity at frequencies below 10 kHz. As the inertial terms
are increased to the values computed from Eqs. (23) and
(29), significant deviations of R from unity occur in both
directions as discussed in Sec. IIIA and illustrated in Fig.
2. On the other hand, the values of

~

8
~

and
~

8
at 4 kHz are increased by at most a few percent by this in-
crease. This finding supports the assumption made by
other authors that for second-sound propagation, inertial
effects in the membrane can be neglected, at least under
some conditions. However, we see by implication that the
inertial terms have a significant influence here on first-
sound propagation.

At frequencies above 10 kHz, the influence of the iner-
tial terms is much stronger. Although in the absence of
the inertial terms R remains within 5% of unity up to 100
kHz at the temperatures sampled for all pore sizes, inuch
larger deviations occur in R when the inertial terms are
included, as illustrated in Fig. 2. In the absence of the
inertial terms, the transducer resonance frequencies tend
to be higher than with the inertial terms. As a result, the
inclusion of the inertial terms increases

~

8
~

and

~

8
~

by amounts up to 65% at 10 kHz and decreases
them by up to a factor of 70 at 100 kHz.

G. Viscous slip of the normal-Quid component
in the pores of the membrane

The role of viscous slip of the normal-fiuid component
was investigated by performing calculations in which the
normal-fluid viscosity was artificially increased at all tem-
peratures and frequencies by a factor of 10, in order to
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lock the normal-fiuid motion to that of the membrane.
At 4kHz,

(
8 j and (8 „~ for the smaller pores were

almost unchanged while for the larger pores they were in-
creased, by as much as a factor of 100, so as to yield very
nearly a single curve for the various pore sizes coincident
with the uppermost curve in Fig. 3. A similar coalescence
of values for different pore sizes was seen at other fre-
quencies up to -10 kHz. However, above 10 kHz, large
differences between the various pore sizes remained.
These observations support the proposal of Liu and Stern
and the numerical results of Giordano that viscous slip
can play an important role in the generation and detection
of second sound by membranes with large pore diame-
ters. 3'7

IV. CONCLUSIONS

In this article we have presented a systematic treatment
of porous-membrane transducers for (first and) second
sound in the linear regime of behavior. Our treatment
considers in particular the case of two transducers, one a
generator, the other a detector, separated by a resonant
cavity. In our analysis we have included the effects of
viscous slip of the normal-fiuid component in the pores of
the membrane and the effects of the inertia of both the su-

perfluid and normal-fluid components in the pores. These
effects were expressed in terms of two parameters y, and
y„using rather general fiuid-dynamic arguments. The
validity of our expressions given in terms of y, and y„
should extend beyond the simple approximations used to
estimate y, and y„.

The inclusion of viscous slip enables our results to ex-
tend to the case in which relatively large pores allow a sig-
nificant amount of relative motion between the normal-
fluid component and the membrane. The inclusion of
inertial effects, which became increasingly important as
the porosity of the membrane is decreased or the frequen-
cy raised, enables our results to extend to the limit of an
impermeable membrane and to give a suitable account of
transducer resonance under typical conditions. Our treat-
ment gives a unified picture of a transducer as both a gen-
erator and a detector and provides useful reciprocity rela-
tions for both first and second sound.

We have illustrated our results and compared them to

those of Giordano by means of numerical evaluations for
Nuclepore filter membrane transducers. Although signifi-
cant discrepancies exist, there is qualitative agreement be-
tween our calculations and his ta a considerable extent.
Our results support his finding that viscous slip of the
normal-fluid component in the membranes with the larger
pores plays an important role in reducing their efficiencies
as transducers of second sound. In addition, we were
surprised to find that the inertia of the superfluid com-
ponent, even in membranes with porosities as low as 0.01,
has very little effect at 4 kHz on the efficiencies of the
transducers for the generation and detection of second
sound, in further support of Giordano's work.

Our numerical evaluations show the strong frequency
dependences of the efficiencies of the transducers as gen-
erators and detectors of second sound, including the peaks
which occur at the transducer resonant frequencies. Iner-
tial effects are seen to become important above 10 kHz
and to play a strong role in determining the resonant fre-
quencies.

Our results for (p, /2pp„u2) ~8
~

do not seem to
provide a significantly better account of Giordano's exper-
imental results than do his analytical results for the corre-
sponding quantity, as judged by the temperature depen-
dences of the curves for the various pore sizes. Our calcu-
lations for k =566X 10 N/m give a reasonably good ac-
count of the temperature dependences for the four smaller
pore sizes. However, the calculated temperature depen-
dences for the two larger pore sizes are much greater than
the experimental ones, rather independent of k. Thus we
cannot yet say that accurate agreement has been establish-
ed between theory and experiment.
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