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Theory of cyclotron-resonance line shape for an electron-phonon system
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Formulas for the linewidth and line shift associated with cyclotron-resonance power-absorption
spectral lines are obtained for an electron-phonon system from a self-consistent equation for a self-

energy in the case of weak incoherent and strong coherent scattering limits by using the resolvent su-

peroperator method.

I. INTRODUCTION

In 1955, Dresselhaus et al. ' observed cyclotron reso-
nance in germanium. Since then many experimentsz'3
have been carried out to study electronic band structure;
the position of the absorption peak gives the value of the
effective mass of conduction electrons. However, in re-
cent years special attention has been paid to the study of
the shape of a cyclotron-resonance power-absorption
line. ' The shape of the line and/or the linewidth and
hne shift, and their dependence on temperature and mag-
netic field strength, depend sensitively on the detailed na-
ture of the scattering mechanisms for the charge carriers
in solids. Thus, they provide a useful probe for these in-
teractions.

A great number of experimental studies have been done
on elemental and other semiconductors, and the experi-
mental results have been analyzed by semiclassical
theory" or by a more sophisticated theory' utihzing
Green-function methods, ' ' diagram methods, ' ' or
projection-operator methods. 's' s 2 Among these
theories, Kubo formalism2s 2 combined with the
projection-operator method introduced by Mori3o and by
Argyres and Sigel, 's and with the diagram method of
Lodder and Fujita, "appears to be very rigorous and for-
mal. Kawabata' adopted Mori's method and derived the
formula for the cyclotron-resonance power-absorption line
shape (CRLS) for an electron-phonon as well as an
electron-impurity system. However, his theory is limited
to the incoherent elastic scatterings and therefore cannot
be applicable for the strong-interaction case. Argyres and
Sigel'6 developed a theory with the use of a similar
projection-operator technique and they claimed that the
perturbative expansions used in the theories of Kawaba-
ta' and of Lodder and Fujita' are not valid at the peaks
of the absorption lines. Recently, Choi and co-
workers' 22 developed a general theory of the CRLS for
an electron-phonon system by applying Kawabata's ap-
proach utihzing the projection operator and they obtained
a formula for a CRI.S, including the one-phonon inelastic
scattering processes. But their theory is hmited to in-
coherent weak scatterings. In their theory the assert that
the theories of Kawabata' and of Lodder and Fujita' are
valid at the peaks of the absorption lines, in contradiction
to that of Argyres and Sigel. ' The origin of the
discrepancy among these theories may be traced back to

the point where the perturbative expansion is performed
in different ways.

In this paper we will utilize a different approach to per-
turbative expansion, s which is developed for an evalua-

tion of the frequency-dependent conductivity of a strongly
interacting electron-phonon system, and will show a de-

tailed derivation of the formulas for the linewidth and line
shift associated with the cyclotron-resonance transition.
This method is much simpler and more direct. Formulas
are obtained for a strongly interacting coherent, and a
weakly interacting incoherent, scattering ease in which
one-phonon inelastic scattering processes are included.
The conductivity is calculated for a system of free elec-
trons interacting with phonons from Kubo's current
correlation integral formula29 and hence the effects of
coherent and incoherent scatterings by phonons can be, in
principle, included. We employ a factorization approxi-
mation for the equilibrium statistical operator as a grand
canonical distribution for the electrons, whereas we em-

ploy the canonical distribution for phonons. Then, we can
express the conductivity as in Eq. (2.14). Thus, any col-
lision process between an electron and phonons is assumed
to take place in the average field of phonons. The effect
of such a field is to induce perturbed single-particle ener-

gies and to introduce lifetimes for the electron states. The
lifetime broadening due to the interaction is responsible
for the spectral broadening of line shapes, as will be
shown in Sec. III.

In Sec. II the general formula for the frequency-
dependent conductivity of an electron-phonon system is

given in terms of a simpler effective one-electron resolvent

9P, . This depends on the self-energy superoperator p,
which is defined at the outset. We will discuss the con-
ductivity for the case of the cyclotron-resonance problems
in Sec. III. In Sec. IV the general expression for the
temperature-dependent self-energy, which induces the line
broadening and line shift in the CRLS, is given. Formu-
las to give the linewidth and line shift associated with the
cyclotron-resonance transition are explicitly given under

proper approximations being made. In the Appendix the
derivation of a self-consistent equation for a self-energy is
given for a general case.

II. FORMULATION OF THE PROBLEM
(FORMAL PRELIMINARIES)

The average power absorbed by the electrons when
driven by a circularly polarized electric field E(t) of fre-
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quency co is given by'

P(co) = —,'EiRe[o~ (co)]

The Hamiltonian ho of a free electron is then expressed

y

,'E—'Rea0 (co)+cT~(co)+c [c7~(co) —o'~ (co)]],
ho(r, p) =[p„+(p„+mco, x) +p, ]/2m, (2.11)

xJ+(t)],

J+ ——J„+iJy .

(2.2)

(2.3)

Here, 0 is the volume of the system, 5 is a positive num-
ber, P=(ks T) ' is the reciprocal temperature, J+ are the
transverse components of the total current operator in the
many-body formalism, J(t} is the time-dependent total
current operator in the Heisenberg picture, and p is the
grand canonical density operator:

e P(gN H)/Tr(e P g—N H))—
where g is the chemical potential, N is the electron num-
ber operator, and H is the Hamiltonian of the system.

We consider an electron-phonon system subject to the
static magnetic field 8 [perpendicular to E(t)] taken in
the z axis. The time-independent Hamiltonian H of the
system of free electrons interacting with phonons is

H = gh(ri, pI)+Hph,
I

(2.5)

(2.1)

where E is the total electric field strength; Re[cT,J(co}] is
the real part of the complex conductivity tensor. Each
element of o;J(co), (i,j =x,y,z), is obtained by Kubo's
current correlation integral formula and cr+ (co) can be
expressed as

o (co)= hm 0 ' die+—
O5~0+

P
)( )Tr

and its energy eigenvalues E~ and eigenstates
~A, )=

~
n, k) are specified by the oscillator quantum

number (Landau-level index) n =0, 1,2, . . . and a wave
vector k=(O, k„,k, ) and are, respectively, given by

Ei =E„(k,)=(n+ —, )Ace, +A k, /2m

(n—+ —,
'

)fico, +e(k, ), (2.12)

i' lim —0 'tr[(~, M }j+],
s o+

where

~, —= (Ao+pg —z)

(2.14)

(2.15)

=(L~L, )
'~ g„(x+fik„/mco, )exp(ik r) . (2.13)

Here, lb„(x+fik„/mco, ) are the eigenfunctions of a sim-

ple harmonic oscillator of frequency co,:eB/m—, the cy-
clotron frequency, centered at haik~/r—nco, ; L„and L, are
the y- and z-directional normalization lengths. We see
from Eq. (2.12} that the motion of the electron is quan-
tized in the x-y plane and that it is quasicontinuous in the
z direction. The energy levels form a series of one-
dimensional subbands (Landau levels).

Recently, Suzuki and Dunn developed a resolvent su-
peroperator method to evaluate the conductivity tensor
cr,j(co},suitable for a strongly interacting electron-phonon
system, starting from Kubo's formula. Applying the
method for the electron-phonon system defined by Eqs.
(2.5)—(2.9), we can immediately write o+ (co) in the
single-electron expression

cr+ (co) = i' lim 0 —'tr[% (z)j+ ]
g~o+

h (r, p) =ho(r, p)+rl V(r),

ho ——[p+eA(r)] /2m,

V= g[yq(r)bq+yq(r)bq],

(2.6)

(2.7)

(2.8) J+ =JX+Vy s (2.18)

M —= lim [(n )~h+ ((p, rIP )9P,n )—ph], (2.16)
a~0 u

(2.17)

Hph
——P (bqbq+ —,

'
}Acoq,

q

(2.9)

where I in Eq. (2.5) denotes the single-electron index, bq
(bq) is the annihilation (creation) operator for a phonon
of wave vector q and energy iricoq, yq(r) describes the in-
teraction of the electron and phonon and is of the form
Cqexp(iq. r), where Cq depends on the type of interaction,
r and p are, respectively, the position and momentum of a
conduction electron with an effective mass m, A is a vec-
tor potential which gives rise to the static field 8, and i) is
a parameter to indicate the order in the expansion, which
is set equal to 1 later on.

It is convenient to use the Landau gauge for the vector
potential

z—:—i'(co —i5) . (2.19)

9F, =(So+A ph+p, —z) (2.22)

Here, n is the Fermi operator, u is a classical number,
and j+ are the transverse components of the one-electron
current operators. The resolvent superoperator A', and
the self-energy superoperator p, are, respectively, defined
by

(2.20)

(2.21)

and can be expressed in terms of an infinite series of the
effective one-electron resolvent superoperator 9F, defined
by

A(r) =(0,8x,O) . (2.10) See Eqs. (2.29) and (2.30) of Ref. 28 for details. It is not-
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ed that the many-particle trace (Tr) in Eq. (2.2} is reduced
to a single-particle trace (denoted by tr} in Eq. (2.14). We
should emphasize that these series expansions for 9F, and

p, are not the conventional perturbation expansions and
that, in general, we expect the convergence to be quite ra-
pid, even for strongly interacting systems. The reason for
this is that the effects of the interaction are included in
9F, . This also has the effect that the term-by-term diver-
gences experienced in the usual perturbation theory are
circumvented. It is noted that a script letter denotes a su-
peroperator which generates a commutator upon acting
on an ordinary quantum operator, such that

operator p. It should be noted that the expressions
(2.14)—(2.22) are independent of the single-particle repre-
sentation and hence can be applied to a system subjected
to a static magnetic field.

III. GENERAL DISCUSSION OF o+ (cu)

Let us first consider the system of free electrons (il =0).
Then, the formula (2.14) reduces to

o'+' (oi)= ih—lim Q 'tr['k' '(z)j+]
$~0+

MB = [A,B]—=AB —BA, (2.23) i' li—m Q 'tr[(,' 'M' ')j ],
5~0+

(3.1)

and that the angular brackets (A )~h denote the averaging
of A over the phonon states:

( A )~h
——Tr'~"'(p~hA ), (2.24)

where

where

~ =(Ao —z}(0)

M' ':—lim (n' ')ph,
a

g~0 Q

(3.2)

(3.3)

Ph ~r(Ph)(e ~+Ph
) (2.25) „~oi (

@io-~J -&~+1) i (3A)

Equation (2.14} is exact in the thermodynamic limit other
than the assumption, zs s' which is justified for the density

In the Landau representation given by Eq. (2.13), we can
express Eq. (3.1) as

o+ (co}= i' lim Q —'gg (A~ ~,' 'M' '~ Ai)(Az[J+
~
Ai)

o+

=e(2fjco jtn)'~ Q lim g(ni+1) (Ai ~M'"
~
&i+1)

~0+ c0—oi& —i 5
(3.5)

As expected, this expression indicates the divergence at
the cyclotron frequency co=oi, . The origin of the diver-
gence can be traced without further calculation: it is the
energy denominator (~,' '} '=So—z, which is responsible.
In the following, we shall adopt the notation ( A, +1) to
indicate the state

~

n+ 1,k) if
~

A, ) =
~
n, k) in the Landau

representation.
When electrons are interacting with phonons the quan-

tity cr+ (co) is expressed as in Eq. (2.14). One point of
difference with Eq. (2.14) is that the energy denominator
(~,' ') '=A'o —z is changed to (~, ) '=A'o+p, —z. As
we shall see later, the general effect of p, is the elimina-
tion of the divergence near co=co, . In other words, the
self-energy superoperator p, introduces the resonance
broadening and the energy shift. Another marked differ-
ence as compared to Eq. (3.1) is the appearance of the
term ((p, g&)9F,n )p—h which depends on z (i.e., oi)
and which may diverge at co=os, . However, this term
which originates in the inclusion of the interaction term in
p, contains the energy denominator (9P, ) '=Ao+4 ~h'
+p, —z [see Eq. g.31) in Ref. 28]. Because of the pres-
ence of A ~h, this term is unlikely to produce any reso-
nancelike terms. The magnitude of resonance maximum
surely depends on the operator n and
((p, —ilP )9P, )n~h. As discussed above, the resonance
line broadening (shape} essentially depends on the
behavior of the energy denominator (~, ) '=So+@,—z.

where ~, and M' ' are, respectively, given by Eqs. (2.15)
and (3.3). Therefore, the resonance behavior of the
dynamic conductivity is mainly governed by the operator
4 (z) defined by

or

(z)=—,M' '=(A +p, —z) 'M' '

(Ao+p, —z)% (z)=M' ' .

(3.7)

(3.8)

Taking the (A, i,kz}th matrix element of both sides of the
above equation, we obtain

Therefore, we may drop ((p, rl&)~—,n )~h and ap-
proximate n ~n' ' given by Eq. (3.4). Equation (2.14) is
then given by

o+ (oi}= iRlimQ—'tr[(~, M' ')j+]
$~0

i% lim—Q ' g g (A, ~ ~

4 (z)
~
kz)

5~0+ A, , kz

(3.6)
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(Ei E—]„—z)(k]1%' (z)
I
A2)+(A]

I p 'p (z)
I
A2)

where (A] I

~'-"
I X2) is given by

(3.10)

(3.11)

Here, f(E) denotes the Fermi-Dirac distribution function.
Therefore, the matrix elements of the operator ]p (z) can
be evaluated after an appropriate approximation has been
made for the collision term p, %(z). Let us postulate that

(A] lying I (z)
I
A2) = —fi (co,co~;A]'.A2)(g]

I

'P (z)
I
gz),
(3.12)

where f't=(co, co„A,] k,z) .is the complex self-energy associat-
ed with the transition between states

I
A.]) and

I
A.z).

Once we obtain a form (3.12), we can formally express the
complex conductivity tensor (3.6) as

[f«i., )—f«~, )] I &)I]
Ij

o+ (co)=i%' lim 0
s~o+ i i (Ei, ,

—Ei,, )[Ei Ei —f']=(c—o,co„'A, ] A2) z. ] '— (3.13)

where we have used Eqs. (3.10), (3.11), (3.12), and the rela-
tion

&~]
Ij+ I)]z& =[(~a

I j I
~]&]'

=ie [2fico, (n]+ 1)/rn]'~25i, i,+] . (3.14)

The real and imaginary part of:"(co,co„A,].A2), namely,

=(co,cog/ A, ] Az): 6(c.oico—, y A, ] Az)+i I.( coicog IA, ].kz), (3.15)

IV. THE SELF-CONSISTENT EQUATION FOR
THE SECOND-ORDER SELF-ENERGY

Let us consider the collision term (A, ] I p, +
I

A,2),
which essentially determines resonance line shape. Hence,
hereafter we call this term the cyclotron-resonance line-

defines the line shift and line]]]idth, respectively, for the
electronic transition between states

I
A, ] ) and

I

A,2) .
Clearly, we need a close look at the term
(A, ] I p, %' (z)

I A2), which yields the equation for the
self-energy f]( ,cocoA, A])z, as will be shown in the next
section. See also the Appendix.

where the effective one-electron resolvent superoperators
is given by

9F, =(A'0+4 ph
—8, —z) (4.2)

For cyclotron resonance we only need the matrix element
(A, ] I

]p (z)
I

A, ]+1)because of the factor

&~2 lj+ I
~] &=[&~]

Ij 14&1'-
=ie(2flco, nz/m)' 5],, ]„,+]

appearing in conductivity tensor (3.6). Therefore, using
Eqs. (4.1) and (4.2) and applying ]p from the right on
both sides of Eq. (3.20) of Ref. 28, we obtain the CRLSF

( A ] I pg ]p (z)
I

A, ]+1)

in the Landau representation as follows:

shape function (CRLSF). We consider only the second-
order renormalized self-energy superoperator

(4.1)

(~l
I rq14& &41+-«) 1~4&&~41 rq I ~]+1&]

X [Ei, E]„, f]co, + ftcoq ——bg ( A3, A]+ 1—) —z], .

+[&)I]
I

p (z)14&&41r, 14+»&)]3+1
I r,'I) ]+»

—&~] I rq14&&41'p-«)14+1& &4+11)'ql ~]+»]

X [Ei, Ei, fico, —]5coq —b,—(A—, ],A.3+ 1)—z]
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+g' g g g &q I [(~i I yq I ~i & & 4 I r q I 4& & ~41'P-(z} I
~ +1&

—
& ~i

I ),' I 4& & 41q'-«}14&& ~4 I r, I ~1+1&]

X [Ei, Ei —fico,——Acoq —b, (A,i, A, , + 1)—z]

+ [&~i I
q'-(z}14&& ~4

I rq I ~i+» &4+ 1
I rq I

~i+»

—&~i I
rq'I 4&&4 I

'P (z}14+1&&4+11)q I
~i+1&]

X [Ei Ei fu—u,—+iricoq —b, (A, i, A i+1)—z] (4.3)

where

Xq =Tr'&"'(p„„btb, )=(e~ (4.4)

It should b not~ that the matrix elements of 8, in the energy denominators, which are responsible for the higher order
eff~ts of the interactions, are approximat~ by tak ng the diagonal pa~s of 8,. Let us ca~ out the A,4 summation. Al
though there are many terms arising from the A4 summation, we keep only the dominant terms. Such dominant terms
are de«rmined by the following rough estimation: let us consider the first term of Eq. (4.3). From Eqs. (3.1()), (3.11),
and (3.14), we see

&&4~4 (z) ~A, , +1&-&A4~M"'~X, +1&y(E, E, „
That » & ~41'p-(»

I
~i+1& contributes resonantly only when A4

—
A, i. By making a similar estimation for other terms,

we can pick out the most dominant terms from the A,4 summation and we obtain the CRLSF as

&~i I ~.'p-(»
I
~i+1&=i)'2 X(&q+1)t( j &1(i

I rq I 4& I

'—
& ~i

I }'q I 4& &4+11)q I
~i+1&@)

X [Ei., —Ei, Ra), +—iricoq —b, (i, Ai, , + 1)—z]

+( I &~i+11 rq I 4+1& I

'—&~i
I 7 q I 4& &4+11)q I

~i+1&~')

X[Ei., Ei., R—co, —ficoq b, (Ai—,hi+1—) —z] 'j &Xi
~

4 (z} ( Xi+1&

+i)'2 X&qr( I &~i I)'qI ~~& I

'—&~i I }'ql ~3&&~3+iI 7'ql ~i+1&~'}

X [Ei,, —Ei, , %co, ——iricoq —b, (A, iq, +i1)—z]

+( I &~i+1
I rq I

4+1& I

'—&~i I yq I
~i & &4+1 I rq ~

~i+1&@)

X[Ei., —Ei,, —iisu, +~q —b, (&,&&+1)—z]-'j&A, , ~

0 (z)
~

A, , +1&

=A'=' '( , cokcoi..Xi+1)&Ai i
4 (z) i 1(i+1&, (4.6)

where

&4l'P ( )(4+1& i, — i,+i —~-" ~~„'~i'~i+1}— &a ~m '(X+1&
&~i I'p-(z}

I
~i+» Ei,, —E,,+, —X=-'"(~,~, ;Xi,A3+1}—z &gi )M' '

~
pi+1&

(4.7)

~e have used Eqs. (3.10) and (3.12) to obtain Eq. (4.7). Here the second-order renormalized self-energy fi='z' is defined
as in Eq. (3.12). It is interesting to note that if we neglect the term with cross-matrix elements and b s in the energy
denominators, Eq. (4.6) tends to the usual expression which arises in the transition rate calculation within the Born ap-
proximation. However, this approximation (only the diagonal part of b is taken) cannot be justified since the contribu-
tion from the cross-matrix elements, which arise from the nondiagonal part of b, is neglected. Hence, even for a wealdy
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interacting system, this approximation is not valid. To obtain reliable information it is necessary to take into account the
effects arising froin the terms with the cross-matrix elements. These cross-matrix elements are the so-called "vertex
correction" terms which have either been missed or neglected by earlier workers. ' In the following evaluations we

keep these terms, together with b s in the energy denominators, to take into account the higher effects of the interaction.
Therefore, the result obtained can be applicable to the strongly interacting system. Noting that

bg(A, i, k, i+1)=A:- (co,co„A,p.k,(+1},
etc., we obtain the exact self-consistent equation for complex self-energy associated with cyclotron-resonance transition:

&=-"'(~~„~i:~i+1)=n'g g (&q+1)(I I & ~i I r, I
}i& I

'—
& ~i

I r, I 4& &4+1 I r,' I
~i+»

A3

X [(n, +1)/(n, + I )]'~8I /[E„—E„—a,+f,—e=-"(~,~, ;}(,,:X,+1)—z]

+ I I &~i+1Ir, I 4+» I' —&} i Ir, I4&&4+1Ir,'I ~i+»

X[(ni+1)/(ni+1)]' 8I/[Ei„Ei, fi—co, A—co—
q

fi""(c—o,co, ; A, i Ai+ 1}..—z] }

+~'2 X&q( I I & ~i I r,' I 4 & I

'—«i I rq1~3 & & ~3+1
I rq I ~i+»

X [(ni+I)/(n i+1)]' 8J/[Ei, Ei„, fico—, R—coq—

—'5 (co,co~ , Ap,'A, i'+ 1)—z]

+ t I &~i+1I rq I
~&+1& I &~i

I rqI 4& &4+1I rqI ~i+1&

X [(ni+1)/(n i+1)]'/ 8j /[Ei.,
Ei„ftco—,+Acoq—

fi="(co,co„—'A, ~.Ai+ 1)—z]}, (4.8)

where 8 is given by

f(Ei, ) —f(Ei,, +ft .) Rco, +R=-"'(~,~, ;A, :A, +1,)+,z

f (Et,, ) —f(Ei,, +~, ) Ra), +fi="'(co,co, ;Xi.Xi+1)+z
(4.9)

and use has been made of Eqs. (3.11), (3.14), and (4.7).
Lodder and Fujita obtained a similar expression of self-energy associated with cyclotron-resonance transition by us-

ing a diagram approach. More recently, Ryu and Choi 2 obtained the expression by applying Kawabata's approach'
which is based on the Kubo formalism and the Mori method of calculation. In fact, if we set 8=1 and neglect the
higher-order effect of the interaction, i.e., ",in the energy denominators, Eq. (4.8} reduces to that of Lodder and Fujita
[Eq. (6.11)] (Ref. 15) and Ryu and Choi [Eq. (4.6)] (Ref. 22); if we further neglect the phonon energy ficoq and set co =co„
our result leads to Eqs. (3.13) and (3.14) of Kawabata. ' Neglecting the terms with 8 corresponds to the approximation
made by Shin et ctl. ,

' although their theory is made for an electron-impurity system. It should be noted that Eq. (4.8) is
not limited to a weakly interacting system, unlike other theories.

Upon substituting the interaction operator and making use of the Landau state given by Eq. (2.13), Eq. (4.8}can be ex-
pressed in a more convenient form:

A:-"'(co,co„ni,ki.ni+1,ki)=i)'g(Nq+1)
I Cq I

' g (I&)(ni, ni, t) —[(ni+1)/(ni+1)]' '&i(ni, n3yt)8j
q n3 ——0

X [E„,(k i, q, ) E„(k),)+ftc—oq R—a), —

fi= (co,co„ni,k—, —q:ni+ l, k&) —z]
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+ [Ki(n i+ l,ni+ l, t)—[(n3+1)/(n i+1)]' Kz(ni, n&, t)8)

X[E„,(ki ) —E„,(ki, —q, ) —ficoq —fico,

fi:-—(co,co, ;ni, ki..ni+1,ki —q) —z) ')

+rt QNq i Cq i g (IEi(ni, n3, t) —[(n3+1)/(n i+1)]' Kz(ni, n&, t)8I
q n3-—0

x [E„,(ki, q, ) —E„,(—ki, ) ficus'
——fico,

ft:- (—co,co„'n3, ki —q:n i+ l, k i ) —z]

+ I Ki(n i+1,n i+1,t) —[(ni+1)/(ni+1)j' Ki(ni, ni, t)61

)& [E„(k»)—E„(ki, q, )+fic—oq fico, —

fi= (co,—co„'ni, ki.ni+ l, k, —q) —z] '}, (4.10)

where we have carried the summation over the ki state,
and Ki and K2 are, respectively, given by

Ki(n, n', t) =—(n!/n'!)t" "e '[L„" "(t)]

Kz(n, n', t) =&n!/n'!&(n +1)!/(n'+1)!t"
iLn ll(t)L5 n(t)

Here, L„(t) is the associated Laguerre polynomial

(4.11)

(4.12)

fico, +R:-' '(co, co, ;ni, ki ni+ l, ki)..—z
X

i}lcu, +A'= (cu, co, ;ni, k& —q:n&+ l, ki —q) —z

(4.15)

L~(t) exp t
t —m d [tn+m ( t)]n!

and t is defined by

t:(q +qy )—R/2rnco, .

8 is given by

(4.13)

(4.14)

Disregarding = and fico& in the energy denominators of
Eq. (4.10), we can see that those terms with ni n, in th——e
n3 summation contribute resonantly for small q, . This
approximate diagonality with respect to the oscillator
quantum number can be considered as good at high-
resonance frequency. ' Therefore, we may write Eq.
(4.10) as

f't:-' '(co,co„n,k:n + l,k) =rl g (Xq+1)
~ C~ ~

[[Ki(n,n, t) —Kz(n, n, t)6][e(k, q, ) s(k, )+fico—q fic—o, —

fi: (co,c—o„n-,k —q:n'+1,k) —zj

+[Ki(n+1,n+1, t) —K(zn, nt) 6][e( k) e(k, q, ) ficoq —fico, — — —

fi:- (co,co, ;n, k—:n+1,k —q}—z] '}

+i}i+Nq
~ Cq i [[K&(n,n, t) —K2(n, n, t)6][e(k,—q, }—e(k, ) —ficoq —fico,

q

fi="(co,co„'n, k —q—:n + 1,k) —z]

+ [K,(n + l, n + l, t) —Kz(n, n, t)6]

&&[a(k, ) e(k, q, )+fico, fic—o, fi:—~(cu, co„—n, k—:n+ l, k'q) —z] 'I—
(4.16)



33

where

%co, +k:-( '(co, co, ;n, k:n + l, k) —z

fico, +R:"( '(co, co, ;n, k —q:n + l, k —q) —z
(4.17)

Equation (4.16) with Eq. (4.17) forms the basis for further evaluation of self-energy associated with the cyclotron-
resonance transition A ~A, + l. In a cruder approximation both:"~(co,co„n,.k —q:n + l,k) and:-~(co, co„n,k:n + l, k —q)
may be replaced by =' '(co, co, ;n, k:n+ 1,k), noting that the most dominant terms, which contribute resonantly, are
characterized by small q. Then we can obtain the approximated self-consistent equation for =(z'(co, co„n,k:n + 1,k}:

A':"' '= $(Nq+1)
~ Cq ~

I[K((n,n, t) —K2(n, n, t)][«k, —q, )—«k, )+ficoq —fico, —A:"' ' —z]

+[Ki(n + l,n + l, t) —Kz(n, n, t)] [s(k, ) e(k,—q, ) —%co~—fico,——4:-( ' —z)
—'I

+ QNq ~ Cq I
'I [K&(n n t) —K2(n, n, t)][«k, —q, ) —«k, ) —%co~—Aa), —fi="'—z]

+[K((n+ 1,n+ l, t) K—&(n, n, t)][«k, ) e(—k, q,—)+%co fico ——R:-' ' —z] (4.18)

where the Ki and Kz functions are, respectively, given by Eqs. (4.11) and (4.12). Solving Eq. (4.18) for " self-
consistently, we can determine the Hnewidth and lineshift associated with resonance transition A, &~A,2

——A, i + 1 by mak-
ing use of Eq. (3.15). In practice, since for weak coupling we are only interested in frequencies which satisfy
co —co, «co„ the higher-order dressed expressions for the self-energy (4.18} will be an order of magnitude smaller than
the undressed self-energy. Therefore, we may drop " in the energy denominators. In this case we obtain the equation
for the linewidth f'(co, co, ;n, k, :n + l, k, ) as

Im='2'(co, co, ,n, k, :n '+ l, k, )= I'(co, co, ;—n, k, :n + l, k, )

=—g (Nq+1) I Cq I
'I [Ki(n n t}—Kz(n n t)]5(«k. —q. )—«k. )+~g—fico. +~)

+[Ki'(n + l, n + l, t)—K(inn, t)]

X5(«k, —q, )—«k, )+Rcoq+Aco, —%co) I

+—
AN& ~ Cz ~ [IK&( n, nt) —K(zn, n, t)] 5(«k, q, ) «—k, ) —Acoz —iii,co—+fic)o"q

+[Ki(n + l,n + l, t) —K(inn, t)]

)(5(«k, q, ) «k, ) —Acus—+%co,——fico) ], (4.19)

from which we can calculate the shift h(co, co, ;n, k, :n + l, k, ) as

(z) I I (co qcoq~n)kg'n + l~kz)Re" (co,co, ;n, k, :n + l, k, ) =lL(co,co, ;n, kg.n + l, k, )=—P 6fco
CO —N

(4.20}

where I is given by Eq. (4.19). To obtain Eqs. (4.19) and (4.20), we have used the Dirac identity

1 1
lim =P —+i@5(x),

p+ x+l5 x
(4.21)

where P denotes Cauchy's principle-value integral.
For strong coupling, i.e., co —co, &co„ the higher-order dressed expressions for the self-energy may become the same

order of magnitude as the undressed self-energy. Therefore, we cannot neglect " in the energy denominators. We have
to solve the foBowing coupled equations for I (co,co, ;n, k, :n + l,k, ) and h(co, co„n,k, :n + l, k, ):



33 THEORY OF CYCLOTRON-RESONANCE LINE SHAPE FOR AN. . . 1055

[K,(n„n, t) —Ki(n, n, t)]I
[e(k, q—, ) e—(k, )+Pi(toq —to, +co —6)]'+A'21'

[K (n + l, n + l, t) K—2(n, n, t)]l
[e(k, q,—) e(—k, )+A(toq+to, —to+5)]i+Pi I z

[Ki(n, n, t) —Ki(n, n, t)]I+ &q I Cq I

'
q [e(k, —q, ) —e(k, ) —iit'(toq+to, —co+6, )] +irt I

[Ki(n + l, n + l, t) —Ki(n, n, t)]I
[e(k, q, ) —e(k,—) fi(co—

q to, +—to b, ) ]z—+fP I 2

z [K&(n,n, t) Kz—(n, n, t)][@(k,—q, ) —e(k, )+A(toq+to, to+6—.)]
Rb = (Nq+1)

~ Cq ~

[e(k —q, ) —e(k, )+R(coq+to, —co+6, )] +Pi I

[K,(n+ 1,n+ 1,t) —Kq(n, n, t)][a(k, q,—) e(—k, )+Pi(toq+to, to—+5)]
[&(k, q, ) e(k—,)+f—i(to +to, co+6, )]2—+Pi I 2

[K&(n,n, t) —K2(n, n, t}][@(k,—q, ) —e(k, ) R(to—q+to, to+6—)]+ Nq/Cqi
[&(k, q, ) —e(k, )—fi(toq—+to, to+ h)]i+—fi I

[K,(n + l, n + l, t) —Kz(n, n, t)][@(k,—q, ) e(k,—)+A(toq+to, co+5—)]
[e(k, q, ) e(k,—) fi—(coq to,—+to ——b, )] +Pi I

(4.22)

(4.23)

In terms of I and b calculated from Eqs. (4.19) and (4.20) for a weak coupling or Eqs. (4.22) and (4.23) for a strong cou-
pling, we can express Re[o+ (co)] as

2e2 OQ

Re[o ~ (co)]= g g (n +1)[f(E„)—f(E„+i)]
k a=0

I (to, to, ;n, k, :n+ l, k, )

[to —to —Q( t,ohio; ,nk: n+ l, kg )] + [I (co,cog', n, kg'. n + l, kg )]
(4.24)

where we have used Eqs. (3.13)—(3.15). Equation (4.24) is
the formula for the power-absorption spectral line shape
due to the cyclotron-resonance transition n ~n +1.

Utilizing the formulas obtained above along with the
specific interaction potential form of Cq, we can evaluate
experimentally measurable quantities, the linewidth and
line shift, by calculating I' and b„respectively, and hence
the spectral line shape associated saith cyclotron-
resonance transition. Application of the present theory to
specific problems is plann& to be reported in future pub-
lications.

= (A, , ~
M,

~

A,, ) . (Al)

In the above expression, the collision (self-energy) opera-
tor, which is a function of superoperators, is not in gen-
eral diagonal. Therefore, an exact solution of Eq. (A 1) for
(A, , ~

%,(z)
~

A,2) is not feasible, but we would like to have
its solution of the form
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APPENDIX: DERIVATION OF A SELF-
CONSISTENT EQUATION FOR SELF-ENERGY

To obtain the complex conductivity cr (z), we have to
solve the quantuin Boltzmann-like equation of the form
[cf. Eq. (3.10)]

[Ei.) Ei.~ ~ (oi~~ci~1'~2) —z] '&~i
I
M.

I
~z)

(A2}

by postulating the following form [cf. Eq. (3.12)]:

(A. i
~
@gag(z)

~
Ai) —= fi=(co,co, A—i X2)(A.i ~

%. , (z. )
~
A2) .

(A3}
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Equation (A3) defines the self-energy tti:-(co, co, ;A, t.kz) as-
sociated with the transition between the electron states

~

A, t & and
~

A,2& due to collisions. Our problem is now to
find the algebraic equation for =, assuming that the solu-
tion of Eq. (Al) is given by the form (A2); that is, instead
of solving Eq. (Al) for & A, t ~

0', (z)
~

A2&, we would hke to
obtain the equation for = and then solve the resultant
equation for =. We introduce a tetradic notation for ex-
pressing the matrix elements of a superoperator since p,
is a function of superoperators.

Let us write the collision term of Eq. (Al) as a sum of
its diagonal and nondiagonal parts:

& A, , ( p, ill, (z)
~

A,, &
= y y $,„, ,„,„,& K,

~

tP, (z)
~

lt., &

KI K2

=pR. ,i,:t,i.,&~t
I
q's(»

I ~z&

+ gg p.~,i,:.. .&&t
I
'p. (»

1
&2&

Kl K2

{~A,I,A~)

(A4)

where
~

A, & and ~a. & are the eigenstates of ho. By making
use of Eq. (A2), we can write the nondiagonal part of Eq.
(A4) as

gg p, ttti, „t„,&at ~%,(z)
~

a'z&= g g p,~ i. .«{Ea. E„—A:—(co-,co, ;at a2') . z)—'&ai
~
M,

~
a2&

K2 K) K2

(~A, ),A2) (~A, ),A, 2)

(Ei, —Ei, —A':-(a), c0, ;A, t.A,2) —z) &tr, ~M ~~ &

&A, t ~
%,(z)

~

A,2& .' ' '"'"' {E —E
K) K2

(+A.),A.2)

(A5)

F«m Eqs. (A I), (A4), and (A5), we can write the solution of Eq. (A I) in terms of =.

&
&~ (M )~ &

—z &~t l~s lh&. (A6)

By comparing Eq. (A2) with Eq. (A6), we find the self-consistent equation foi =:

(Ei,, Ei„'II (co,co—; A, t'.A—g) —z)
& &

~

MC s,co;A, :A, —&=(
K) K2 K1 K2 NsNC ~K1'K2 Z

{~A,),A2)

(A7)

Instead of solving Eq. (Al) for &At I
q's«) I)tz&, our problem is reduced to solving Eq. (A7) for = self-consistently.

Equation (A7) is the desired self-consistent equation for = in the general case.
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