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The surface-wave instability mechanism in the helicon-eave propagation in sandwich structures
made up of n-type (IV-VI compound) semiconductors with anisotropic energy bands is investigated.
The simplest geometry with magnetostatic field Bo~ ~[100]((11 is considered. The field solutions for
unbounded media are obtained and thereafter the dispersion relation in the limit of m, v ~ 00 is de-
rived using the boundary conditions for the sandwich structure, which is further extended for the
multilayered structures. The effect of collisions is also incorporated treating m, v large but finite. It
is observed that the imaginary part of the dispersion relation which concerns the instability mecha-
nism embodies a factor (D'), which accounts for the anisotropy of the effective masses of the charge
carriers in the present system. The existence of D' results in reducing the dielectric mismatch (M)
and hence the threshold velocity which triggers the instability. Since the instability part due to the
surface wave is inversely proportional to M, the effect of D' increases the growth of the wave (above
threshold velocity) and hence maximizes the efficiency of the multilayered structure as an amplify-
ing device.

I. INTRODUCTION

Since they were predicted, the weakly damped, circular-
ly polarized, transverse electromagnetic waves known as
helicons (helicon waves) have been the most thoroughly
studied of all the solid-state plasma waves. ' The extensive
investigations can be attributed to the fact that the helicon
wave offers the opportunity for diagnosis of various pa-
rameters and properties of the crystalline solids through
which it propagates. The device potential of helicon
waves, as explored and argued by some scientists, has
enhanced a considerable research interest in their own
group in particular and many other research groups in
general. Because the phase velocity of the helicon waves
can be made significantly smaller than the speed of light,
the idea of their amplification has attracted a lot of atten-
tion. The major practical interest in the solid-state plas-
ma instabilities is the possibility of choosing physical con-
ditions and adjusting geometries to maximize their growth
rate and obtain from the solid-state plasma system the
desired spectral distribution of high-frequency waves.

The first and the most noteworthy amplification
scheme for helicon waves was put forth by Bok and
Nozieres. They pointed out that the helicon wave can be
unstable only when there are two types of charge carriers
{ofunequal densities) made to drift relative to each other.
Notwithstanding the fact that numerous instabilities can
be induced by drift velocities exceeding the phase velocity
of the helicon wave, the detailed scheme proposed by Bok
and Nozieres eras criticized by some authors. Subse-
quently, Baraff and Buchsbaum (hereafter referred to as
BB) suggested a novel instability mechanism utilized to
amplify the helicon wave in only one-component-bounded
solid-state plasmas. The noticeable feature of said mecha-
nisrn is that the drift velocity needed to manifest the in-
stability can be much smaller than the phase velocity of
the wave. The lower drift velocity unquestionably avoids

the risk of the heat dissipation effects associated with the
large drift currents in the solids. For a good summary of
the instability mechanism of BB, the reader is referred to
Ref. 7.

The pioneering work of Baraff and co-workers
stimulated a lot of research interest in the surface-wave
instability in helicon-wave propagation in layered struc-
tures. 'o '2 The investigation of surface polaritons, '

which are low-frequency electromagnetic modes localized
at the free surfaces of the crystals (or at the interfaces in a
composite structure), is of fairly recent vintage. Though
the propagation of the bulk (helicon) wave in the Faraday
geometry (when the magnetostatic field is parallel to the
direction of propagation) and in the oblique geometry
(when the magnetostatic field is inclined at an angle 8
with the direction of propagation) is undisputed, ' the
possibility of the existence of low-frequency surface waves
in the oblique geometry has been questioned by some au-
thors. '3 This controversy has very recently been resolved
by the present author, ' particularly in the case of the lay-
ered structures. The instability mechanism of BB was
reinvestigated' in the obhque-wave propagation, and the
effective-mass ratio of charge carriers (electrons and
holes) was incorporated. It was concluded that since the
propagation of a bulk wave is permissible in the oblique
geometry, ' although for fairly small values of 8, so that
the conditions of the helical regime are not violated, exci-
tation of the surface wave which acts as a means to ampli-
fy the helicon wave in the same geometry is quite unques-
tionable.

The aforementioned references have all dealt with lay-
ered structures made up of the semiconductors whose Fer-
mi surface is spherically symmetric and, hence, the effec-
tive mass of the charge carriers is a scalar quantity. The
present investigation is aimed at studying the instability
mechanism in the helicon-wave propagation in the layered
structures made up of polar (PbX, X=S,Se,Te) semicon-
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ductors with anisotropic energy bands which have the el-
lipsoidal Fermi surface along the lines of BB. The effec-
tive mass of the charge carriers in the polar semiconduc-
tors is an anisotropic property and is therefore treated as a
tensor quantity. The relevant physics of the polar semi-
conductors, of interest to a solid-state plasma physicist,
has been briefly described in Sec. II. The motivation
behind the choice of polar (PbX) semiconductors compris-
ing the plasma media in the layered structures is twofold:
(i) their technological importance, and (ii) the exotic, and
possibly unique, characteristics exhibited by them.

The plan of this paper is as follows: In Sec. II is
described the basic physics of the polar (PbX} semicon-
ductors. In Sec. III we give most of the physics, relevant
mathematics, and nearly all the approximations needed to
calculate the dispersion relation for a sandwich structure
with metalized surfaces (Fig. 1). We extend this disper-
sion relation for a multilayered structure (Fig. 2) and
make a detailed diagnosis, discussing the instability mech-
anism in the existing system in Sec. IV. Section V is de-
voted to the conclusion drawn from our analytical treat-
ment and the discussion of the merits of using PbX-type
semiconductors as the plasma media in the layered struc-
tures. Our findings lend support to a preference for the
polar (PbX) setniconductors over the nonpolar (II-VI and
III-V compound) semiconductors to construct the semi-
conductor device used as an amplifier.

II. POLAR (IV-VI COMPOUND)
SEMICONDUCTORS

The IV-VI compounds, PbS, PbSe, PbTe, and PbPo,
often referred to collectively as the lead sulfide group of
lead salts or lead-salt semiconductors, crystallize in the
rocksalt (NaC1) structure. ' The fundamental space lat-
tice is the face-centered cubic; the reciprocal lattice is the
body-centered cubic; the first Brillouin zone (BZ) is a
truncated octahedron. ' The interatomic bonds in these
crystals are predominantly ionic in character and the lead
salts are, therefore, also known as the polar semiconduc-
tors. Their ionicity f; is expected to be larger than the
critical ionicity f, ( =0.785} (Ref. 18) which distinguishes
the more covalent fourfold-coordinated crystals (zinc-
blende and wurtzite structures) with an ionicity f; &f,
from the more ionic sixfold-coordinated crystals (NaC1
and CsG1 structures) having an ionicity f; &f, . The crys-
tal dynamics of the polar (PbS and PbTe) semiconduct-
ors' reveals that the frequency co of the transverse optical
(TO) phonons of the dispersion relation decreases sharply
as the wave vector k approaches the zone center I . Thus
the phonon energies fm for the lead salts are considerably
smaller than the corresponding energies for the II-VI and
III-V compound semiconductors. Consequently, the
values of the static dielectric constant eo for these crystals,
calculated by using the Lyddane-Sach-Teller relation

[&o« =~Lo(1)~~To(1)]

are much larger than the values of eo for II-VI and III-V
compound semiconductors.

All the first three polar semiconductors (PbPo is less in-
vestigated and differs a little bit from this class) have a

Fermi surface which consists of the prolate spheroids with
the major axis along the [111]symmetry direction and the
center lying at the I. point in the first BZ. Within the
first BZ, there are eight half-spheroids or, equivalently,
four complete spheroidal constant-energy surfaces. The
equation for these surfaces of constant energy F. is

ki kp ki
2 m] mg mg

where ki is the component of the wave vector along the
major axis of the spheroid and k2 and kq are the com-
ponents of the wave vector which are mutually orthogonal
and lie in a plane perpendicular to k i. m i and m, are the
longitudinal and transverse effective masses associated
with the surface of constant energy. The spheroidal (or
commonly the ellipsoidal} surfaces defined by the afore-
said equation are a good approximation to the Fermi sur-
face of these crystals for low concentration, i.e., for the
wave vectors near the band edges. For higher concentra-
tion and hence k values lying away from the band edges,
there is a transition from an ellipsoidal Fermi surface (at
lower concentrations) to a cylindrical Fermi surface as the
concentration increases.

Since the topology of the Fermi surface specifies the
behavior of the conduction electrons, a great qualitative
difference is expected in the behavior of the semiconduc-
tors with a spherically symmetric Fermi surface (e.g.,
InSb) and those with an ellipsoidal Fermi surface (PbX).
This difference is not, however, strictly due to the differ-
ence in the shape of the Fermi surfaces of the two types of
semiconductors, but due rather to the tilt of the axis of
the spheroid with respect to the magnetic field. When the
magnetic field is tilted with respect to the axis of the
spheroid, the effective-mass tensor has nonzero off-
diagonal elements. In the PbX-type semiconductors, for
an arbitrary magnetic field direction, a plane normal to
the field would intersect each spheroid in a different way,
the system being analogous to a gas of four different types
of electrons, each type having a different effective mass. '9

The highly symmetric magnetic field configurations with
magnetic field oriented along either the [100] or [110]
directions are generally considered. In the former ease, a
plane perpendicular to the magnetic field cuts all the
spheroids in an identical manner, indicating the same ef-
fective mass for the electrons in each of the four
spheroids. Nevertheless, the behavior of the PbX-type
semiconductors is different from that of the InSb-type
semiconductors, owing to the difference in the shape of
the Fermi surfaces. In the latter case, i.e., when the mag-
netic field is in the [110] direction, planes perpendicular
to the field intersect each of two spheroids in an identical
manner, implying effectively the presence of two types of
electrons, each type having a different effective mass.
The latter is expected to be a relatively complicated con-
figuration as compared to the former.

A great deal of effort devoted to research activity in the
polar (PbX) semiconductors can be attributed, in part, to
the technological importance of these materials as detec-
tors of infrared radiation. These PbX-type semiconduc-
tors exhibit some unusual, and possibly unique, properties
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which stimulate additional research interest in these solids
(viz. , the following. The temperature coefficient dEo/dT
of the minimum energy gap Ep is positive for PbS, PbSe,
PbTe, ~hereas all the elemental or binary compounds ex-
hibit negative values of dEpldT. The second anomalous
property of the PbX group is defined as follows. It is well
known that Ep of a compound semiconductor MX is ob-
served to decrease as the atomic number of atom X in-
creases. This is a widely verified result for a large number
of semiconductors. But the PbX group provides an excep-
tion to this, in that Ep for PbSe is smaller than Ep for
PbTe. Thirdly, the static dielectric constants of the PbX
group is unusually large compared to the values observed
for the other semiconductors. )

III. FIELD SOLUTIONS AND DISPERSION
RELATION

The sandwich structure depicted in Fig. 1 is assumed to
be infinite in the x and z directions. The magnetostatic
field Bp is taken to be parallel to the [100]~~x direction.
The Maxwell-Boltzman transport equation governing the
motion of electrons in the [111]spheroid is

m. (V+V VV+vV)=q E+—VXB1

v+ipXv= —a . [e+UX(nXe)],
m, i 4~%pq

(2)

where the symbols have their usual meanings. ' The sym-
bol m stands for the mass tensor which is a 3 X 3 matrix
with nonvanishing off-diagonal elements. Equation (1) is
linearized by taking V=Vp+v E=Ep+e and B=Bp+b,
where the terms on the right-hand sides of these expres-
sions with (without) subscript zero are the de (ac) parts of
the respective quantities. Using qEo ——m Vpv, Maxwell's

curl field equation VXe=(1/c)b and spatial and tem-
poral field dependence of the form -e'"' ", we get
from Eq. (1),

—I —K)

Q K2
RIPJliui.

FIG. 1. Sandwich structure analyzed in the present treat-
ment. Polar semiconductor plasma media I and II contain dif-
ferent carrier concentrations leading to different dielectric con-
stants E& and E2.

24mXpq(=1 n U—+.iy, a =co~/co =
mph')

(3)
P=ruc/cp=qBo/mrcco, y=v/co, U=Vo/'c~ n=ck/cp .

The index-of-refraction vector n is not to be confused
with the scalar n emerging when we write density
X =1Vp+n.

In the existing configuration with Bp~ ~[100]~~x, though
the plane perpendicular to the magnetic field cuts all the
spheroids in an identical manner, implying the same effec-
tive masses for electrons in each of the spheroids, the an-
isotropy of the effective masses of the charge carriers still
prevails for the reasons explained in Sec. II. In order to
account for this rather quasi-anisotropy of the effective
masses of the charge carriers in the present configuration,
we approximate the term m v such that

m v=m ~~U„x+m &2U&y+m]3U, z,
where

E~ +35,J —1

mfJ mf
3

where 5,J is the Kronecker delta, K =m i/m, . The solu-
tion of Eq. (2) can be expressed as follows:

i 4~Npq

T

4—p'

p' 0z—
0

0 0 l 0

gigz i Pgi Un& 1 —Un„

1 —Un„

e, (4)

where u =
(
U (, P=

( P ~, and g& and gz are, resPectively,
substituted for g(X +2)/3 and g(X —1)/3 for brevity.
In obtaining Eq. (3} we have used the fact that U and p
are parallel to x and that n has no z component. Thus we
have restricted our solution to be independent of z. Using
the equation of continuity

U(n. v }g=Xo v+
l —Un x

The electric current J ( = qg) now comes out to be

1/(1 —Un„) Un~/(1 —Un„) 0
V.g+n=0,

where g ( =Npv+nVp} is the first-order part of the parti-
cle current G ( =NV ), we obtain

J=Xoq

The correlation of Eqs. (4) and (7) gives

0 -v
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4mi

N

ED2 U
X =LA, Y=KU, Z =

(17)
where

(kz —&'+0i0z&') —
Cz&

A

1 1—gzA

EB

iA

iEcucx iXD2AP= , S=
AD ) cocs

iED2 U —1.
A Nc'7

The nontrivial solution of Eq. (16) gives a quadratic equa-
tion in n„such that

an»+bn»+c =0,
i A— —gzA

where A =1—Un„and 8 = Un~. The current expressed
in Eq. (8) acts as a source of the magnetic field b via
Maxwell's fourth curl field equation

4m 1.VXb= J+ e.—
C C

where a, b, and c in terms of X, Y, Z, P, Q, and S, as de-
fined in Eq. (17), in the present analysis, come out in ex-
actly the same forms as expressed by BB [their Eq. (2.15)],
with their n, replaced by n„.

The calculation of the transverse field components e»
and e, in terms of the tangential field component e„gives

Using Maxwell's third curl field equation

(VXe)
ECO

(10)

De, =in» [Y(S n, )—iX(—Z in„—) ]e, ,

De» —— in» [(S——n„—n» )(Z in„)—+iXY]e„,

D =[S S(2n,—+n» }+n„(n„+n») Xz], —

(19a)

(19b)

(19c)
to eliminate b in Eq. (9) and using Eq. (8), gives us

e+n&((nXe)=0

where

from Eq. (16). It is observed, from Eq. (17), that the fol-
lowing relations, which would be helpful to simplify the
analysis, hold well:

(12)
and

(X+ nY)
—=K = PSD'— (20a)

g; =iD(y =iD;/cur, (13)

In order to simplify the analysis, we further invoke the
helicon approximation in Eqs. (11)and (12), which leaves
us with

SY=iXZ, (20b)

where D'=Dz/Di. Expanding a, b, and c in terms of the
inverse power of co,v, retaining the lowest-order terms in
(ro, r) ', and treating co,r »1, leaves us with

with the assumption that y y&1 and that even at largest
drift current Un~ will be of the order of unity. The sub-
script i = 1 and 2, respectively, refers to D i

[=(K~+2)/3] and Dz [=(K —1)/3]. The ratio g;/P
becomes

a =S+i2n„Z+(Q+1)n =iKDz/Are, v,

b =Pn„,

c=P(n, —X ) .

(21a)

(21b)

(21c)

gi/13=iDi/co, r . (14) The algebraic solution of Eq. (18), expressible as

Assuming co,~&&1 and retaining the term of the order of
I/co, v gives

n» [ i»——+(b 4ac)—'~'], —

2

~'f3/(P' —g', ) =a'/P= ' —=K .
COcd)

(15)
now gives, in the lowest-order terms, n„= clb and-
ri„= b/a In—the s.econd solution we substitute X» =in»
so that the two roots are

Further, the unit tensor 1 is neglected from Eq. (12) in the
helicon approximation. This is, in a way, equivalent to
the neglect of the displacement current in a dense (solid-
state) plasma. Using Eqs. (13), (14), and (15) in Eq. (11),
determining the electric field, gives us

c X2

Pl 2
—n

n„
2

Ny +—= (co,r——)
a D)D2

(22a)

(22b)

P+Qn»

(iZ +n„)n»

—E
YEAN@

(iZ+n )n»

S —n„2 EX &y s (16)

We will hereafter designate electric field components in
Eqs. (19}by the superscript b (for bulk wave) and s (for
surface wave) corresponding to the solutions in (22a) and
(22b), respectively. Making use of Eqs. (20) in Eqs. (19)
and retaining the terms of the lowest order in (co,r) ', re-
sults in substituting Eqs. (22) in Eqs. (19) to give
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TABLE I. Solution types. A zero indicates that the entry is one order of ~,~ smaller than the other
entries in the same row.

Type J

j=1
J =2
J =3
j —4
j=5
j=6

0
E„cosh(Ky)

0
E„sinh(Ky)

E„'e~&
E6e Kg

e,

E,' sin(ky}
0

E, cos(ky)
0
0
0

b„

8' cos(ky)
B„cosh(Ky)
B„sin(ky)

B„sinh(Ky)
B„e ~

—Ky„e

8,' sin{ky}
8, sinh (Ky)
8, cos(ky)

8, cosh(Ky)
85e icy

86 —Ky,e

and

D e, =( in~—n, K)e„,
D e~ =(n~XK/n„)e, ,

D =Sn D'

D'e,'=( N„n, K—)e,',
D'e~ = (iN„n, )e,',

(23a)

(23b)

(23c}

(24a}

(24b)

exhibitai in Tables I and II in which we have denoted k
for

con& /c and K for co%&/ c.

In regions I and II (Fig. 1) the actual fields will be the
sums of the solutions listed in Tables I and II, each solu-
tion in the sum being multiplied by an arbitrary constant.
These arbitrary constants must be adjusted such that (see
Table III in Ref. 6) the boundary conditions are satisfied.
Following Appendix A in Ref. 6, we obtain the following
dispersion relation:

O'= —X n„. (24c)

b, = ( in„K/S—D')e, , (25a)

The corresponding magnetic field components, using
1=n X e, come out as

n2 cot[k2(r —R)]= ni cot kir+ri—
2

(Ki —Ki )(Xi —Xi )

~D'n, (Ki +K2)
(27)

and

b» = (in, K/SD'n~ )e, ,

b, =(XK/SD'n~)e, ,

(25b) where

X~ ——K;(1—U~n, ),
k; =con;/c,

(28a)

(28b)

b,' = ( i K/n„)e,',— (26a) 2 2 2 2
n; =X;/n, n, , — (28c)

by ( K/Ey )e»——, —

b,'= [ iN~(S +in,—Z}/n, ]e,' .

(26b)

(26c)

It is worth mentioning that K and X in the analysis
served, respectively, as the dielectric constant and the ef-
fective (Doppler-shifted) dielectric constant. There are
four tangential field components e, e„b„,and b, in each
(bulk and surface-wave) solution. In type bsolutions, -e,
is one order of co,r smaller than the other three field com-
ponents. In type s, on the other hand, e,' is one order of
co,r smaller than the other three field components. When
the boundary conditions are set up, equating these t~o
small components to zero not only simplifies the complex-
ity but also still renders the results correct to lowest order
in 1/co, r Following B. B (see the last paragraph in Sec.
II of Ref. 6), the solution types in the existing system are

where the subscript i =1(2) refers to the respective quan-
tities in regions I (II) of the sandwich structure (Fig. 1).
ri=0 for the even modes and 1 for the odd modes. The
classification of the modes is designated as even or odd
depending on whether b, (y)=+b, ( —y). In the odd mode
b, (y}= b, ( —y) and— in the even mode b (y)
=+b„(—y). The comparison of Eq. (27) and Eq. (3.1) in
Ref. 6 reveals a difference of factor D' which accounts for
the effective-mass anisotropy of the charge carriers in the
present system.

IV. DIAGNOSIS OF DISPERSION RELATION

The diagnosis of real and imaginary parts in the disper-
sion relation, Eq. (27},for the normalized drift velocity U
near threshold (drift) velocity U is of considerable im-

Type J

TABLE II. Solution constants.

8„/i 8, /i

j=1
J =2
J =3
j —4
j=5
j=6

n„K/Sn„D'

n„K/SnyD'

—n„K/SD'
—K/n

+ n„K/SD'
—K/n„
—K/n
—K/n

XK/Sny D'
—Ny (S +in„Z) /n„

XK/SnyD'
—N~(S +in„Z) /n„
—N„{S+in„Z)/n„
+X~(S +in„Z)/n„
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Ki(1 —U~n )=K2(1—U2n, ) . (29)

Equation (29) yields n~ n2——(=no, say) and k, =ki
( = ko, say). Then from Eq. (27) we have

cot[ko(r —R)]=cot kor+i)—
2

portance. At threshold velocity the wave changes from
decaying to growing and hence the propagation constant
n, becomes purely real. As a result, the imaginary part of
Eq. (27) must vanish. This can happen if K& E2——or
Xi ——X2. The latter choice is, however, preferred since the
former always gives a real n, for aH values of U. This
then leads us to X~ ——X2, or

J= —(cot/ —kor csc P) i—g U, no/V D'(1+/)1 2

a=@+1/e,
and P=ko(r —R). Letting (~1, we obtain

(2) 2

a

n, (1—g)sin P
2~D'acoR /c

(35)

(36)

which gives

0
Ptl 'F

1 y 2) 3y ~ ~ ~ ~ (30)

or

(f—1)
V, = Vp

———M
Vp, (31b)

where V~ ( =c/n„=c0/Rek„) is the phase velocity of the
bulk wave and M (=1 f) is —the so-called dielectric
mismatch, ( being defined as f=Ki/K2. Having ob-
tained ko, one can solve, Eq. (28c) for n, . Thus

where

Q
' 2

(K )
1/2

& [(T4+4)1/2 7 2] (32a)

7f p CkpT=
(K )' co(K )' ' (32b)

We now solve for n, when U& is in the neighborhcxxl of
U, . To do so, we expand all the quantities (U, n„, n„
nz) in Eq. (27) to first order in Ui —U, . For the details
of the expansion, the reader is referred to Appendix 8 of
Ref. 6. Writing

n =n +y(Ui —U, ), (33)

a laborious algebraic manipulation gives us

K2(cog kor csc P—}+if(1—g)n no/v D'(1+()
y=

koR csc $+(1—g}J

Integer m in Eq. (30} is even for i) =0 and odd for ri= l.
The condition (30) stating, that at threshold an integer
multiple of transverse half-wavelength spans the full
thickness of the sandwich structure, is clearly a conse-
quence of equating Xi to X2. In other words, the wave
propagates in the sandwich structure regardless of the in-
terfaces or the difference of the media.

For the sake of simplicity, we assume that only the car-
riers in medium I drift, so that U2 ——0 and the relation
(29) still holds well. Then the threshold (drift} velocity U,
( = Ui ) is given by

U, = 0(1 K2/K))=-=1 (g- I)
(31a)

n„ nog

r

0. 2R
'

n, (1—g)sin P
II11+

4v D'acoR /c

Rey (&) (37)

(38)

Now, we are interested in extending the analysis in the
multilayered structures (MLS) (Fig. 2). In MLS of N unit
cells the summation of Eq. (38) over the positions of all
internal interfaces gives

Pelf ec tly Condu|: ting
Sheet

l PIIIIIIEI/I/Xldllifl/119111/EdmjSF114 '

(

l~lllIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIlllll/i

, 111111111111111JEIIIIlllllllllllllllltllllllllll3
)

lNIIIIIIIIIIIIIIIJFIIIIIIIIIIIIIIIIIIIIIIIX/4, '

k .'yazzzzxwzzxxxzuzyzxxzzxzzzxzxzxzxzzxzxxzzz~',

', VuxlIIXIIIIIlruxrrsllrXIIIIIIIIIIII':

.'(11111111111J.FlltllllllllllllllllllllllllIF/Ill/Id'
Rs,FIJIIXAÃ/III~Wi~F&lr&W/I/I/1111/lr&~

lFIIIIIIIIIIIIIIIIA//IIIIIIIIIIIIIIIIIIIIIIIIIIIJ/IJS, '

iFFIIFFIFFFIFIFIFIIIIIIIIFIIIIIIFIFFllllllllllllit/~'

l &11114%)IYlrllllIIII/Ilr/Zll/JJlg&, '

FIG. 2. Multilayered structure. A generalization of the
sandwich structure (Fig. 1) with equal width s of each of the
two semiconductor slabs. The system is periodic in the y direc-
tion (with period d) and infinite in the x and z directions.

The bracketed superscript denotes the number of inter-
faces in the structure. The text following Eq. (3.5} in Sec.
III of Ref. 6 argues that Imy will be half as large for a
one-interface structure as for a two-interface structure.
The expression for a one-interface structure of width 2R
then follows by replacing R by 2R in Eqs. (30), (32), (35),
and (36). Therefore, Eqs. (35}and (36) for a one-interface
structure are
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tion, Eq. (45), in the form
(39)

n, (1—g)yMLS
2v D'alod /c 2n. {V —~i)/VH ik= 1— +0, 2e'Similarly, summing Eq. (37) over all the 2N —1 internal

interfaces in MLS gives, assuming d i
——d2 ——d /2,

(1—g)co,6 V —V, )/VH

~D'8mn,

(co,w) F
2E'

(46)

2 2
mnC 2 K2

n,' —S(l+D')
n„(n, 2S}—

(42)
n, S(1+—D')

with S =iK&D2/c», ~ for medium II. To lowest order in
(co,r) ', Eq. (42) gives, using n, =n, +yp, with

p = 1/ci)q'r,

n„'
Imy =—

&
[D"+e (2—D"}j

2 (~+~')
(43)

These calculations, in which the analysis in sandwich
structure has been extended to MLS, are all performed in
the limit of co,~~so. A study of (co,~) ' correction
would reveal the most important loss mechanism, i.e., the
collisional loss (CL) of the bulk wave. The CL is an in-
herent characteristic of actual materials wherein the car-
riers always suffer some collisions and hence cannot, in
principle, be ignored. To account for the CL, we seek a
relationship between k„k», and co (which exists because
of Maxwell's equations and the transport equation for car-
riers), depending upon the plasma parameters characteriz-
ing the medium in which the wave exists. This relation,
quite analogous to the one in footnote 7 of Ref. 6, in the
present system becomes

n„(n„—2$)

n, S(1+—D') n, —S(1+D')

Considering Eq. (41) in medium II at threshold
(ko ——mn/2R) gives

where, assuming the interfaces in MLS (Fig. 2) to be
equally spaced (s =d/2), the symbols used in Eq. (46) are
defined below:

n, =s/5, 5=A,H/co, r, AH , 2n——V~/c0, V& c/(K——2)' ~,
(47)

v,
~ g, ——v~(g —1), VH =e'~'v~ .

Though the terms defined in Eq. (47) have their usual
conventional meanings, it would still be better to identify
them: AH and V»1 are, respectively, the helicon wave-
length and helicon-wave velocity in medium II. 5 is an
e-fold distance with which the surface wave decays ex-
ponentially away from the interfaces. The separation s
between the consecutive interfaces is assumed to be suffi-
ciently large so that the surface wave excited at one inter-
face does not extend to the next interface. On the other
hand, s should be sufficiently small so that many inter-
faces can be fitted across the structure.

In the limit g—+1, V, can be made smaller when V& is
reduced. The appropriate choice for lowering V, is for
the total width of the structure 2R &A,H, i.e., when the
hehcon wavelength spans the full thickness of the struc-
ture. This choice gives, via Eqs. (42) and (32), T = —,

'

leading to e= —', , a=2, and F=2, and further simplifies
Eq. (46) to

( V —V, )/VH (1 g)co, r( V —V—, )/VHk= 1 — +i
2 ~D'16m n,

ol + 1

C

(48}

Imn, =(co,~) 'Imy ", (44)

Ki{U —U, )
+x =nx 1— 0 +

~x CE

(1 f)(U —U—, )

v D'2cod/c

where D"=D2(1+D'}. The expression (44) gives the
value of Imn, due to collisional losses in the bulk at the
threshold, i.e., when the surface wave disappears. There is
no reason to suspect that the situation will be any dif-
ferent in MLS, simply because the expression of Imn, is
independent of the position of the internal interfaces.

Since in MLS the gain or loss, depending upon the sign
of Imn, per interface is truly additive, the total n, from
Eq. {33)becomes, using Eqs. (39}and {40) and adding the
effect of collisions via Eq. (44),

V~p=—
(s~n, ~a)'"

+M VH,
(a), r) M

(49)

since V~= VH if @=1. The optimum M that gives the
lowest threshold velocity becomes

(s~n, ~a)'"
M=+ (50)

toe

In order to judge the operating characteristics and effi-
ciency of the device used as an amplifier, it seems desir-
able to analyze the dispersion relation, Eq. (48}. The best
value of g is that which gives the lowest possible threshold
velocity V,o, threshold being defined now by the require-
ment that the wave vector k be real (or, Imk =0). This
then gives

(co,r)
p (45) and, therefore, the corresponding actual threshold velocity

ls

where I' is substituted for D"+e (2 D") for brevity. It-
is useful for further analysis to write the dispersion rela-

V,p
———2MV~- —2M' . (51)

Thus the propagation wave vector k in terms of the op-
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timum M can be written as

2n. 1 y (8trn, v D '}'~'
k= 1 —— +

2 VH

1 V 1

2(8nn, v D')'~' VH
(52)

In Eq. (50) the factor D' which is always less than unity
will reduce the dielectric mismatch M. The actual thresh-
old velocity V,o can, therefore, be made arbitrarily small

by making the dielectric mismatch small. Since the imag-
inary part of k, in Eq. (52), is inversely proportional to M,
the growth or decay of the wave (and hence power gain or
loss at the interfaces} will be larger with the smaller value
of M. In view of the existing form (-e'"') of the spatial
dependence of the fields, the negative (positive) Imk will
lead to the growth (decay) of the wave and hence power
gain (loss) generated at the interfaces. Therefore, from
Eq. (48) it is found that in the absence of the collisional
losses, the wave will neither grow nor decay if /= 1. It is
the threshold condition which always gives real n„(or k}
for all values of the drift velocity (U). When gg 1, the
wave decays and hence M is positive [see Eq. (50)], a situ-
ation below the threshold condition. On the other hand, if
g & 1, M will be negative and the wave will grow. The
latter is the condition arising due to the phase reversal of
the surface wave (above threshold velocity) which gives
rise to the instability. With the finite collisional losses,
the condition for the growth rate (or power gain}

V/VH »2(8nn, v D')'~ /co, r

has to be satisfied. Since the surface wave decays ex-
ponentially away from the interfaces with an e-fold dis-
tance 5, n, =s/5=2 is probably an adequate compromise
for practical purposes. As such, the value of M which in
the helical regime (co,r~ao and tor&&1) is always less

than unity lends support to the fact that the actual thresh-
old velocity sufficient to trigger the instability is much
smaller than the phase velocity of the wave.

V. CONCLUSION

%e have investigated the surface-wave instability mech-
anisrn in the helicon-wave propagation in the layered
(sandwich and multilayered) structures wherein the PbX-
type semiconductors form the plasma media. It is found
that the factor D' which is always less than one and ac-
counts for the anisotropy of the effective masses of the
charge carriers plays a significant role in achieving the
greater efficiency of the system at the smallest possible
value of the threshold (drift) velocity. In solids with
spherical Fermi surfaces (e.g., II-VI and III-V compound
semiconductors) the factor D'=1, and the only option left
for choosing the better material, is the plasma parameter
co,~—the Iarger the cu, v, the smaller that velocity will be.
Therefore, the preference for the choice of IV-VI polar
semiconductors over the II-VI and III-V ones, as the plas-
ma media in the layered structures, gives us an additional
advantage in increasing the growth of the wave (or power
gain generated at the interfaces) and hence in maximizing
the efficiency of the solid-state device used as an amplif-
ier.
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Having gone through the complete analysis the way it is
presented in the article and even otherwise (i.e., with m being
treated as the full 3X3 matrix), it was found that the present
approximation not only avoids the mathematical complexity
but also explicitly accounts for a better effective-mass aniso-

tropy in the present field configuration in the existing system.


