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By starting from realistic band structures of the constituent materials, the electronic structure of
Si„oel „alloys are obtained in the coherent-potential approximation (CPA}. Various quantities, in-

cluding the bowing parameter of the fundamental band gap and the energies of several optical gaps,
the masses, and the linewidths of the Eo and El transitions, are calculated on the basis of both diag-

onal and off-diagonal CPA. All of the band-energy and linewidth predictions are in good agreement

with experiments. Furthermore, the theory yields an alloy-scattering-limited electron-drift mobility

in qualitative agreement with experimental results.

I. INTRODUCTION

Semiconductor alloys offer the freedom to design ma-
terial properties by choosing appropriate alloy constitu-
ents. In some cases, the physical properties of the alloys
can be quite different from those of the constituents. '

In recent years, there has been a renewed interest in

Si„oe~ „alloys and superlattices. ' Because silicon is
the most technologically advanced semiconductor, the re-
sults on Si-Ge systems have many potential applications.

The lattice constants of silicon and germanium differ
by -4%. Hence, the strain introduced in the formation
of Si„Gei, alloys can affect the band structure' and the
transport properties. Prior authors used virtual-crystal
approximation (VCA) (Refs. 11 and 12) and coherent-
potential approximation (CPA) (Ref. 13) to study the
band structure and related properties. Either because of
less accurate band structures of the constituent materials,
or because of the approximations involved in the alloy
formalism, these calculations predicted only trends of
specific quantities, not qu;mtitatively accurate results. Be-
cause the s-state site potentials (e, ) for silicon and ger-
manium differ by approximately 1.5 eV, VCA cannot ac-
curately describe effective masses and other finer details
of the band structure. Because of the use of poor basis
functions, earlier CPA work' predicted alloy broadening
of conduction-band states substantially differing from ex-
periment. The purpose of this paper is to correct these
flaws and treat transport phenomena.

Because of a substantial difference between the site po-
tentials and lattice constants of silicon and germanium,
~e incorporated both chemical and structural disorder in
the calculation of the electronic structure of Si Gei, al-
loys. Thus, both diagonal and off-diagonal CPA are in-
cluded in the predicted band structure and related quanti-
ties. Parts of the band structure have been used to study
the Si 2p core exciton' and the alloy mobilities. ' A
comprehensive report of the calculations and results is
presented here.

The rest of the paper is arranged as follows. The de-

tailed procedure of fitting silicon and germanium band
structures is given in Sec. II. The VCA, CPA, and off-
diagonal CPA calculations are described in Sec. III. The
results and interpretation of the alloy band structures and
mobility are given in Sec. IV.

II. BAND-STRUCTURE BASIS

In order to derive an accurate alloy band structure, one
must start from a realistic band structure of the constitu-
ent materials. Chen and Sher have developed a method, '

following a prescription of Kane' and Chadi, ' which in-
cludes all long-range interactions, and then they have
fine-tuned the band structure with an adjustable local
Hamiltonian. Because the details have already been pub-
lished, ' ' the underlying method will be presented here
in brief.

Gaussian orbitals of the type a (a can be s, p„p», or
p, ) for each sublattice in a cell are used to construct the
corresponding Bloch basis. In this basis set, the overlap
matrix and the Hamiltonian derived from empirical pseu-
dopotentials can be calculated. ' ' It is possible to cast
the problem in a basis set of Gaussian orbitals in which,
in crystal units (c.u.), the same exponential factors apply
for all III-V compounds. ' In this universal basis, the
overlap matrix and the kinetic energy matrix are the same
for all III-V compounds. Then, by a unitary transforma-
tion, the basis set is orthonormalized. The Hamiltonian
in this new basis set denoted Hp(k). The band structure
resulting from this method reproduces the results of ela-
borate band-structure calculations within a few percent
throughout the Brillouin zone (BZ). To establish accu-
rately certain important band-structure features adjacent
to the gap, an extra small 8&(S Hamiltonian matrix
Hi(k) ls added to Hp(k). This H, (k) has the form of a
tight-binding (TB) Hamiltonian, in which only the
nearest-neighbor interactions are included, and simulates
the effect of nonlocal pseudopotentials and an expanded
orbital set. The total Hamiltonian H(k) in this orthonor-
malized basis set is diagonalized to obtain the band ener-
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gies and the corresponding wave functions.
Following this procedure with the same exponential

factor P=0.26 in the Gaussian orbitals for both silicon
and germanium, the matrix Ho(k) is obtained. For sil-
icon and germanium, H~ contains six adjustable parame-
ters: namely, the corrections to the term values 6, and 5»
and to the nearest-neighbor interactions V, V+, V, and

V~. The values of b„, hz, V, and V are determined
from fitting the three experimental energy gapsi' ' 9 at
I'(k=0): I'2-I'i, I"i5- I"2q, and I 2- I iq, and the photoelec-
tric threshold values —5.07 and —4.80 eV for silicon and
germanium, respectively. The remaining parameters V,z
and V~ are obtained from the experimental values ' of
the gaps X~,-X~„and I-~,-L3„. Some adjustments in
these input quantities are made to obtain an overall good
band structure with more accurate effective masses.
Table I lists the empirical pseudopotential form factors
and the parameters used to obtain the band structure.
The calculated band structures and experimental values
are given in Table II. From Table II, one can see that an
excellent fit to the silicon and germanium band structure
is obtained: All the calculated values lie within the exper-
imental uncertainties. The aptical difference between Li,
and L3„, I 25 and I ~5 are in excellent agreement with the
known optical transition values.

Although the calculated effective transverse masses
agree very well with experiment, the effective longitudinal
mass for germanium is less than the experimental value.
This is due mainly to our attempt to have a common P
and the choice of local pseudopotentials, causing Ho(k) to
be the same in crystal units (c.u. ) for both germanium and
silicon. Because of the common Ho(k), the alloy disorder
is contained in these adjusted parameters. This Hp would
also be useful for the interface and superlattice ' prob-
lems. If we grant ourselves the freedam to adjust V„»,
longitudinal effective mass in germanium can be fitted to

TABLE I. Pseudopotential form factors and the band param-
eters (in eV}.

Parameter

V{~3)
v{v ~)
V{v 8)
v{v ii)

V,p
V

~xy

Silicon

—2.872
0.124
0.638
0.109

—16.175
—16.109
—0.111

0.040
0.025
0.050

Germanium

—2.872
0.124
0.638
0.109

—16.922
—14.971

0.131
0.150
0.030
0.100

the experimental value. When V~ is changed, the
Li„L „&will also change. We have chasen not to do this
because little is gained for the extra complexity. For an
indirect-gap semiconductor, the important effective mass
used in transpart studies is the conductivity mass

3(1/m, ;+2/m, ', )
-' .

Because m,'I »m, ', in germanium, m,
'

will not be much
different if a less accurate value of m,', is used. More-
over, the Si„Ge~ „alloys which have potential device ap-
plications are in the silicon-rich region, where the effec-
tive mass at the L edge is not expected to affect the fur-
ther studies.

It is important to note that an excellent fit to the exper-
imental values can be obtained with only seven adjustable
parameters (P, b,„b»,V~, Vz, V, V„„), with P being
universal in c.u. The calculated band structure of silicon
and germanium are shown in Fig. 1(a) and 1(b), respec-
tively. The characteristic indirect gaps are clearly seen.

TABLE II. Calculated symmetry-point band energies of silicon and germanium compared with ex-
periments and empirical-pseudopotential-method (EPM) results. {all energies in eV).

Bands Calculated
Silicon

Expt. '-EPM
Germanium

Calculated Expt. '-EPMb

I1

L1„
X1v

&4v

L3„
r25v

L1c
r,',
r15c
XI,
L3,

Eo
m, I

me&

Nlv

'References 21—28.
Reference 30.

—12.60
—10.26
—6.99
—8.29
—2.55
—1.11

0.0
2.24
4.10
3.43
1.34
4.34
1.11

(0.8,0,0)
0.89
0.16
0.35

12.4%0.6
—9.3+0.4
—6.8+0.2

—7.69
—2.86

—1.2+0.2
0.0
2.23

4.OOOO. OS

3.40
1.17
4.34
1.11

(0.8,0,0)
0.91
0.19
0.50

—12.56
—10.74
—7.65
—9.20
—2.55
—1.13

0.0
0.76
0.99
3.24
0.95
4.16
0.76

(0.5,0.S,O.S)
1.09

0.077
0.28

—12.6%0.3
—10.6+0.5
—7.4+0.3

—8.65
—3.29

—1.1+0.2
0.0
0.76
0.99
3.22
1.16
4.25
0.76

(O.S,O.S,O.S)
1.S9

0.082
0.34
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FIG. 1. Calculated VCA band structures of (a) silicon, (b} germanium, (c}Sio 5Geo ~ alloys, and (d) Sio ~OGe090. (e) (Shown on facing

page) shows calculated VCA values (solid) and the experimental values (dashed) of the Eo and Eo peak positions plotted as a function
of alloy concentration x.
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scattering potential parameter, the difference between the
s-electron site potentials in Si and Ge, was 1.49 eV, close
to our value 1.46 eV, the calculation predicted too-large
linewidths in the Eo spectruin and essentially no effect on
the electron mobility. With the availability of a set of
good basis functions and constituent band structures,
more realistic band structures of the alloy can be obtained.

In the current model, we have a TB Hamiltonian,
which contains matrix elements to all ranges. The sim-
plest alloy model is to assume that the important disorder
resides only in the diagonal matrix elements e, and ez. In
our model, the e, ' and es

' differ by 1.46 eV, whereas e~'

and ez' differ by 0.21 eV. For the present, we neglect the
disorder in the off-diagonal element. Mathematically, we
have

Hg), y
—H+ Q—Vt,

I

1.0
/

0.2
(

04 0.6
l

OF8 'l.0

where 1 is a fcc lattice vector identifying a site, and Vt is
the 8)&8 diagonal matrix with elements U, =e, —e'„
U~=ez —F~ in the orthonormal local orbital s

~
lja); j

denotes the two atoms in the unit cell labeled I, a
represents s or p symmetry, and e, and ez are the
concentration-weighted average values of s and p silicon
and germanium term value energies.

The one-particle alloy Green's function is defined as

ALLOY CONCENTRATION, x

FIG. 1. (Continued)

These band structures compare favorably with the best re-
sults available, and, in contrast with those obtained in the
usual empirical TB approaches, produce good conduction
bands. However, if they were included, the spin-orbit in-
teractions (neglected in this work) would add some fine
details, especially the splitting between the heavy- and
light-hole bands near I'.

ii y(Z) =
alloy

We are after the configuration average of this Green's
function, which, in effective medium theory, is replaced
by an effective Green's function 6,

6(Z) = 1

Z —H —X(Z}

where X is the self-energy. In CPA, we can now write
X=gt(Xt), with Xt being an 8X8 matrix in the basis

~ lja ) having the form

III. ALLOY CALCULATION

A. VCA

Because we have the satne Ho(k) matrix for both sil-
icon and germanium, it is only the Hi matrices of the
constituents in scaled VCA which distinguishes them. In
this approximation, the diagonal elements of the alloy
Hamiltonian H(k) are simply the concentration-weighted
average of the corresponding elements of the pure silicon
and gessssanium Hamiltonians, whereas the off-diagonal
elements of H(k) are obtained by assuming a 1/d depen-
dence. H(k) can be diagonalized to obtain the VCA band
structure for various concentrations x. The VCA band
structures for x =0.1 and 0.5 are shown in Fig. 1(c) and
1(d), respectively.

where

A 0
0 A (4)

8. Diagonal CPA

An earlier work on CPA band structure of SiGe al-
loys' is based on a local but energy-dependent pseudopo-
tential approximation. While the value of the principal

X,

0
A=

0 0 0

Xp 0 0

0 Xp 0

0 0 Xp

Here X, and Xz are the s and p parts of the self-energy.
The X, and X~ are determined from the conditions that
the average atomic t matrix with respect to the CPA
Green's function 6 is zero. With our ansatz for X, the
matrix equation (t ) =0 reduces to two coupled equations
(t, ) =0 and (t~ ) =0, where the average is the
concentration-weighted average (Q)=xQ '+yQ, and
the t is defined as

t t' =( U~ —X )[1—E ( U~ —X )]

(a=s or p, P=Si or Ge) . (5}
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X, =X,'+ (r,')(1+F,'(~,') )-',
where (t~ ) and F~ are similar to those in Eq. (5) except
that X, now replaces X . The most time-consuming cal-
culation is then the computation of the local Green's
functions F, and E&, given by the BZ summation, e.g.,

F,(Z)=-p 1 1

Z —H(k) —X,

where the inverse of an 8)&8 matrix is involved for every
k. This can be simplified by observing that X has the
same form as X in Eqs. (4) and (5) and that the 4X4 A

matrix can be written as 2 =X~1+(X,—X& )J, where 1 is
the identity matrix and

T

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Defining the matrix

J
(X'—X') 0

0

F, (Z) and F~(Z) can now be calculated from

F, (Z) =—ggii(k, Z),1

+j,(Z)= g [gg2(k, Z)+gi3(k, Z}+g~(k,Z)],1

where

g=g'+g'(1 —~g') ',
with

U„'l(k) U„p(k)

Z —e„(k)—X~

(8)

In Eq. (9), e„(k) is the band energy in VCA and I U~(k) I
satisfy the following Eigen equation:

QHNp(k)U@, (k)=e'„(k)U „(k) .
P

In the above expression F~ is the diagonal matrix element

of 6 in the local basis

F (Z)=—(jIa
~

G(Z)
( ija) .

X, and Xz are coupled because I', and F& each contain
both X, and Xp.

An iterative average-r-matrix (IATA) procedure' is
employed to solve the CPA equation. This procedure im-
proves XN upon a guessed solution X through the follow-

ing equations:

X,=X;+(r,')(1+F,'«,') )-',

ble by using an analytical continuation method. In this
method, X, and X& are calculated as a function of com-
plex Z, and then, using the analytical properties of the
self-energy and Green's functions, they are interpolated
for real Z. Because the functions X„X~, and G are
smooth for complex Z, the CPA iterations and BZ in-
tegrations can be carried out with substantially less com-
puter time.

For the concentrations x =0.10 and 0.50, the I. and X
(rh, ) gaps, respectively, are preferred. The L to I (5)
crossover takes place near x =0.15. The CPA correction
to I. and X edges at x =0.10, 0.15, and 0.50 should be
good enough to study the quantitative variation of band
gap in Si„Gei „alloys. Hence, the calculations are car-
ried out for these three cases. In addition, because the ex-
perimental results are available for x =0.109, CPA calcu-
lations are also done here for comparison. As expected,
X, is much larger than Xz for all the cases. The self-
energy as a function of energy is plotted in Fig. 2 for an
x =0.50 alloy.

C. Off-diagonal CPA

As mentioned earlier, silicon and germanium differ in
their lattice constant by -4%. In order to include the ef-
fect of the structural disorder, the CPA calculation is re-
peated next with off-diagonal (OD} disorder included. By
an application of the molecular coherent-potential approx-
imation (MCPA), 33 Hass et al. included OD disorder in
the CPA calculation of A,'A i' „8semiconductor alloys. ~

Assuming that B atoms occupy the sites of an ordered
zinc-blende virtual lattice, they modeled the dominant
structural effect as the difference in A'-8 and A"-8 hop-
ping matrix elements. Hence, the chemical and structural
disorder effects are treated as random variations of
e",Vi, V2, where the symbols have their usual mean-
ing. 35

The extension of the method to Si„Gei „alloys is not
straightforward, mainly because silicon and germanium
can occupy both sublattices; hence, there can be no or-
dered virtual lattice in this case. If we choose the
tetrahedral unit cell as the molecular unit for MCPA, we
see that the disorder is not cell diagonal. However, by
choosing an appropriate basis set, we can make the inter-
cell interaction be the highest-order effect. We start with
a hybrid basis

~
lh ); obtained from the sp hybrid orbi-

tals. 35 The hybrids 1 through 4 (i =1—4) are obtained
from orbitals centered on a sublattice I site, and the states
5 through 8 (i =5—8) are those from the orbitals located
at the four nearest-neighbor sites on sublattice II. The
Bloch basis states, corresponding to A&, T2 symmetries,

~
k); located on a I site (i =1—4) and II site (i =5—8), are

obtained from the corresponding hybrid states given by
the relation

)
l );= g Ci~ ~

lh )

Because the o matrix has only two nonzero elements, the
matrix inversion in Eq. (8) is obtained analytically.

A substantial reduction in computer time is made possi-

C~

C= 0 C)
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FIG. 2. Variation of the imaginary part of the self-energy X,(CPA) as a function of energy for x =0.50.
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An explicit definition of these orbitals can be found in
Ref. 20. In this new basis, the self-energy X at the given
site takes the form

and

Xi, ———,'(3X~+X,), (13)

X=X.+ &(»&(1+F&(»&)-', (14)

where (X„Xz),(X,',Xz ) are, respectively, the self-energies
associated with diagonal and off-diagonal disorder corre-
sponding s and p symmetries.

The self-energies can be obtained again from the IATA
iteration procedure:

where

0'2 0'p
1 QiNQnj.

'&=x&& z —E„(z,k) '

Xg

O'P =
0

0 0 0

Xp 0 0

0 Xp 0

0 0 Xp

[H(k)+X]Q =E(Z,k)Q,

«T»=x&T, &+y&Ta&,

X,' 0 0 0

Xp 0 0

0 Xp 0

0 0 Xp

XI, 0 0 0

0 Xj, 0 0

0 0 Xj 0

0 0 0 Xj,

(12)

( Tg & =X rg +4x yrg s+6x y fA g

+4+ xtgg +p tg, A:—S1

with a similar expression for (Ts&. Physically, for a
given A atom at the center, the other four atoms in the
molecular unit cell can be all A atoms, three A atoms and
one 8 atom, two of each, one A atom and three 8 atoms,
or all four can be 8 atoms. ( T„& or ( Ts & represents the
configuration-averaged i matrices, and (( T» is the
concentration-weighted average of the configuration. By
exploiting the symmetry, as seen in Eq. (11), one can
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reduce this problem to solving two 2)&2 coupled matrix

equations. Equation (14) can be iterated to obtain X„Xz,
X,', and Xz. After every iteration, we get a new set of X„
X&, X,', X&, and XI, The new set has not been tested to
see if Xz is still given by Eq. (13}. In our calculation, we

did not iterate to obtain a new XI„ the error introduced by
this approximation is expected to be very small. As in the
case of diagonal CPA, the computation can be substan-

tially reduced by the method of analytical continuation.

IV. DISCUSSION

A. Eo and E~ optical transitions

0.170

0.150-

0.10-

H

E

——- WI TH OF F DIAGONAL
ONLY DIAGONAL

The VCA values of Eo (I'q, -l 2q„) and Eo (I isa-125m)
and their measured values are plotted as a function of x in
Fig. 1(e}. Because the measurements36 are made at room
temperature, the experimental values are smaller than the
values calculated from the zero-temperature band struc-
ture. Inclusion of the relativistic effects, which are not
present in our calculations, is expected to form a more ac-
curate basis for comparison with the experiments. As
seen from Fig. 1(e), the theoretical and the experimental
values both have a linear variation with x. Similar calcu-
lations of E& (L t, —L3„)also have a linear variation on x
and are in qualitative agreement with experiments. 36

From the CPA self-energies X, and Xz, it is straightfor-
ward to calculate the correction to the VCA bands. The
calculated complex band structure is plotted for x =0.50
in Fig. 3. The CPA corrections are shown only in the vi-
cinity of the band gap. The shaded portion represents the
half-width of that energy state. Because s scattering is
dominant in these alloys, we see that the major disorder
lies in the conduction band. The topmost valence band,
with its rich p content, is least affected. The CPA band
structure is used to calculate the Eo and E~ peak posi-
tions for x =0.10, 0.109, 0.15, and 0.50 concentrations.
The calculations and the data from Ref. 36 show a small
bowing that is not seen on the scale of Fig. 1(e).

0.05-

0.01—

-4.3 -4.0 -3.5 -3.0

TABLE III. Calculated values of Ep, E~ and their respective
half-widths h, (Ep) and h(E~) (all energies are in eV).

E (ev)

FIG. 4. Imaginary part of X,(CPA) and X,(MCPA) as a
function of energy for x =0.50 alloy.

The self-energies X„X~, X~, and X,
' are calculated in

MCPA for the x =0.50 alloy. As in the case of CPA, the
self-energies associated with s symmetry are much larger
than the ones associated with the p symmetry. While X,

'

is found to be very small, Xz is at least an order of magni-
tude smaller —almost zero. However, the ImX, obtained
by CPA and MCPA differ considerably. As seen from
Fig. 4, the difference increases as one goes away from the
band edge. Therefore, the lifetime associated with the al-
loy disorder is decreased by the inclusion of OD structural
disorder. In addition, the OD disorder lowers the conduc-
tion band, introducing an extra bowing. The Eo and E,

-2.0—

-2.8

-3.2

-3.6

-4.0—
K
LU

LLl

-4.8—

-5.2—

64
I X

FIG. 3. Calculated CPA complex band structure of the
Sip 5Gep 5 alloy. Only the bands in the vicinity of the energy gap
are shown. The shaded portion represents the alloy broadening.

0.10

0.109

0.15

0.50

Quantity

Eo
h, (Ep)

E)
~(Ep)

~(Ep)

a(E, )

~(Ep)

L(EI)

4(Ep)

L(E))

VCA

1.290

2.016

2.028

1.318

1.442

2.083

2.517

2.578

CPA

1.248
0.011
1.995
0.001

2.009
0.013
1.275
0.002

1.382
0.032
2.051
0.002

2.418
0.186
2.510
0.0308

MCPA

2.391
0.206
2.498
0.0319



33 SAND STRUC:x ORES OF Si.oe, „ALLOYS 1033

values are reduced by 27 and 12 meV, respectively. The
VCA, CPA, and MCPA values of Eo and E~ are listed in
Table III.

The half-width of the alloy states is calculated from the
imaginary part of the CPA self~ergies. The half-width
of the lowest-lying conduction band of Sio soeo 5 alloy is
plotted in Fig. 5 as a function of E in the [100] direc-
tion. The calculated half-width is 186 meV for the I z
state and decreases to zero at the band edge. Because of
the negligible alloy broadening of the topmost valence-
band state, the half-width corresponding to the Eo transi-
tion, b,(Eo), is 186 meV, which is approximately one-half
of the previously published CPA results. ' The CPA
value of the half-width corresponding to the E~ transi-
tion, 6(E&), is 31 meV. Because of the increase in the
imagimtry part of the self-energies, the MCPA values of
the half-widths of the Eo and E~ tmttsitions are 206 and
32 meV, respectively. Because the complete Eo peak is
not shown in the published electroreflectance spectrum, 3s

it is difficult to estimate the corresponding half-width.
However, one can conclude from the spectrum of the
x =0.458 alloy that the half-width of the E~ transition is
considerably smaller ( 50 meV) than that of the Eo tran-
sition. The agreement between the experimental and the
theoretical values can be regarded as good because there
are errors in estimating the width from the published
spectra, and we have neglected the extrinsic broadening
due to the apparatus used in the experiments.

In order to make a more accurate comparison with the
experiments, the CPA values of 6(Eo) and h(E& ) are cal-
culated for the x=0.109 alloy. The calculated half-
widths of the Eo and E~ transitions are 13 and 2 meV,
respectively. From the spectrum, we estimate the corre-
sponding values to be 8—15 and 3—6 meV. We see that
CPA values are in excellent agrtxment with these experi-
ments. Because x is small, the inclusion of off-diagonal
disorder is not expected to change the calculated values
significantly.

200

B. Energy gap

The fundamental gapa of these alloys are calculated as a
function of concentration. The VCA gap is an increasing
function of x with a slope discontinuity at x=0.11. The
conduction-band minimum changes from 1. point to X
(6) point at this crossover. In addition to the band gap,
the effective electron masses and the band edge Eo are
also calculated. When X (5) gap is preferred, the band
edge moves linearly from k at (0.9,0,0) o ~s to
(0.8,0,0) ~. The effective masses at a given minimum in-
crease linearly from their pure germanium values to the
corresponding pure silicon values.

Using CPA self-energies, the band gap, band masses,
and the band edge are also calculated. The position of the
band minimum did not change by virtue of the inclusion
of off-diagonal disorder. While the effective transverse
mass remains almost the same as the VCA value, the
longitudinal mass has a maximum of 12% enhancement.
Because the real part of CPA self-energies is negative in
the forbidden gap region, an extra bowing is introduced to
the VCA energy gap. Because of this bowing, the I;X (b,)
crossover takes place near x=0.13. The VCA, CPA, and
experimental3s bowing parameters are 0.06, 0.18, and 0.24,
respectively. The calculated energy gap is plotted as a
function of x in Fig. 6.

Because of the negligible change in the effective masses,
the corresponding values in the pure materials are used in
the calculation of the allay-scattering-limited electron mo-
bility. The CPA X-gap Es and I.-gap Es are fitted to a
polynomial form. The generahzed Brooks's formula that
is applicable to the alloys with an indirect gap and multi-
ple bands is used. ' The calculated electron-drift mobility
and the experimental Hall mobility are plotted in Fig. 7,
where the theory explains the qualitative behavior of ex-
perimental results. ' As observed, s even a few atomic per-
cent alloy concentration can reduce the drift mobility sub-
stantially. It can be seen that the rate of decrease near
x =0 and x = 1 are quite different. This is because the L
edge has more s content than the X edge. Because the s
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FIG. 5. Variation in the vridth of the lowest-lying conduction
band as a function of E in the [100] direction for the x =0.50
alloy.

FIG. 6. Variation of the VCA energy gap {dash-dotted line)
and the CPA energy gap (solid line) as a function of x.
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FIG. 7. Calculated drift mobility (solid line) and the experi-
mental (dashed line} Hall mobility (Ref. 1) as a function of x.

scattering is dominant in these alloys, the l. electrons are
scattered more than the X electrons. Precisely for this
reason, one observes a dip in the mobility near the l. to X
(b, ) crossover. For x &0.13, the minimum gap is the I.
gap. After the crossover, the minimum gap is the X (b, )

gap, and the reduced alloy scattering increases the average
mobility. For still larger x, the mobility decreases because
of the increased alloy disorder. All these features are
clearly seen in Fig. 7. While our calculations include the
intervalley scattering mediated by alloy disorder, the ef-
fect of other scattering mechanisms is expected to increase
the dip near the crossover.

The calculated alloy scattering rate for the holes is
several orders smaller than that for electrons, because (1)
the valence-band edge has dominant p content, (2) the p-
scattering parameter (he& ——0.21) is only —,

' of b,e„which
alone decreases the scattering rate for holes by a factor of
50, and (3) finally, the imaginary part of the self-energy is
proportional to the density of states, which approaches
zero at the band edge. Hence, the hole mobility in this
system is insensitive to alloy disorder.

In MCPA, the conduction band is pushed down, be-
cause of an increase in the imaginary part of the self-
energy, giving rise to an additional bowing in the funda-
mental gap. For an x =0.50 alloy, the gap is reduced by
7 meV. The bowing parameter, including the MCPA

correction, is 0.21, which is in excellent agreement with
experiment.

It is interesting to compare the results of our calcula-
tions with those of Hass et al. In their calculations on
the Ga~ „In„As alloy, CPA introduced an extra bowing
in the fundamental gap. However, after the MCPA
corrections, the total scattering was diminished and the
results were similar to VCA results. These results were
explained in terms of the relative strength and sign of the
atomic term values and V2 . We extend their argument
to Si,Gei „alloys. The hybrid level of silicon is higher
than that of germanium. Because of its shorter bond
length, the V2 of silicon is larger than that of germanium.
Thus, in this case, both effects combine to give more dis-
order in the conduction and valence bands. Therefore, the
scattering is enhanced in these alloys. This explains the
increase in the imaginary part of the self-energy due to in-
clusion of OD disorder in our calculation.

In conclusion, we have incorporated both chemical and
structural disorder into the calculation of the CPA band
structure of Si„Gei, alloys. The calculation, based on a
realistic band structure of silicon and germanium, sug-
gests that the band gap is an increasing function of x with
a slope discontinuity at x=0.13. The linewidths of the
Eo and Ei transitions calculated by CPA and MCPA are
in good agreement with experiments. The effects of
structural disorder on diagonal CPA for the Ge-Si alloy
system will be difficult to test experimentally. MCPA de-
creases the band gap only slightly. However, unlike the
GaInAs case, the imaginary part of the s self-energy in-
creases with increasing energy and serves as a warning
that all systems will not exhibit the same behavior.
Therefore, in Ge-Si alloys, the place to look for experi-
mentally significant differences between CPA and MCPA
predictions is in the high-lying transitions. However, even
in the Eo transition, the MCPA linewidth at x =0.5 is
still only 10% larger than the corresponding CPA value.
The calculated alloy-scattering-limited electron-drift mo-
bility is in qualitative agreement with the observed Hall
mobilities.
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