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%e present analytical results for the static conductivity of the two-dimensional electron gas
at )ow temperature. The conductivity is expressed as o ( T)=o (0)[1 C—(a, n) T/er

D(—ct, n)(T/er) ~ +0(T }]. Analytical expressions for a(0) in the case of impurity and surface

roughness scattering are given. C{a,n) and D(a, n) are universal functions, depending on the q~
dependence of the scattering potential via C(a) and the density n of electrons via C(n). It is shown

that the energy-dependent conductivity at temperature zero has a singularity at the Fermi energy.

Our results are compared with other theoretical results and with experiments in Si-MOS (metal-

oxide-semiconductor) systems.

I. INTRODUCTION

Transport properties of two-dimensional electron sys-
tems are of great practical interest because of the industri-
al applications of metal-oxide-semiconductor (MOS) sys-
tems; for a review see Ref. 1. From the theoretical point
of view, great attention has been induced by the discovery
of absence of diffusion in a noninteracting two-
dimensional electron gas at zero temperature. The corre-
sponding logarithmic temperature decrease of the conduc-
tivity for decreasing temperature has been established for
Si accumulation and inversion layers in the relatively
small mobility specimens, see Ref. 1. But in the samples
with relatively high mobility, a linear increase has been
found when temperature was decreased. .This dependence
cannot be explained in terms of the electron-phonon
scattering processes and has been explained by the tem-
perature dependence of the screening function for elastic
scattering. 5

The "approximately linear increase"' of the mobility by
decreasing the temperature was found numerically within
lowest-order coupling of the scattering potential with the
electrons. s It is anomalous in the sense that the Kubo-
Greenwood formula predicts only even powers for the
temperature dependence within a Sommerfeld expansion,
when a noninteracting electron gas is considered. In the
following we give an analytical expression for the conduc-
tivity at love temperatures, including linear temperature
corrections to the conductivity. It will be shown that the
linear term is proportional to the mobility if the electron
concentration is held constant. Analytical results for the
temperature zero conductivity in the case of charged im-
purity scattering and surface roughness scattering are
given and compared with numerical results. The analyti-
cal coefficient for the linear temperature dependence is
derived and compared with experiments. The finite exten-
sion of the wave functions of the electron gas perpendicu-
lar to the Si-SiOi interface and local field corrections are
taken into account.

The paper is organized as follows. In Sec. II we discuss
our theory and the approximations. The analytical results

are presented in Sec. III. Our expressions are compared
with other theoretical results and with experiments in Sec.
IV. A conclusion of the paper is given in Sec. V.

II. THEORY AND APPROXIMATIONS
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with a =(lj, q /8m)I2T. —pF g„m/tr is the ——density of
states, m is the electron mass, and g„ the valley degenera-
cy.

For low temperatures and small q the integral in Eq.
(lb) can be extended to infinity and we find
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In the following we make no difference between p and the
Fermi energy eF, because we restrict our calculations to

A. Compressibility of the free-electron gas

The compressibility of the noninteracting electron gas
go(q, T,p, ) for wave number q, temperature T, and chemi-
cal potential p is given by

g(qTp)= de
2

' ' . (la)
1 ~ g (q, T,e)

cosh2[(p —e)/2T]

fi and kz are set equal to unity in this paper.
g (q, T =0, e) is the compressibility at zero temperature. s

Explicitly one gets
T

g (q, T,p)= —,'p~ 1+tanh
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low temperatures and eF I——2+ Tln(1+e " ).
q =2kF, we receive from Eq. (2a) for T« eF,

' 1/2

g {q=2kF, T,eF)=pF 1 —0.26S
fF

(2b)

1

~0(e, T =0)

Foi with

1 & I U{q}I
(4k2 q2)1/2 [e (q)]2

(Sb)

V(q) = F(q) —.2me 1

E'L
(4)

Our result for the compressibility is in good agreement
with numerical results ' for T «FF.

The dielectric function F(q, T) for the interacting elec-
tron gas at T =0 is expressed as

e(q, T=O)=1+ V(q)g0(q, T=O, eF)[1—G(q)] . (3)

V(q} is the interaction potential of the electron gas in two
d1IQe11slons,

1

~„(e,T=0)

, „(q' 4k-F)""
& IU(q)I'&

dq q2kF (4k2 q2)1/2 [ei(q)]2

V(q)[1 G(q)—]F(q)pF
X

ei(q)

eL is the dielectric constant of the host material, e is the
electron charge, and E(q) is a form factor for the finite
extent of the wave function perpendicular to the two-
dimensional sheet of the electrons and is specified later.
G (q) is the local field correction in Hubbard's approxima-
tion: G(q)=(l/2g„)ql(q +kF)'/. kF is the Fermi
momentum. According to Eqs. (1) and (3) the tempera-
ture dependence of the compressibility is transferred to a
temperature dependence of the dielectric function. '0

X8(e eF—) . (Sc)

C. Temperature dependence due to scr~~ing

The relaxation time HeF, T =0) determines the static
conductivity via a(eF, T =0)=(ne /m)deF, T=0) and
the mobility via p(eF, T =0)=(elm)deF, T =0). n is the
density of electrons. In the Born approximation one gets

S. Energy-dependent reiaxation time

Normally the Kubo-Greenwood formula is written as

1

r(eF, T =0}
1 2kF

2m'SF
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(4kF q)'/2 [e(q—, T =0)]
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1

y d
o( eT=O)
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and g(q, T =0)=(ne2/in)v'(e, T =0) 1/r(e, T =0) is the
momentum relaxation rate for an electron with energy
e =k /2m and is given by'

To take into account the temperature dependence of the
screening, we replace in Eq. {9)e(q, T =0) by e(q, T),'"F, 1 & I U(q) I'&

r(eF T) ~eF 0 (4kF q ) [k(q, T)]

(10)
p2k

r(e, T =0) 2n.e "0
q' & I U{q)l'&

(4k 2 q2)l/2 [e(q}]2
With Eq. (2a}, written as g0(q, T,eF)=pF —4g (q, T,eF},
we expand Eq. (10) into the form

& I U(q) I2& is the Fourier transform of the random
scattering potential and is defined later. With

1

HFF, T}
1 ~ 1

r{eF,T=0) „,hr„(eF, T) ' (1 la)

ei(q) =1+V(q)[1—G(q)]F(q)pF, (7a) with

we take into account the anomalous screening behavior
for q) 2kF and write

V{q}[1 G(q)F{q}pF—
e(q)=e, (q) 1—

ei(q)

(1 lb)

2kF
2 1

r(eF, T =0) 2neF 0 (4kF q)'/—dq q

& I U(q) I'&

[e(q, T =0)]

X 1—
2

'
1 l'2

8(q —4kF ) . (7b) l&„(eF,T)

8(x)=1 for x )0 and 8(x)=0 for x &0. With Eq. (7},
we express 1/r(e, T =0) in the form

(Sa}

n+1 "F q & I U(q)I2&
dq 22ii+F 0 (4kF q)' [e(q, T =0))—
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D. Scattering mechanisms

In the following we discuss scattering by charged im-

purities of density n;, located in a two-dimensional plane.
Then the random potential is expressed as"

2 2

&
~
U(q)

~

i) =n; — [F;(q)]z . (12)

F;(q} is a form factor because of the finite extension of
the wave function. The scattering by the surface rough-
ness is expressed as'

Equation (lib) is the classical formula for the T=0
momentum relaxation time, and we will see later that Eq.
(1 lc) gives a linear T contribution to 1/r( T).

&
~

U(q)
~

') =~~'A'q, 'P(1+2N, /n)'e e-'""4. (13)
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with a power 2a, a strength U and a range A, then the
impurity scattering corresponds to a = —1 and the
surface-roughness scattering corresponds to a =0.

In the following we consider a Si(100) MOS systein
with rn'=0. 19 nio nlo is the electron mass in vacuum,
g„=2, and er ——7.7. The form factor F(q) is expressed
~11

and A are the length parameters of the surface-
roughness scattering, q, is the Fermi screening wave num-
ber at T =0, and ND is the depletion density. Vfhen the
scattering potential is characterized by the q dependence,

1
F(q) =—1+—

2
1+—~+9 3 q

8b Sbi

3
1

b 2 b

'6

ei ——3.9 is the dielectric constant of the Si02 and e2 ——11.5 is the dielectric constant of the Si. 1/b is the length parame-
ter for the thickness of the electron gas and given by' b =(48nmiezN'/e, )'/i mi ——0. .916 is the electron mass for the
motion perpendicular to the Si-SiOz interface, N'=ND+ —,", n. F,(q) is the form factor for the impurity electron interac-

tion, and when the impurities are located in the Si-Si02 interface, it is given by" F;(q)= 1/(1+q/b) . When finite ex-

tension effects of the electron gas are neglected, we have F(q) =F;(q)= 1. Now our model is completely specified and we

discuss the results of our theory.

III. ANALYTICAL RESULTS

A. Conductivity at zero temperature

Because of the square-root singularity in Eq. (11b) the main contribution from the q integral comes from the q =2kF
region. For &

~
U(q)

~

ccq we evaluate then Eq. (11b} in the form I dxx + /(1 —x }' and use the involved form

factors at q =2kF. For impurity scattering, we obtain

1 m ~r' F;(2kF )

r(ez, T =0) g„n F(2k+)[1 G(2kF)]+2k—F/q,
(15}

and for surface-roughness scattering we rex:eive, for k+A « 1,

1 3m 1+2ND/n

r(eF, T =0) 2
eF (b,Akp)z F(2k@ )[1 G(2kF )]+—2kF /qg

2

(16)

For the scattering potential, defined in Eq. (14), we get for k+A « 1:

1

r(eF, T =0) a! (4+2a)!! q, eF F(2kF)[1 G(2k+))+2k+/—q,

2

(17)

In Fig. 1 we compare our analytical formulas with the ex-
act numerical results. For n &5X 10' cm the differ-
ences between the exact expressions and our analytical
formulas are smaller than 50% in the case of impurity
scattering and smaller than 30% in the case of surface-
roughness scattering. The higher the power in q of the
random potential and the smaller the density, the better is
our approximative evaluation of the q integral. At high
electron density surface-roughness scattering is the
relevant scattering mechanism in Si-MOS systems. ' For

n &8&10' cm, one expects that the second subband
becomes occupied, and so we believe that our analytical
formulas can be used to analyze very easily conductivity
measurements. Especially we propose to use our analyti-
cal results to get some insight into local field corrections.
In three dimensions, the behavior of the local field correc-
tions at q =2k~ is very controversial, for a review see Ref.
14, and has some relevance in connection with phase tran-
sitions. The influence of G(q) on the relaxation time has
been discussed for impurity scattering' and surface-
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Equation (18) gives the linear temperature dependence due
to the temperature dependence of the screening function.
The next leading term in the expansion of Eq. (11) gives a
T ~ behavior:

1 T'"3
i 2kihr2{ep, T) ep m 2'/

& l
U(2k„) l'&

01
10'

l

10

n{cm )

)

10 10 t V(2kp)pp[1 —G(2kp)])

[1+V(2kp}pp[1 —G (2kp)] J

FIG. 1. lion; and pn 3 versus density for impurity scattering
and surface-roughness scattering, respectively. The full lines are
our analytical results, the dashed lines the numerical results.
The parameters are 5=4 A, A =15 A, and N~ ——0.
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roughness scattering. '
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=(T ln2)kp
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Explicitly we find for impurity scattering,

(18)

B. Linear correction for fimte temperature

With Eq. (11c}for 1/r„(ep, T), we proceed in the fol-
lowing way. From our Eq. (11) it is easily seen that the
temperature gives the strongest effect at q=2kp. Then
we transfer the q integral in Eq. (11c) into a e=2kp —q
integral. The integration interval 0&q &2kp is extended
to 0&@&oo and only the most singular teil@ 1/e'/2 is
used for the integration. This gives again a factor T'/ in
addition to T'/2 from bg, see Eq. (2a), and I/b ri(ep, T)
is proportional to T. The calculation is exact in the limit
T~O and we receive

C. Energy-dependent conductivity

1
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EF
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with A = epB[l /—r&ep, T =0)]/dip For Eq.. (Sc) we get
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Because of the 2k singularity in Eq. (8b) we use the
same trick for the evaluation of the integral as in
Sec. II A. For

l
(e—ep)/ep l « 1, we can write

1 T2
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and for surface-roughness scattering for kpA « 1,
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Explicitly we find for e ep/ep t «—1, ——
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With the Eqs. (15)—(17}for 1/Rap, T =0), the energy-
dependent conductivity at temperature zero is given by

C{a)C(n)0(e, T =0)=ir(ep, T =0) e(e —ep)
1n2 EF

8 E—EFx 1+ C(n)
2m' EF

j[/2
E—EF+0(t} —A(ep) +0(t') .

EF
(2S)
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with

C(a) =In2 (4+2a)!!

F(2kF)[1—G (2kF )]
C(n}=

+(2kF )[1—G (2kF )]+2kF /q,

(26a)

(26b)

Most important in Eq. (25) are the 8(e—eF) contribu-
tions. They arise from the anomalous q dependence of
the screening function (or of the compressibility). The
Kubo-Greenwood average of these terms gives anomalous
T contributions for the conductivity. The coefficient of e
dependence can be written as a product of two factors.
One, C(a), is a number depending only on the power in q
of the random potential. For impurity scattering we ob-
tain C( —1)=21n2 and for surface-roughness scattering
we obtain C(0)= —', ln2. The second factor, C(n}, de-

pends on the density because of the form factor F(2kF)
and the local field correction. For F(2kF ) = 1 and
G (2kF) =0 this factor is given by C(n) =1/(1+2kF/q, ).
In Fig. 2 the influence of finite Nn on C(n) and in Fig. 3
the influence of G(2kF) on C(n) is demonstrated. Nz
does not influence C(n) in a strong way, but G(2kF)

OCS.

D. Temperature dependence of the conductivity

Because of the temperature dependence of the screen-
ing, we have found a T and a T behavior of 1/r(eF, T).
To take this into account, we write the Kubo-Greenwood
formula, Eq. (5), in the form

0.4—

0.3 1 1 1

4 6 8

n{10"'cm )

10

FIG. 3. C(n) versus density according to Eq. (26b) for vari-

ous values of G(2kF). The dashed line is for F=l, 6=0, and

Ng)
——0.

The Kubo-Greenwood average of 1/Re, T =0} gives T
and T contributions due to the 8(e—eF) function.
These anomalous T corrections come from the q depen-

dence of the compressibility for q &2kF. Anomalous T
corrections 1/hr, (eF, T) and 1/h~i(eF, T) come from the

q dependence of the compressibility for q &2kF. Then
the low temperature expansion of the conductivity is ex-

pressed as

with

1

y
"d o(e, T=O)

4T o cosh2[(e-eF)/2T]
(27a) o(eF, T)=o(eF, T=O) 1 —C(a, n)

T
6F

' 3/2

—D(a, n) +O(T )

aIld

cr(e, T=O)= r(e, T),
m

(27b)

(27c)

with

and

C(a, n) =2C(a)C(n),

D(a, n) =2.45C(a)[C(n)]' .

(28)

(29a)

(29b)

1.0

C{n)
09-&

0.5 l

6

n {10'"cm ) dier(T) =pFC(a, n)p(T =0)T . (30)

Clearly Eq. (28) is only valid for C(a, n)T/eF «1 and
D(a, n)(T/eF) ~i&&1. Equations (28) and (29) are the
main result of our paper. The analytical results specify
the "approximately linear increase" found in a numerical
calculation by Stern into "linear increase. " The linear
temperature dependence of the conductivity, found in ex-
periment ' and explained numerically in terms of the
temperature-dependent screening function, is achieved
analytically.

The temperature-dependent conductivity correction is
given by the mobility of the sample:

FIG. 2. C{n) versus density according to Eq. (26b} for vari-
ous values of N~.

Equation (30) explains the fact that this anomalous T
correction was only found recently ' in samples with high
mobility. The result that hp(T} is nearly proportional to
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p(0), has been found independently in Ref. 17 for impuri-

ty scattering.
Some experiments show departure from the linear T

dependence at low temperature. This effect cannot be ex-

plained by T terms in a Sommerfeld expansion of the
conductivity. Weak localization also gives a decreasing
conductivity with decreasing temperature, but the effect is
too small to explain the experimental results of Ref. 3.
Samples with the above-mentioned anomalies at low-

temperature exhibit in a weak magnetic field a
temperature-dependent Hall voltage. " We suggest that
this is due to a temperature-dependent electron density.

%hen two scattering mechanisms are present, we re-
ceive Eq. (28) with [r;(0)=~i(eF,T =0)],

ne 7'i(0)ri(0)
o(eF, T =0)= (31a)

ni 1.i(0)+ri(0) '

1+[r,(0)/r2(0)]C(a, )/C(ai)
C(a, n) =C(ai, n) I+11(0)/1 2(0)

(31b)

Xl

x~0, = Q

hA =)t10~120A

2.6—

30—

hA= 12QA

a=-1 *

~ ~~ ~
~ ~

4

'I.S 1 l (

O 2 4 6 8 10

P ( tQ11C. (Il -2)
FIG. 4. C(a, n) versus density according to Eq. (3lb) for

surface-roughness scattering (a=0} and impurity scattering
(a= —1). The dashed and dotted lines are for one scattering
mechanism alone. The parameters are n; =2&(10' cm and

N~ ——2)(10"cm

and we conclude that for C(a i) & C(a2),

C(a„n) &C(a,n) &C(a2, n) .

This behavior for C(a, n) is shown in Fig. 4 for two
values of the surface-roughness parameter b A and

a~ ———1 and az ——0.

E. Lang-ranged surface-roughness scattering

Our analytical formula for the surface-roughness
scattering, Eq. (16), holds for kFA«1. For kFA» 1,
the scattering potential is long-ranged and the q integral
in Eq. (9) with Eq. (13) gives

'2
i z 1 XD= 3'fP 1+2 (33)

kFA A (F(2/A)[I —G(2/A)]+2/q, A)

Hence, for high density, n »ND, the mobility is given by p, 0: 1/n '/ as found before. ' In Fig. 5 we discuss p as a func-
tion of the density for various ND. In the density range used, a finite depletion density has a strong effect on the mobili-
ty. The peak structure comes from the last factor in Eq. (33) and is not a consequence of our approximative evaluation
of the integral. So we find the new result that the surface-roughness scattering alone is able to exhibit a peak structure in
the mobility, if kFA »1. Normally one argues that the interplay between impurity scattering and surface-roughness
scattering is responsible for the peak structure in the mobility. '

—k2A2
For I/hr, (eF, T) we get the same expression as in Eq. (19b), with an additional factor e . The temperature

dependence is determined by

gir»2 (E(2/A) [I —G(2/A )]+2/q, A )
C(O, n) = ln2C(n) (kFA) e

3 (E(2kF }[I G(2kF )]+2kF /—q, )

(34)

Because of the exponential factor, C(O, n) is strongly re-
duced for high density; the behavior of C(O, n) depends
strongly on the value of A, as shown in Fig. 6, and this ef-
fect should be useful to determine A in the region
kFA » l. But the experimental verification of that region
needs more experimental work with high-mobility saxn-

ples.

IV. DISCUSSION

In the following we compare our results with other
theoretical results obtained numerically and vrith experi-
ments in Si-MOS systems and heterostructures.

A. Comparison with theoretical results

In Ref. 5, numerical results for the "linear T depen-
dence" of the inverse mobility have been given for
n =2&(10' crn, n; =1&10" cm, ND ——3&10"
cm, 5=6 A, and A=13 A. Analogous results have
been reported later. ' Local field corrections have not
been taken into account and numerically calculated form
factors have been used in (Ref. 5}. From the figures of
Refs. 5 and 19 we receive the corresponding
C(a, n =2)&10' cm ) values of our theory, and these
values are shown in Table I together with our results.
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TABLE I. C(a, n =2X10' cm ) values extracted from the
theory of Refs. 5 and 19 in comparison with our results for
G(q) =0.

~ 0 ~ ~

C(o,', 2 &( 10' cm )

Impurity
Surface roughness
Both

Stern
(Ref. 5)

0.8
1.4
1.6

Lai and Ting
(Ref. 19)

-0.3 (-0.6)
2.7 (4. 1)
1.3 (1.8)

Present
work

1.7
2.2
2.1

n (1O"2cm )

FIG. 5. Mobility versus density for surface-roughness
scattering and various values of ND (b =2 A, A=120 A). The
solid lines are according to our analytical formula, Eq. (9) and
Eq. (13), the dotted lines are according to Eq. (33).

'2
0.82

C(n)
(35b)

must be fulfilled to see this linear T dependence. For
n =2X10' cm, see Table I, we get then from Eq. (35)
that T'=264 K in the case of surface-roughness scatter-
ing. Our values for C(a, n) are greater than those given
by Stern. The numerically calculated form factors of Ref.
5 could be the origin of this difference. But perhaps the

4,

From our Eq. (28) follows that a strict linear tempera-
ture behavior can only be found if D(a, n)(T/eF)'~
«C(n, n). With Eq. (29) we then conclude that

TQ(T

and (36)

was received numerically. From our Eq. (30) we get for
G(2kF)=0 for n =1X10' cm, 0.48 MeV instead of
0.34 MeV from Eq. (36) and for n=5X10' cm, 0.022
MeV instead of 0.016 MeV. The origin of this 30%
difference between our results and the results of Ref. 5
could be due to the numerically calculated form factors of
Ref. 5 in contrast to our analytical ones.

Our expression for

p, (T, ) —p, (T2)

p(T2)
T2 Tl 1C(a,n)

eF
'

1 C(a n)T2/eF—
(37)

is in good agreement with numerical results found recent-
ly for p(1 K) —p(4. 5 K)/p(4. 5 K) =N;i 2, 20 and the pre-
factor of this equation is specified by our Eq. (37). Again
we mention that Eq. (37) is only valid for
C(a, n)Tz/eF «1. The prefactor is in good agreement
with theoretical results. '

temperature range of the numerical results is overly large
to determine the coefficients C(a, n) in a correct way
from Refs. 5 and 19. But, in any case, it is not clear why
Stern gets for both scattering mechanisms a value greater
than for one scattering mechanism alone, in contradiction
to our Eq. (32). In Ref. 19 the Kubo-Greenwood formula
was used for cr and 1/0. The authors argue that the
difference in the T-dependent conductivity between these
two procedures should be a T effect. But from Fig. 1 of
Ref. 19 we get two different coefficients for C(a, n). The
values in brackets in Table I from Ref. 19 are due to the
Kubo-Greenwood formula for 1/a. We cannot reproduce
the great value for surface-roughness scattering found
there.

For impurity scattering with n; = 1)& 10' cm
XD ——1 X 10"cm, and T =4.5 K, the equation

—1.9

= (9.23 X 10 MeV)
2X10' cm

n (10"'cm-~)
FIG. 6. C(O, n) versus density for surface-roughness scatter-

ing and various values of A according to Eq. (34), but with
1/r(eF, T=0) according to Eq. (9) (A =2 A, ND ——0).

B. Comparison with experiments in Si-MOS systems ( T)

In Fig. 1 of Ref. 3, the temperature dependence of the
resistance has been found for two samples. The corre-
sponding values for C (a, n ) are 1.7 and 1.0 for
n =1.2~10'2 cm and 1.3X10' crn 2, respectively.
Detailed comparison with our theory is not possible be-
cause the density dependence of the conductivity is not
given and so the relevant scattering mechanism is un-
known.
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From Ref. 4 we extract from Fig. 3 the values C(a,
2.7X10" cm )=2.9, C(a, 3.9X10" cm )=2.7, and
C(a, 5. 1X10" cm z) =2.6. Our values for short-ranged
surface-roughness scattering, Eq. (29},are 2.9, 2.8, and 2.7
for the according densities. So our theory is in excellent
agreement with the experiment of Ref. 4.

Our Eq. (30) explains the experimental results for
b,cr(T) versus n of Ref. 3 in their Fig. 3, curve 2 for
n;=6)&10" crn and 6=0, and n;=4.8)(10" cm

for 6 =0.224. Experimentally, an oxide fixed charge

density of 8X10" cm was found. ' Essential for the

agreement is the density dependence of the form factors

F(2kF) and F;(2kF} in Eq. (26b}. Analogous experimen-

tal results of Ref. 21 can also be explained.

C. Comparison with experiments in Si-MOS systems ( T )

Anomalous temperature corrections to the conductivity
have been first reported by Cham and Wheeler. A T'~
behavior has been found, but prefactors have not been
given there. A T' behavior in low-mobility samples and
a Tz c behavior in high-mobility samples have been found
by the authors of Ref. 21. Our theoretical result for a
T ~ behavior is new and needs experimental verification.
Preliminary results of our theory have already been pub-
lished. But there the anomalous T dependences from
the energy dependence of the relaxation rate have been
neglected.

D. Experimental results from heterostructures

A negative coefficient for the temperature-dependent
conductivity was also found in GaAs-A1, Gai As
heterostructures. ' ' There m' =0.076mo, g„=1, and
er ——12.9. The corresponding values for C(a, n} are given
in Table II. Unfortunately the temperature-dependent
part of the energy relaxation time in this structure is in
the same order of magnitude as the temperature-
dependent part of the momentum relaxation time, ' and
the experimental results are not conclusive for a deter-
mination of C(a, n) For in.ore experimental data see Ref.
25.

V. CONCLUSION

%e discussed the low-temperature-dependent conduc-
tivity of the two-dimensional electron gas in the presence

TABLE II. C(a, n) values from experimental results in Refs.
18 and 24. The theoretical value C(n), Eq. {26b), for G(q)=0
and I' (q) = 1 is also given.

1.27)(10" cm
1.89y10" cm
2.66/10" cm

C(a, n)

0.44
1.31
0.12

C(n)

0.56
0.51
0.46

Ref.

24
24
18

T+ Pln (38)

p is a sum of two coefficients due to weak localization
and interaction, depending on the nature of the inelastic
scattering process and on a screening function. Multiple
scattering effects also modify the compressibility. Ac-
cordingly, o(0} and C(a, n) are modified by multiple
scattering effects."
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of charged impurity scattering and surface-roughness
scattering. New analytical results are obtained for the
zero-temperature conductivity and for the conductivity
correction up to T . VA.en one scattering mechanism is
dominant, then the anomalous linear temperature depen-
dence shows a universal behavior with characteristic den-
sity dependence. The possibility of long-ranged surface-
roughness scattering is pointed out.

Including corrections due to weak localizationz and in-
teraction anomalies, the low-temperature-dependent con-
ductivity is given as

o( T)=cr(0) 1 C(a—, n) D(a, n—)
T T
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