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of semiconductor quantum-well structures
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Absorption, gain, and luminescence spectra of quasi-two-dimensional electron-hole plasmas in
semiconductor quantum-we11 structures are calculated as functions of the plasma density and tem-
perature. Self-energy corrections and the effects of multiple electron-hole scattering are evaluated
for a statically screened Coulomb interaction. The Bethe-Salpeter equation for the electron-hole pair
propagator is solved both numerically and analytically using a method developed by Noyes. The re-
sulting spectra deviate considerably from the corresponding free-particle spectra, due to the strong
pair fluctuations in two dimensions. Implications for the theory of quantum-well lasers are dis-
cussed.

I. INTRODUCTION

In the last few years, the optical properties of direct-gap
semiconductor quantum-well structures found a growing
interest due to their potential device applications in in-
tegrated optics and optical data processing. ' In potential
wells whose thickness is comparable to or smaller than the
bulk exciton Bohr radius, excitonic effects are strongly
enhanced due to the spatial confinement of the electrons
and holes and image forces. The excitons show an in-
creased binding energy and an enhanced oscillator
strength so that, e.g., they are still well resolved in room-
temperature absorption spectra. '

Under strong laser excitation, exchange effects and the
screening of the Coulomb interaction by the optically gen-
erated electron-hole pairs destabilize the exciton and an
electron-hole plasma forms (due to the short lifetime
there will be no electron-hole liquid condensation in
direct-gap materials). In this paper we investigate theoret-
ically the optical properties of this plasma. It can be ex-
pected that even in the plasma state the effects of multiple
electron-hole scattering are still very pronounced and con-
siderably larger than in three dimensions, due to the
strong enhancement of {electron-hole pair) fiuctuations
under quantum confinement.

For clarity, we limit ourselves to an idealized model of
photoexcited semiconductor quantum-well structures.
Assuming the mean particle distance and the thermal
wavelength to be much larger than the layer thickness, we
consider only the lowest electron and hole subbands.
Furthermore, we assume that these bands are parabolic.
%e do not address ourselves to problems which are related
to the strong valence-band mixing in quantum wells. As
has been discussed for modulation-doped systems, ' the
symmetry breaking in semiconductor quantum-well struc-
tures is strongly enhanced by the "shake-up" of the Fermi
sea. Similar effects are expected for photoexcited systems.

Within our simple model, the photoexcited carriers in-
teract via the two-dimensional (2D) Coulomb interaction

V(r) =e /(for), where eo is the background dielectric con-
stant of the barrier material. At low excitation intensities,
the electrons e and holes h form excitons with binding en-

ergy Eo 2me /eo——and Bohr radius ao ——eo/(2me ),
where m is the reduced electron-hole mass,
m '=m, +ms . Above a critical excitation density,
these excitons cease to exist and a quasimetallic electron-
hole plasma forms. In Sec. II we calculate the corre-
sponding renormalization of the single-particle energies
{the band-gap shrinkage) due to exchange and correlation
effects. The correlation effects are treated statically, us-

ing the plasmon-pole approximation for the screened
Coulomb interaction. Results for the band-gap renormali-
zation within the latter approximation have already been
reported in Refs. 4 and 8. They agree reasonably with re-
cent experimental observations. ' In Sec. III we calcu-
late the optical spectra of highly excited quantum wells by
solving the Bethe-Salpeter equation (BSE) for the e hpair-
Green's function within the statically screened ladder ap-
proximation. This singular integral equation describes the
multiple scattering of electrons and holes via the statically
screened Coulomb interaction. Using a method developed
by Noyes" (see also Ref. 12), the BSE is reduced to a non-
singular integral equation which is solved both analytical-
ly and numerically by matrix inversion. From the imagi-
nary part of the e hpair Green's -function we obtain the
absorption, gain, and luminescence spectra. The results of
our calculation are presented in Sec. IV for various plas-
ma densities and temperatures. As expected, the two-
dimensional pair fiuctuations cause strong deviations
from the corresponding one-particle spectra, so that, e.g.
the gain spectra bear great resemblance to bulk spectra.
The relevance of our results to the theory of quantum-well
lasers is discussed.

II. SCREENING AND SINGLE-PARTICLE
PROPERTIES

Under high optical excitation a large concentration of
electron-hole pairs is created in a semiconductor. Clearly,
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one has to include exchange effects as well as the screen-
ing of the long-range Coulomb forces in order to obtain a
reasonable description of such a dense system of charged
fermions. Various approximation schemes have been
developed for that purpose. For three-dimensional (3D)
systems, they have been summarized in our recent review
article. Some of these ideas have been extended to
quasi-2D systems. s A discussion of the subband level
renormalization due to exchange and correlation effects
has b~ given and some shortcomings of standard
theories (which are not so significant in three dimensions)
have been pointed out. In the following, we give a brief
discussion of the subband level renormalization within a
static approximation which is based on the random-phase
approximation (RPA) and expected to yield reasonable re-
sults for the densities and temperatures of interest.

In quasi-2D e-h systems, the screened Coulomb interac-
tion is given by

V, (q, pi) = (1)
e(q, pi)q

'

where 2me /q is the bare 2D Coulomb interaction and
e(q, tp) is the longitudinal dielectric function. Within the
RPA e(q, cp) reads (R=kti ——1)

f;p(k) —f;p(k+ q)
e(q, tp)=ep 1 —2V(q)g

pi+i 5+e; k —e; k+ q)

(2)

where V(q) =2rte /(epq) and i =e,h; e;(k) =Ee/2
+k /(2m;) are the unrenormalized single-particle ener-
gies characterized by effective electron and hole masses
m; and an energy gap Es, f;p(k) are the corresponding
distribution functions.

For practical purposes, the total RPA excitation spec-
trum can be replaced by a single effective plasmon mode,
so that4' '"-"

2

e (q, co) =E'p 1+—1 cop(q)
(3)

(to+ +)'—rp'(q)

where pi~ (q) is the 2D plasma frequency, co~ (q)
=2nne q/(cpm), which has in contrast to the 3D plasma
frequency a square-root dispersion. This result can be de-
rived in an elementary way by combining the equation of
continuity with Newton's equation.

co(q} is the frequency of the effective plasmon mode

4
~'(q) =to'(q) 1++ + (4)

16m

E,(k)=e;(k)+X;(k), (7)

where X;(k) are the single-particle self-energies which
describe the energy the particles gain by avoiding each
other. This energy can be split into a screened exchange
(sx} and a Coulomb-hole ( Ch) term:

X,(k) =X;,„(k)+X;ct, ,

where

(8)

X;,„(k)= —g Vg(k —k')f;(k')

and

X;cp = —, g[Vg(k') —V(k')] . (10)

Here, V, (k) = V, (k, co =0) is the statically screened
Coulomb interaction as determined by Eqs. (3)—(6) and

are the unrenormalized quasichemical potentials of the
electrons and holes.

The dispersion (4) reproduces the correct RPA screen-
ing behavior at long wavelengths and simulates the indivi-
dual particle-hole pair excitations at short wavelengths.
For T~O, the screening wave number ~ reduces to a con-
stant ap ——2e (m, + mi, )/ep due to the constant density of
states.

Results for the exchange-correlation (xc) contributions

p;„, to the quasichemical potentials p, ;=@;p+p;„,within
the plasmon-pole approximation have already been report-
ed in Refs. 4 and 8. In particular, it has been shown that
for T~O and moderate densities the corresponding
exchange-correlation potential p„,=p,„,+@~„,varies ap-
proximately like p,„,——3.1(nap)'~ Ep. This result agrees
reasonably with recent experimental observations, both for
photoexcited quantum wells' and for quantum-well lasers
in which a high-density e —h plasma is electrically inject-
ed. The results of Refs. 4 and 8 also agree approximately
with the results of more sophisticated calculations, '

which include, e.g., finite thickness effects. ' Different
results have been reported in Refs. 22 and 23.

In the following, we will limit ourselves to the "static
limit" of the plasmon-pole a~pproximation, by neglecting
recoil effects completely. 5' 'i' This is consistent with our
static approximation for the irreducible electron-hole in-
teraction (see Sec. III). The price we have to pay for this
consistency is an ouerestimate of the correlation energy as
compared to the full dynamical result.

Within this simple model, the renormalized single-
particle energies are given by

dn

BP p6'p

where n is the plasma density and

pi p =Ee /2+ Tlil exp
721I T

Here, ~ is the screening wave number which is determined
by the compressibility sum rule:

22m.e
(5)

f E.{k)—p, .]/Tf (k)=
e ' ' +1

is the quasiparticle distribution function.
Equations (8}—(10}can be derived from the dynamical

self-energies given in Refs. 4 and 8 by neglecting all recoil
energies with respect to the plasma frequency. Equation
(10) is nothing but the (classical} self-energy of a localized
charge.

Obviously, as long as exchange effects are screened effi-
ciently, the self-energies (8} depend only weakly on
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momentum, so that the electron and hole mass enhance-
ment and the decrease of the bandwidths are small. The
self-energies cause mainly rigid-band shifts, the renormal-
ized band gap being given by

Es Es——+g Xl(0) . (12)

At very high densities exchange effects become dominant,
so that the effective electron and hole masses decrease and
the bandwidths increase. As in three dimensions, Eq. (12)
depends only weakly on the electron-hole mass ratio
rriq /rrig .

In the following, we will use the T=O values of the
self-energies (8), which is well justified for the densities
and temperatures of interest. The electron and hole self-
energies are then equal (which is an artifact of the static
approximation), and the exchange-correlation contribu-
tions to the quasichemical potentials are given by

X sgn(E„—p, ),

where P„(k) are the eigenfunctions of the non-Hermitean
eigenvalue problem

g Hg i, P„(k')=E„P„(k) (18)

with

the renormalized single-particle energies E;(k) are deter-
mined by (8)—(10). Clearly, self-energy and vertex correc-
tions are treated on equal footing.

Expanding the e —h pair propagator in terms of the
eigenfunctions of the homogeneous part of the BSE, one
obtains after some algebra '

~

F(k)
~

' P„'(k)
~

F(k')
~

' P„(k')
G(k, k', a))=g

co+ i 5 E„—

p;„,=X;(kF),

where kF ——(2mn)' is the Fermi wave number.

(13)
Hi, i,

——[E,(k)+El, (k)]5g i,

—sgn[F(k)] i
F(k)

i

'i V, (k —k')
i
F(k')

i

'i2 .

III. ABSORPTION, GAIN, AND LUMINESCENCE

Within our simple model, the absorption, gain, and
luminescence spectra associated with optical transitions
between the lowest electron and hole subbands are deter-
mined by the interband density of states

D(a) }= —Im+G(k, k', co),
k, k'

where G(k, k', co) is the retarded e —h pair propagator.
Apart from constant factors, Eq. (14) is just the imaginary
part of the retarded photon self-energy and thus deter-
mines the difference between the photon scattering rates
out of and into the state ro under simultaneous creation
and annihilation of e —Ii pairs. Correspondingly, the ab-
sorption, gain, and luminescence spectra are given by
D(co }, D(co), and—

D(co)/I exp[(co —p, /T)] —1I,
respectively, where p=p, +p~ is the quasichemical po-
tential.

Within the statically screened ladder approximation,
the two-particle Green's function G(k, k', co) fulfills the
Bethe-Salpeter equation (BSE)

gP' (k) sgn[F(k)]P„(k) =5 „sgn(E„—p, ) .
k

In the dilute limit p/T~ —00, Eq. (17) reduces to

P', (k)P, (k')
G(k, k', co) =g co+1 —E~

where

(20)

(21)

Esker«)=[&. «)+&,(k)]P.(k) —g V(k —k')P„(k')

and

(22)

(23)

constitute the unperturbed hydrogenic exciton problem.
Equation (14) reduces then to the simple expression

The eigenvalues E„of(18) are real, and the eigenfunctions
P„(k) form a complete set and obey the generalized ortho-
gonality relation

G(k, k', co) =Go(k, k', co) —g Go(k, k",co}V,(k"—k"')
gC I I

D(a))=ng
~
Q„(r =0)

~

5(co E„), —(24)

)& G(k'", k', co),

where

1 —f, (k) —fi, (k)
Go(k, k', co) = . 5i, i, .

which is the well-known result of Ref. 26.
In the plasma state, bound states do no longer exist so

that the eigenfunctions P„(k) are scattering states P~(k),
classified according to the relative e —h momentum p.
The e —h pair energies are E(p) =E,(p)+Eq(p). In anal-
ogy with standard definitions, P~(k) can be written in the

OH11

This singular integral equation describes the multiple
scattering of an electron-hole pair via the statically
screened Coulomb interaction in the presence of the e —h
Fermi sea. The phase-space occupation factor
F(k)=1—f,(k) —fi, (k) reflects the exclusion principle;

sgn[F(k)] i F(k)
i

'i T(k, p) i F(p) i

'i
E(p) E(k) +i5—

where T(k, p) is the on-shell T matrix defined through

(25)
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T(k,p) I F(p) I

L~ = —g V, (k—k')
I
F(k')

I

'~2$&(k') .

(26)

[ I &
I

i I t I & I

01 T/E -0 1

Equation (25) corresponds to outgoing wave boundary
conditions. Substituting (26) into (25}, we obtain the BSE
for the on-shell T matrix

T(k,p)= —V, (k —p) —g V, (k —k') F(k')

z' &0"—

UJ

z
cf.

UJ

X T(k', p) . (27)

Since only s-wave scattering contributes to (14}, we can
replace the statically screened Coulomb interaction
V, (k —k') in the following by its angle-averaged value

V, (k, k') = f dp Vg(k —k'}, (2&)

F(k')
E (p) E(k') +i5— (29)

The solution of this equation can be expressed as
T(k,p) =T(p,p)f(k,p), where

T

V, (k,p) V, (k,p) V, (p, k')f(k,p) = — V, (k,k')—
Vs p~p g Vs pip

where p is the angle between k and k'.
ith use of a method developed by Noyes" (see also

Ref. 12), the BSE (27) can be transformed into a new non-
singular integral equation. Multiplying (27) for T(p,p)
with V, (k,p}/V, (p,p) and subtracting the result from (27),
one finds

V, (k,p)
T(k,p) = T(p,p)

V. pp
V, (k,p) V, (p, k')

V, (k,k')—
V. pp

L I L I I I L I L I L I I I

—40 -30 —20 -10 00 10 20 3,0
(E- Eg)/E0

FIG. 1. Excitonic enhancement for T/Eo ——0. 1 and various
plasma densities n.

Ag(p)=g V, (p,p)f(k,p)
F(k)

(34)

Substituting this expression into (17) and (14), we obtain
the final result for the interband density of states

D(r0) =DQ(ai)p(r0), (35)

Do(ai )=n'g F(p)5(cu E(p—}}
P

(36)

A~(p)
p(c0)= 1—

1+Ai(p)
E(IP)=~

is the excitonic enhancement due to the multiple e —h

scattering.

(37}

IV. RESULTS AND DISCUSSION

is the one-particle result (including the renormalization
for the single-particle energies) and

2

F(k')
E(p) E(k')— (30} Performing the one-dimensional integration in (30) by

means of a Gaussian quadrature, Eq. (30) reduces to a sys-

and

T(p,p)= 1+Ai(p)
(31)

102
I

'
I

'
I ' I ' t ' I

na = 0.5

AL(p)=g V, (p, k)f(k p)
F(k)

(32)

Obviously, the kernel of (30) is finite for k'=p and
f(p p}=1.

The oscillator strength for transitions into scattering
states is determined by

~ 101—
X
LLJ

UJ

= 0.5

y ~F(k)
I

' 2y (k)= IF(p) I

' 2 1— A2(p)

1+Ai(p}
(33)

I i I L I

1.0 2.0 3.0
I L I L I i I

-4.0 -3.0 -2,0 —1.0 0.0
(E Egj/Eo

FIG. 2. Excitonic enhancement for nao ——0.5 and various
plasma temperatures T.
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FIG. 3. Optical
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—20 —10 00 10 20 30
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absorption for T/Eo ——0. 1 and various plas-

oo
—4 0 -35 -3.0 —2 5 -2,0 -1.5 -10 -0.5 0.0 0, 5 1.0

(E —Eg)/Eo

FIG. 5. Luminescence for T/Eo ——0. 1 and various plasma
densities n.

tern of linear equations, which can be solved by matrix in-
version. Typically, we used a mesh of 200 points in order
to obtain a good overall accuracy. In the following, we
will present results for m, /ms ——0.2 for the set of densi-

2=ties na o 0 1, ——0.3., and 0.5 and temperatures T/F. 0
=0.1,0.3, and 0.5. For typical GaAs/Al„Gai „As
quantum-well structures, these values correspond to d

11 13 2
o ensi-

ties between 10 and 10 cm and temperatures below
150 K. In the degenerate limit, i.e., except for densities
and temperatures close to the critical values for the ap-
pearance of excitons, all our numerical results agree
within graphical resolution with the simple analytical re-
sults obtained by keeping only the leading inhomogeneous
term of (30).

Fis. 1

The excitonic enhancement factor p(ei) is plotted
'
in

igs. and 2 for various plasma densities and tempera-
tures, respectively. Obviously, the electron-hole correla-
tion is very strong even in the plasma state. With increas-
ing plasma densities and temperatures the maximum of
p(co) near the quasichemical potential p decreases due to
the decreasing e decoupling -strength and the increasing
thermal broadening of the Fermi functions, respectively.

The shape of p(ei) reflects the tendency of the system to
orm e- Cooper pairs, i.e., to undergo a transition to an

excitonic insulator state. In 2D systems, there is no long-

27. H
range order, as has been rigorously demonstrated

' R fin e.
However, there may be topological long-range order

and a Berezinskii-Kosterlitz- Thouless transition m
28,29

may
occur. ' The excitonic enhancement refiects directly
the uctuations of the magnitude of the order parameter
preceding the transition to the excitonic insulator state,
similar e.g. , to the enhancement of the paraconductivity in
superconductors. It is well known that these fiuctua-
tions are much stronger in two dimensions than in three
dimensions. Hence, the quantum confinement enhances
the e-Ii correlation both in the atomic exciton limit and in
the weak-coupling plasma limit. Of course, our model
breaks down for temperatures below the mean-field "criti-
cal temperature" at which p(co) diverges.

Absorption and gain spectra for the same set of param-
eters are shown in Figs. 3 and 4. Due to the many-body
effects, these spectra deviate considerably from the corre-
sponding free-particle results. Most importantly, they are
red shifted due to the renormalization of the single-

10.0—

8.0—

6.0—
z.'
O

CL
4.0—

K
C)
rn 2.0—
tn

00 ——

I
I

l
I

i
I

i

nao = 0.5

o= 0.5

0.8—

Ld

~~0.6—
4J

V)
4J

0.4—X

I
'

I
'

I
'

I
'

I
' I '

I
' I '

I

nao = 0.5

-2.0—
0.2—

-6.0—
l

4Q
I ) I

-10 QQ
(E- Eg)/E

I I

-3.0 -2.0 1.Q
I i l

2.0 30
r. . .

-4.0 —3.5 -3.0 -2.5 —2.0 -1,5 -1.0 -0,5

{E Eg) /Eo
0.0 0.5 1.0

FIG. 4. Optical absorption for nao ——0.5 and various plasma
temperatures T.

FIG. 6. Lumine
'

escence for nao ——0.5 and various plasma tem-
peratures T.
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8.0—

T/Eo= O. t

noo =02

4.0-
O

2.0—
C)
M 0.0--

LLI
C3

UJz /0
X

-2.0-

0.00.0-0.5-2.0 -&,5 -1.0
(E-E, ) i E,

FIG. 7. Comparison of the absorption spectrum ( ) with
the corresponding one-particle result (———) for na0 ——0. 1 and
T/Eo ——0.1.

I i I i I

-2.4 -2.2 -2.0 —5.8 -4.6 -'1.4 -1.2 -&.0 -0.8 -0.6
(E-E,)rE,

FIG. 8. Comparison of the luminescence spectrum ( )

with the corresponding one-particle result (———) for
nao ——0. 1 and T/Eo ——0. 1.

particle energies and strongly enhanced near the quasi-
chemical potential p, i.e., near the crossover from gain to
absorption, due to the e-h correlation. The same holds
for the luminescence spectra shown in Figs. 5 and 6.
With increasing temperature the effects of the excitonic
enhancement decrease rapidly, whereas the renormaliza-
tion of the single-particle energies is persistent (for the
low temperatures studied}. With increasing density the
e-h coupling strength and thus the excitonic enhancement
decrease and the renormalized band gap shifts to lower
energies whereas the quasichemical potential shifts to
higher energies due to the increasing band filling.

The pronounced infiuence of the e-h correlation on the
optical spectra of highly excited quantum wells is demon-
strated in Figs. 7 and 8, in which we compare absorption
and luminescence spectra with the corresponding one-
particle results (which include the renormalization of the
single-particle energies}. It is obvious that the e-Ii correla-
tion can by no means be considered as a minor correction.
Contrary to the one-particle spectra, the many-body spec-
tra do not refiect the constant density of states of 2D elec-
trons and holes. Instead, the spectra bear great resem-
blance to the corresponding bulk spectra, which have, e.g. ,
ban studied in Ref. 5.

So far, only a few measurements of the optical spectra
of highly excited quantum wells have been reported3'0 3'

so that for the time being a detailed comparison of our
theory and experimental results is not possible. Most like-

ly, realistic band structures must be included in order to
obtain quantitative agreement. This seems to be feasible,
since in the degenerate limit (30}can be solved analytical-
ly, as has been already mentioned.

Similar conclusions as for the photoexcited systems can
be drawn for quantum-well lasers, in which the electrons
and holes are electrically injected. Typically, the plasma
densities in these systems are somewhat higher than in the

photoexcited systems, so that the e-h correlation is not so
pronounced. However, even at high densities the exciton-
ic enhancement is still strong enough to cause consider-
able deviations from one-particle line shapes, as should be
clear from our results.

Very recently, it has been suggested that the gain spec-
tra of quantum-well lasers can be described by using a
one-particle model without k selection. Such a model
has the advantage of being extremely simple; it is, howev-
er, not justified for direct-gap semiconductors. In order
to obtain quantitative numbers for the design of laser
diodes, all the effects discussed in this paper —band gap
and mass renormalization and e-h correlation —have to be
included.

As already mentioned, effects associated with the
shake-up of the Fermi sea may also be of importance.
Within our simple model, Auger-like indirect transitions
wi11 predominantly give rise to low-energy tails in the op-
tical spectra, because at the Fermi level both electrons and
holes are well-defined quasiparticles. However, as soon as
the strong valence-band mixing in quantum wells is in-
cluded, there may be additional effects due to the many-
body coupling of hole states of different symmetry, in
much the same way as in modulation-doped quantum-well
structures. ' In order to clarify this point, more realistic
calculations are needed in the future.
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