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Hybridization in correlated bands studied with the Gutzwiller method:
Application to fluctuating valence and heavy fermions
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(Received 2 July 1985)

A model ~ith t~o hybridized orbitals per site, one of which is correlated and the other is not, is con-
sidered. A variational wave function of the Gutzwiller form is used to calculate the mass enhancement.
Unlike models ~ith one orbital per site, there is no metal-insulator transition in the model because the oc-
cupation in the correlated orbital deviates from unity as the correlation energy increases. The binding ener-

gy and the effective mass as a function of the correlation energy and the hybridization energy is calculated.

The relationship of the eave function used to ~ave functions explicitly sho~ing the Kondo effect is dis-

cussed.

INTRODUCTION

%e consider the two-band Hamiltonian

H Xe, n; +t, (a; a+i +H c)+ Uxn; n,

is a basis function in which G, = (g&, . . . , g ) and

I', (y&, . . . , y„) are a set of sites occupied by [ and ]
spin electrons, respectively, in the a orbita1; Gb and I b are
the same quantities for b orbitals. The variational wave
function chosen is

+ X tb (b, b;+ t + H.c.) + V X a; b; + H.c. ,
i, o G, ,Gb, r, .rb

3 (G, .Gb. I'„I"b)4, (3)

GUTZ%ILLRR VARIATIONAL FUNCTION

As a generalization of the Gutzwiller wave function to
the case of two orbitals per site but with only one of them
correlated, we consider a variational wave function con-
structed in the following manner:

@g .r,g, r Qa tff a„igb gb„t 10)
G~ fear Gb ~b

(2)

where ni a; ai . This model describes two nondegenerate
orbitals a and b per atom with correlations in the a orbitals
but none in the b orbitals. The two orbitals are hybridized
on the same site; hybridization at different sites introduces
no new features in our treatment. For tb && t„U compar-
able or larger than tb, and V&& tb, this is a bare-bones
model for the rare-earth solids. By variation of ~„with
respect to the chemical potential, one passes fram the
magnetic-metal regime to the fluctuating-valence regime
and the heavy-fermion (fluctuating-moment) regime. ' Very
little is understood about the latter. The model described by
(I) is also relevant to transition metals and compounds
where the correlations in the d orbitals are much stronger
than in the sp orbitals. The problem of hybridization in
such situations is interesting. For very large U, there is in
the model of Eq. (I), at most one a-type electron of a given
spin at every site. Only b electrons of the same spin hybri-
dize with it. Hybridizatian therefore depends on the spin
configurations-basis functions with different spin confi-
gurations in a orbitals must be considered and hybridized
with the b orbitals. The optimum linear combination of
such configurations is the many-body ground state. One
way of doing this is by an extension of the Gutzwiller varia-
tional method. 2 A brief account of this work has already
been given. ' Recently Rice and Ueda have reported work
using the same approach. 4

with

A. (G„Gb I ~ ~ I b) = rt"Tg Tg Tr, Trb (4)

R (k) is the 2x 2 orthonormal matrix which transforms the
orbital space (a,b) to the band space denoted by (n, p).
For the uncorrelated problem R (k) is specified by an angle
8„„(k),given by

8„„~(k)-tan '[[e (k) —e, (k)]/V], (6)

where e,&(k) are the two bands obtained from diagonaliz-
ing the Hamiltonian (I) with U-O,

, e(ktt)- [~(ek) +(ekb)]+~[[a.(k) — e(b)k]' +4
'V' ]'t,

(7)

and e,,b(k) are the nonhybridized and uncorrelated bands
( V 0, U = 0). For the correlated problem R (k) may in

general be determined variationally. Our choice is specified
below.

In Eq. (4) t is the number of sites with double occupation
in the a orbial, and q is a variational parameter. The
ground-state energy is given by

(H) - ~U+gbe. (k)(Ct'Cb ) +eb(k)(CbbCbb)

+ VX„((C' C ) + (C C ) ) (8)

The density matrices (Cb, Cb, ), (Ct„C&b), etc. , are evaluat-
ed by use of Eq. (3).

The T's are the determinants which give the projection
from site and orbital occupation to band states, and are
given in Gutzwiller's notation by

kia kiP k P
Tg - L 't'e ' 'R (k)I g&a g}& ' ' '

gm ba
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They are given as RESULTS -FLUCTUATING VALENCE

q + (I —q..)m. , k ( k. ,

(Cb', Cb, ) - q, sin'8(k) + (I —q., )m„k, & k & k, , (9a)
(I —qb, )m„kb ( k ( kzs

0, k&k~

(Cb'Cbb) qbb~-f stn[28(k)]~, k. ( k & kb

0, kb&k&kzg

1, k&k,
(CbbCbb) - cos2[8(k)], k, & k ( kb

0, kb(k &kzg

(9c)

where kzs is the zone-boundary wave vector. In Eq. (9b)
m, is the average occupation per site of the a orbital per
spin for the nonmagnetic case. In (9a) and (9b), 8(k)
specifies the orthonormal 2x 2 matrix R (k). q is identical
to Gutzwiller's q [his Eq. (B6)],

For simplicity, a one-dimensional model is chosen with
«, (k)-«, +t, (k —0.5), «b(k) = tb(k —0.5), and 0 & k ( 1.
%e assumed the case of half-filled bands; i.e., m, +mb=1.
This leads to k, +kb=1. As s consequence, the Fermi en-
ergy is always pinned in the range of the correlated band.
In addition, we studied only the case ~0=0. In the calcula-
tions we always put th=10 and investigated various cases
rb/rb (& I and V/rb &( I, with 0» U & ~. The condition
4V & t, tb leads to s metallic situation, awhile 4V'& t, bb

results in a band gap. %'e could have averted the semicon-
ducting situation for t, = 0 by considering the total occupa-
tion &2. No essential difference in the physics is involved.

In Fig. 1, the values of the renormalization parameter q„
and of m„ the charge per atom in the correlated orbital, are
plotted as a function of U/r, . In all cases, q drops more
or less rapidly and reaches saturation for U = tb. A similar
behavior is found for m, . In the large-U limit, v becomes
very small and the results in Fig. 1 follow

1/2

(m, —v)(L —m, —p,, +v) y,, —v

m, (L —m, ) L —m, —p,, +v

with the varistional parameter q given as

v(L —m, —p,, + v)
(m, —v)(p, , —v)

I 2

(10)

q = (1—2m, )/(1 —m, ) 1+2 (13)

very well, as also seen from Eqs. (10) and (11). Only in the
case t, )& V, q„shows its largest drop near U=8(«, ),
where a metal-insulator transition occurs in the one-band
case. '

Figure 2 presents the binding energy and the effective-
mass enhancement q,, ' as a function of V/t, for an asymp-
totically large value of U. For insignificant V/t, the energy

For the case V-O, the density matrix (Cb, Cb, ) of the
correlated orbital has s discontinuity with magnitude q„at
the Fermi wave vector k„while the density matrix
(CbbCbb) is the usual Fermi distribution with a discontinuity
qbb-1 at kb. Realizing that q„snd qbb are appropriate
quasiparticle renormalizstion factors for the appropriate
Green's functions, one may guess that

q~) i/2 (12)

This has also been found combinatorially.
Equations (10)-(12) also specify how the Fermi-surface

discontinuities and the effective hybridization energy
depend on the average magnetization. In our calculation,
however, only the nonmagnetic case m, = p,, is considered.

We determine R (k) variationally in terms of a function
8(k) which is of the same form as 8„„„(k),but with
(««b ) [where «, and «b are the centers of the bands
«, (k). «b(k) specified in Eq. (7)] replaced by a variational
function («, —«b)„(k) and with V replaced by a variational
function V„(k). As may be seen by inspecting Eqs.
(9a)- (9c), this is of consequence only in the region
k, & k & kb, ~here we take them to be constants which we
determine variationally. 8(k) governs the distortion of the
quasiparticle bands as U/t, increases and is a very important
function. Beside these two quantities, v and k, /kb are also
determined variationally. For U/t, )& I, the occupation of
the correlated orbital is 0 or I and v = 0. k, /kb is found to
be given essentially by its correlated value; we do not know
any basic reason why this should be so. t „ is found to be
simply q'I'V and («, —«b)„ is such as to pin the effective
correlated orbital to the chemical potential both in the
fluctuating-valence and the fluctuating-moment (heavy-
Fermi-liquid) regimes.
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FIG. 1. The quasiparticle amplitude q~~ and the average occupa-
tion in the correlated orbital per spin m, as a function of U/t„ for
various values of ~jt, .
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value specified by the light band, i.e., remains unrenormal-
ized. This is unlike the one-component Fermi liquid and in
accord with deductions made earlier. This in turn means
that the effective-mass enhancement is given by (I+Fc )
and not (I+TFt ) where I'I is the Ith partial wave of the

spin-symmetric Landau parameter.

DISCUSSION

A0

O

U=0

8
f5

Several interesting things learned in the calculation have
already been discussed. The question to ask is how well
does the variational wave function describe the fluctuating
valence or the Kondo-lattice situation. Only the single Kon-
do or fluctuating-valence impurity have been understood so
far. The wave function (3) for only one site having an a or-
bital is the linear combination of 1P»), the Fermi sea, with
the a orbital unoccupied, 1@») with the a orbital singly oc-
cupied and 1qh») with the a orbital doubly occupied. If we
take U very large the last one has negligible weight. If we
work with the total number of electrons constant the singlet
part of the wave function then is

[as+ X ~(k)C'.Ck [I@») ~ (15)

V

0
0

ktkza
10

transition including orbital degeneracy N, which has only
the effect of changing V2 to NV2 and 1 —2m, in Eq. (13) to
1 —¹n,. They claim that the fluctuating-moment (heavy-
fermion) regime occurs only at large N. We believe this not
to be true. It is true though that the fluctuating moment re-
gime occurs over a larger range of (es —e, ) larger the prod-
Uct NV .

From Eq. (8), one can again deduce that the effective
mass in the heavy Fermi-liquid regime, for vU = 0, is pro-
portional to (qV') ' for small t, . q is again given by (13)
and depends on the deviation of the occupation of the
correlated orbital from unity. One can similarly deduce that
the compressibility, dp/dN or d'E/dN', remains at the

FIG. 4. Same as Fig. 3 for the heavy Fermion-liquid regime.
The parameters used are 6b Co=1, t&-10, V=1. Note that in

(Cz&C&&) al! the curves shown have a discontinuity at kr.

where 1@») is the ground-state wave function of the free-
electron Fermi sea. a(k) now serves the same purpose as
R (k). This is precisely of the form proposed by Varma and
Yafet' for the ground state of a magnetic impurity in a met-
al, with a(k) as a variational function, and its generalization
to the orbitally degenerate case is asymptotically exact for
large degeneracy. s The one-site version of Eq. (3) contains
together with (15) linear admixtures with doublet and triplet
wave functions as well.

As mentioned earlier Eq. (15) describes well the ground
state of a Kondo or fluctuating-valence impurity (especially
when generalized for large orbital degeneracy). The low-
temperature properties of that problem require consideration
of the phase shift of the conduction electrons9 by virtual
fluctuation between the singlet ground state and the mag-
netic excited states. This effect is included in the single-site
version of Eq. (3) through admixtures discussed in the last
paragraph.

Stevens, ' Brandow, " and Fazekas' have proposed gen-
eralizations of (15) to the lattice of the form,

[~,+X~(k)e 'C,.'.C„.[1y») .

An expansion of the product and comparison with Eq. (3) is
instructive:

q —[I+/ n(k)e 'Cia Ck + X p(k, k')e ' '
C(a~C,, 'Ck~Ck' + [l4»)

ij, {i & j)
I

cr, a

(17)

The second term is more general than merely an expansion
of (16), by which p(k, k') would have been equal to
n(k)a(k'). With the first two terms alone Eq. (17) is a
generalization of the wave function used to consider'3 the
interaction between two impurities. Such a wave function
describes the single "impurity" renormalization as well as
the pairwise interference between different "impurities. "To
leading approximation in the well-dcfined local-moment lim-

it this intcrferencc is merely the Ruderman-Kittlc-Kasuya-
Yosida coupling. The Gutzwillcr-type wave function, Eq.
(3), as well as Eq. (16), has these effects built in but with
special relationships between a 's, p 's, etc. , so that the vari-
ational freedom to describe interaction effects is limited.

Some other limitations of this approach ought to bc men-
tioned. As mentioned, the single-site version of Eq. (3)
describes well the ground state of a Kondo or fluctuating-
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valence impurity, and the quasiparticles described through it

are also reasonable. There are limitations however in the
approximations used in evaluating with Eq. (3) for the lat-

tice problem. The Gutzwiller method is a mean field
method and each site is considered to be in the average con-
figuration. This can lead to serious flaws in the relative ad-
mixture of different configurations at a site and in the effec-
tive interaction between sites. Also this approach does not

contain the many-body effects in the interaction among
pairs of sites. The latter have been found recently' to have
in perturbation theory as interesting singularities as in the
Kondo problem but with different energy scale. They
should lead to important renormalizations in the low-

temperature properties. %hat the Gutzwiller approach does
contain is a good single-site mean-field approximation con-
sistent with the Luttinger theorem.
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