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A model with two hybridized orbitals per site, one of which is correlated and the other is not, is con-
sidered. A variational wave function of the Gutzwiller form is used to calculate the mass enhancement.
Unlike models with one orbital per site, there is no metal-insulator transition in the model because the oc-
cupation in the correlated orbital deviates from unity as the correlation energy increases. The binding ener-
gy and the effective mass as a function of the correlation energy and the hybridization energy is calculated.
The relationship of the wave function used to wave functions explicitly showing the Kondo effect is dis-

cussed.

INTRODUCTION

We consider the two-band Hamiltonian

H=73 eni,+ ta(ai@ 41, +He) + U 3 niohni -
o
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+ 3 1,(bhb+1,+He)+V S atb,+He , (1)
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where n;, = a,-f,a,,,. This model describes two nondegenerate
orbitals @ and b per atom with correlations in the a orbitals
but none in the b orbitals. The two orbitals are hybridized
on the same site; hybridization at different sites introduces
no new features in our treatment. For 1, >> ¢,, U compar-
able or larger than 7, and V << 1, this is a bare-bones
model for the rare-earth solids. By variation of ¢,, with
respect to the chemical potential, one passes from the
magnetic-metal regime to the fluctuating-valence regime
and the heavy-fermion (fluctuating-moment) regime.! Very
little is understood about the latter. The model described by
(1) is also relevant to transition metals and compounds
where the correlations in the d orbitals are much stronger
than in the sp orbitals. The problem of hybridization in
such situations is interesting. For very large U, there is in
the model of Eq. (1), at most one a-type electron of a given
spin at every site. Only b electrons of the same spin hybri-
dize with it. Hybridization therefore depends on the spin
configurations—basis functions with different spin confi-
gurations in a orbitals must be considered and hybridized
with the b orbitals. The optimum linear combination of
such configurations is the many-body ground state. One
way of doing this is by an extension of the Gutzwiller varia-
tional method.? A brief account of this work has already
been given.® Recently Rice and Ueda have reported work
using the same approach.*

GUTZWILLER VARIATIONAL FUNCTION

As a generalization of the Gutzwiller wave function? to
the case of two orbitals per site but with only one of them
correlated, we consider a variational wave function con-
structed in the following manner:

@q,.r,.6,r,=I1as 1 [Iay I15¢1 165, 10) . @
G T, Gy Ty

is a basis function in which G,,=(g1,...,gma) and

Fo=(y1, ... ,7,,a) are a set of sites occupied by { and |
spin electrons, respectively, in the a orbital; G, and I', are
the same quantities for b orbitals. The variational wave
function chosen is

'Ilg 2 A(Ga:Gbrrarrb)d) » (3)
Ga'Gb'ra'rb
with
A‘(Ga,Gb,Fa,rb)='anGaTGbTraTrb . (4)

The T’s are the determinants which give the projection
from site and orbital occupation to band states, and are
given in Gutzwiller’s notation by

ki kiB - -+ km B
1a 81 Bma |’
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R (k) is the 2x2 orthonormal matrix which transforms the
orbital space (a,b) to the band space denoted by (a,B).
For the uncorrelated problem R (k) is specified by an angle
Ounco (k), given by

Ounco (k) =tan™{ [ea (k) —ea (K)1/V ), (6)

where €,,5(k) are the two bands obtained from diagonaliz-
ing the Hamiltonian (1) with U =0,

€ap(k) =Tlea (k) + €, (k)] £ 3 ([ea (k) — €5 (K) P +4V2}V2
@

and €, (k) are the nonhybridized and uncorrelated bands
(V=0, U=0). For the correlated problem R (k) may in
general be determined variationally. Our choice is specified
below.

In Eq. (4) v is the number of sites with double occupation
in the a orbial, and n is a variational parameter. The
ground-state energy is given by

(H) = vU+ 3, € (k) (Ca Cia) + €5 (k) (Cis Cia)
+V 3, ((CaCus) +(CCra)) . ®)

The density matrices (C,;, Cia), (CiaC), etc., are evaluat-
ed by use of Eq. (3).
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They are given as

Qaa+(1"'qaa)ma’ k<k, ,
(CaCra) = {Gaa Sin20(k) + (1= gog Iy, ko <k <k, , (92)
(l—q,,a)ma, kb<k<kza ,

0, k<k, ,
(CeCrp) =1das |+ sin[20(K) 11, ko <k <ky , (9b)
0, ky <k <kgz ,

1, k<k, ,
(CiyCrp) ={cos?[0(k)], ko <k < ks , (9¢)
0, ks <k <kz ,

where kzp is the zone-boundary wave vector. In Eq. (9b)
m, is the average occupation per site of the a orbital per
spin for the nonmagnetic case. In (9a) and (9b), (k)
specifies the orthonormal 2x 2 matrix R (k). g, is identical
to Gutzwiller’s ¢ [his Eq. (B6)],

(mg—v)(L —mg— g +v) Mg —V
900 = 1+ nl
m, (L —m,) L—my—p,+v
(10)
with the variational parameter 7 given as
v(L—m;—pug+v)
7)2= a — Ha TV (11)

(mg—v)(pa—v)

For the case V=0, the density matrix (C;;Cka) of the
correlated orbital has a discontinuity with magnitude ¢,, at
the Fermi wave vector k,, while the density matrix
(CyCrs) is the usual Fermi distribution with a discontinuity
gw =1 at ky. Realizing that g,, and g are appropriate
quasiparticle renormalization factors for the appropriate
Green'’s functions, one may guess that

Gab = (qaaqbb)l/z . (12)

This has also been found combinatorially.

Equations (10)-(12) also specify how the Fermi-surface
discontinuities and the effective hybridization energy
depend on the average magnetization. In our calculation,
however, only the nonmagnetic case m, = u, is considered.

We determine R (k) variationally in terms of a function
0(k) which is of the same form as 8uo(k), but with
(e2—€f) [where € and € are the centers of the bands
€qa(k), €5 (k) specified in Eq. (7)] replaced by a variational
function (eJ—€f), (k) and with V replaced by a variational
function ¥V,(k). As may be seen by inspecting Egs.
(92)-(9¢), this is of consequence only in the region
k, < k < ky, where we take them to be constants which we
determine variationally. 6(k) governs the distortion of the
quasiparticle bands as U/t, increases and is a very important
function. Beside these two quantities, v and k,/k, are also
determined variationally. For U/t >> 1, the occupation of
the correlated orbital is 0 or 1 and v=0. k,/k, is found to
be given essentially by its correlated value; we do not know
any basic reason why this should be so. V, is found to be
simply ¢/?V and (eJ—€f), is such as to pin the effective
correlated orbital to the chemical potential both in the
fluctuating-valence and the fluctuating-moment (heavy-
Fermi-liquid) regimes.
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RESULTS —FLUCTUATING VALENCE

For simplicity, a one-dimensional model is chosen with
€a(k)=€d+1,(k—05), es(k)=1,(k—0.5), and 0< k < 1.
We assumed the case of half-filled bands; i.e., m, +mp=1.
This leads to k, +k,=1. As a consequence, the Fermi en-
ergy is always pinned in the range of the correlated band.
In addition, we studied only the case €2=0. In the calcula-
tions we always put #, =10 and investigated various cases
t/ty << 1 and V/t, << 1, with 0=<<U < . The condition
4V? < 1,1, leads to a metallic situation, while 4¥2> 1, b,
results in a band gap. We could have averted the semicon-
ducting situation for 7, = 0 by considering the total occupa-
tion #2. No essential difference in the physics is involved.

In Fig. 1, the values of the renormalization parameter g¢,,
and of m,, the charge per atom in the correlated orbital, are
plotted as a function of U/t,. In all cases, g,, drops more
or less rapidly and reaches saturation for U = ,. A similar
behavior is found for m,. In the large-U limit, v becomes
very small and the results in Fig. 1 follow

1/2
v
- l l (13)

very well, as also seen from Eqgs. (10) and (11). Only in the
case 1, >> V, q,, shows its largest drop near U = 8(e,),
where a metal-insulator transition occurs in the one-band
case.’

Figure 2 presents the binding energy and the effective-
mass enhancement g,; ' as a function of V/1, for an asymp-
totically large value of U. For insignificant V/1, the energy

qux(l—Zma)/(l—m,) 1+2
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o
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FIG. 1. The quasiparticle amplitude g,, and the average occupa-
tion in the correlated orbital per spin m, as a function of U/y,, for
various values of V/i,.
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FIG. 2. The binding energy Eg in units of ¢, and the effective-
mass enhancement :qa;' as a function of V/¢, for an asymptoti-
cally large value of U/1,.

increases quadratically as expected for this model and the
effective mass has a weak dependence. The model has a
phase transition at ¥ =0%; for ¥ =0 the correlated orbitals
are totally localized. This is reflected in the apparent non-
analytic behavior of the energy as ¥/, — 0, and the rapid
growth in the effective mass.

Figure 3 contrasts the hybridization angle (k) in the
U =0 and the U — oo limit as well as presents various com-
ponents of the density matrix. For large U, charge is
transferred from the correlated to the uncorrelated orbital
paying a prize in kinetic energy. Compared to the case in
which 6,,0(k) is used, there is extra transfer at small k and
smaller transfer at large k. Note that (C,L Cia) has discon-
tinuities both at k, and k;,, but is otherwise nearly flat re-
flecting the almost localized state of electrons in this orbital.
Note also the sharp decreases in the effective
hybridization-induced density matrix (Cy,Ci,) from its
value for U =0.

There is an enhancement of the effective mass by a factor
1/q in this model just as in the one-band model.’ This may
also be seen easily through Eq. (8) which for U— o
(vU =0) describes the energy of two noninteracting bands
hybridized with a matrix element ¢"/2V. This is qualitatively
similar to the naive Hubbard-type decoupling schemes®
which renormalize the hybridization matrix element by
(1—2m,)"? for my,=u,. The physics is trivial: Hybridiza-
tion conserves spin and therefore in a mean-field approxi-
mation is reduced by the average occupation of the other
spin.

HEAVY-FERMION (FLUCTUATING-MOMENT) REGIME
In this regime,
(ef—€d) > V¥, (14)

but this difference must also be bounded on the other side.
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FIG. 3. The correlated hybridization angle 8(k) at asymptotically
large values of U/t, compared with that at U=0. Also shown are
the strongly correlated limit and the uncorrelated limit of the vari-
ous density matrices. All the results are for /1, =0.3.

Otherwise the situation found in ordinary rare-earth metals
and compounds results, with well-defined local magnetic
moments and magnetic order at low temperatures. The only
modificationn from the calculations described above are that
ks = kzp, so that there is only one Fermi vector, k,. An
average occupation of 2 per site leads to a semiconducting
situation (except for the magnetic case discussed below).
We did our calculations with an occupation of 2.5 per site.

The study of the density matrices, Fig. 4, as the parame-
ters in (13) as well as U are varied is very revealing. As U
is increased (Cy,Ci,) decreases and (CgyCrs) increases but
with the discontinuity in occupation in both still at k,
(Luttinger’s theorem). The sharpness with which 8(k) goes
from near 0 to near 1 increases with U reflecting the effec-
tive decrease in hybridization ¢"/2¥. The additional charge
in the b orbitals is accommodated above kg with its shape
governed by 6(k).

Figure 4 was calculated with #=10, V=1, and
ef—ed=1. When we increased € — €2 to 2 with the other
parameters held fixed, we found that for U > 8, minimum
energy obtains with (C,L Cua) = e} independent of k. There
is now exactly one electron/atom in the correlated orbital.
Therefore ¢ =0. (Cy,Cis) now has a discontinuity at a new
Fermi wave vector (which is nearly the point in Fig. 4
where the sharp but continuous dropoff occurs); it is 1
below and 0 above this point. Clearly a phase transition to
the local-moment regime from the fluctuating-moment re-
gime has occurred. Rice and Ueda* have investigated this
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FIG. 4. Same as Fig. 3 for the heavy Fermion-liquid regime.
The parameters used are ef —el=1, 4,=10, ¥=1. Note that in

(CJbCkb) all the curves shown have a discontinuity at kg.

transition including orbital degeneracy N, which has only
the effect of changing ¥? to NV? and 1—2m, in Eq. (13) to
1— Nm,. They claim that the fluctuating-moment (heavy-
fermion) regime occurs only at large N. We believe this not
to be true. It is true though that the fluctuating moment re-
gime occurs over a larger range of (ef — €2) larger the prod-
uct NV2,

From Eq. (8), one can again deduce that the effective
mass in the heavy Fermi-liquid regime, for vU =0, is pro-
portional to (g¥?)~! for small 4,. ¢ is again given by (13)
and depends on the deviation of the occupation of the
correlated orbital from unity. One can similarly deduce that
the compressibility, du/dN or d?E/dN?, remains at theJ

o~ [1+3al)e NCl,Cut 3 Blkk)e
io i, (i <j)

’
o,

The second term is more general than merely an expansion
of (16), by which B(k,k') would have been equal to
a(k)a(k’). With the first two terms alone Eq. (17) is a
generalization of the wave function used to consider!® the
interaction between two impurities. Such a wave function
describes the single ‘‘impurity’’ renormalization as well as
the pairwise interference between different ‘‘impurities.” To
leading approximation in the well-defined local-moment lim-

(kR +k-R))
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value specified by the light band, i.e., remains unrenormal-
ized. This is unlike the one-component Fermi liquid and in
accord with deductions made earlier.® This in turn means
that the effective-mass enhancement is given by (1+ F3)
and not (1+Ff) where Ff is the /th partial wave of the

spin-symmetric Landau parameter.

DISCUSSION

Several interesting things learned in the calculation have
already been discussed. The question to ask is how well
does the variational wave function describe the fluctuating
valence or the Kondo-lattice situation. Only the single Kon-
do or fluctuating-valence impurity have been understood so
far. The wave function (3) for only one site having an a or-
bital is the linear combination of |¢rs), the Fermi sea, with
the a orbital unoccupied, |¢rs) with the a orbital singly oc-
cupied and |¢prs) with the a orbital doubly occupied. If we
take U very large the last one has negligible weight. If we
work with the total number of electrons constant the singlet
part of the wave function then is

[ag+za(k)C;¢,Cka]|¢Fs) , (15)
ko

where |¢rs) is the ground-state wave function of the free-
electron Fermi sea. a(k) now serves the same purpose as
R (k). This is precisely of the form proposed by Varma and
Yafet’ for the ground state of a magnetic impurity in a met-
al, with a(k) as a variational function, and its generalization
to the orbitally degenerate case is asymptotically exact for
large degeneracy.! The one-site version of Eq. (3) contains
together with (15) linear admixtures with doublet and triplet
wave functions as well.

As mentioned earlier Eq. (15) describes well the ground
state of a Kondo or fluctuating-valence impurity (especially
when generalized for large orbital degeneracy). The low-
temperature properties of that problem require consideration
of the phase shift of the conduction electrons’ by virtual
fluctuation between the singlet ground state and the mag-
netic excited states. This effect is included in the single-site
version of Eq. (3) through admixtures discussed in the last
paragraph.

Stevens,!® Brandow,'! and Fazekas'? have proposed gen-
eralizations of (15) to the lattice of the form,

H[a0+za(k)eik.kici;acka“d’FS) : (16)

1

An expansion of the product and comparison with Eq. (3) is
instructive:

CiaoCiao'CioCrlot = 1 dEs) an

r
it this interference is merely the Ruderman-Kittle-Kasuya-

Yosida coupling. The Gutzwiller-type wave function, Eq.
(3), as well as Eq. (16), has these effects built in but with
special relationships between a’s, 8°s, etc., so that the vari-
ational freedom to describe interaction effects is limited.
Some other limitations of this approach ought to be men-
tioned. As mentioned, the single-site version of Eq. (3)
describes well the ground state of a Kondo or fluctuating-
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valence impurity, and the quasiparticles described through it
are also reasonable. There are limitations however in the
approximations used in evaluating with Eq. (3) for the lat-
tice problem. The Gutzwiller method is a mean field
method and each site is considered to be in the average con-
figuration. This can lead to serious flaws in the relative ad-
mixture of different configurations at a site and in the effec-
tive interaction between sites. Also this approach does not
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contain the many-body effects in the interaction among
pairs of sites. The latter have been found recently'* to have
in perturbation theory as interesting singularities as in the
Kondo problem but with different energy scale. They
should lead to important renormalizations in the low-
temperature properties. What the Gutzwiller approach does
contain is a good single-site mean-field approximation con-
sistent with the Luttinger theorem.
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