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Electronic states in coupled random chains
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Using a matrix representation we have generalized the single-chain site-decimation method to the
coupled-chain block-decimation method, and used it to renormalize the Green’s-function equation of
motion for coupled random chains. The density of states and the localization length are investigated

by this method.

A system of weakly coupled disordered chains of atoms
is classified as quasi-one-dimensional. However, the weak
interchain coupling has been ignored in most of the exist-
ing theoretical analyses. While this zeroth-order approxi-
mation can provide reliable information for certain physi-
cal properties, it often gives doubtful answers. For in-
stance, the hopping of an electron in a single chain of
atoms containing impurities must be quite different from
that in a system of many such chains weakly coupled to-
gether. When the hopping along one chain is hindered by
an impurity, it can find a bypass through the neighboring
chains.

Very little is known about the electronic properties of
quasi-one-dimensional disordered systems, since the
simpler one-dimensional disordered systems are already
difficult enough. In recent years many authors have stud-
ied one-dimensional disordered systems with numerical
methods based on the recursion formula"? of Haydock
et al.’> or on real-space renormalization techniques.*~°
These approaches yield very accurate results with a
reasonable amount of computer time. In this paper we
will generalize the real-space renormalization decimation
scheme and use it to study coupled random chains.

We consider a finite number (N) of coupled chains la-
beled by the chain index u=1,2,...,N. Each chain con-
sists of an infinite number of sites with the site index
i=—o,...,—1,0,1,...,00. Let €(n); be the site ener-
gy and ¢(u,v); the hopping from the jth site in the vth
chain to the ith site in the puth chain. If (u,i)=(v,j), we
define #(u,u);=0. Both e(u); and t(u,v); can be ran-
dom numbers. Then the Hamiltonian is expressed as

H=Ee(y),~clic“i+ > t(y,v)ijcz,-cvj . 1)
By [l,'V,i,j

By imposing a finite range on the hopping, ¢(u,v); =0
if |i—j| >M, we can divide the system into an infinite
number of blocks, the size of which is N XM. The site
(u,k) belongs to the Ith block if IM <k <(I +1)M. In
terms of these blocks the Hamiltonian can be rewritten as

H=3H/+3 (Hpy . +H ) - ()
7 I

The Ith block is described by
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It is easy to see that the only hoppings between blocks are
the nearest-neighbor-block hoppings which are described
by

M
Hp61=23 3 tWYim4iatim+j
p,v ij=1

4
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For a fixed value of I there are NM sites at (u, IM +i)
with p=1,2,...,N and i=12,...,M. We will
enumerate these sites by counting first p=1 and
i=12,...,M, and then u=2 and i=1,2,...,M, and
so on, as shown in Fig. 1. These NM sites in the Ith
block can now be labeled as (I,p) with p=1,2,...,NM.
Similarly, we can rewrite the site energies and the hopping
integrals in the new notations as

ey i=>€ll),, p =(u—1M+i,

and

HpVIM i oM+ =1 )pg
p=(p—UM+iand g=(v—1)M +j .
Then, (3) and (4) can be simplified as
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FIG. 1. An illustrative example for relabeling the sites in the
Ith block of size N =3 and M =4.
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Hy=Y eD),[c(D,]lc(D),
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Let | Ip) be the localized state at the (I,p) site. With

respect to this localized basis
{le>;I=—oo,...,0,...,oo;p=1,2,...,NM} .

the matrix representation of the operators H; and Hj ;4
are

H(Dyy= |Ip)e),{Ip | ifp=g,

= |Ip)t(I,Dy(Iq | if p#~q,
and
AL I+1) 0= [Ip)t(L,I1+1),({I%1,q | . (8)

The matrix representation of the Green’s-function opera-
tor can be put in the similar form

where z =FE +i7 is the complex eigenenergy and 1 is the
unit operator. The equation of motion for the Green’s
function,

zG=1+AG , (10
can then be expressed in the matrix form as

Z1-AWGUN=186;+3 H(I,K)G(K,J)
K

=18, +HU, I -1)6U —1,7)

+HLI+DGUI+1,0). (11

With the blocks playing the roles of single sites, Egs. (2)
and (11) have exactly the same forms as their counterparts
in the single-chain tight-binding Anderson model with
nearest-neighbor-site hopping. Consequently, similar to
site decimation, here we can introduce block decimation
to derive the recursion relation for renormalization. The
method is well known, so we will only write down the re-

. 1 cursion relation for G(I. ,I) which will be uged to calculate
G(IJ)y=|Ip) |{Ip| 1 H |Jg) |{Jq]| , (9)  the density of states. After a renormalizations the results
are
]

(Z1-AeDIGUD=1+HLI-1)6 U -1, D+ALI+1)6 I +1,1), (12)
Aeh=H*\DO+A*LI-D[Z1-A*'\U-D]'A* T -1,1)

+H LI+ DA-A U+ D]1T'A* T +1,D (13)

and

AL 1+ )=A L1+ D[Z1—A* U+ D] "B U +1,1+2). (14)

Since the site energies €(I), and the hopping integrals ¢(I,J )pg are random numbers, the above recursion relations are
for a given configuration specified by the values of the site energies and the hopping integrals. When the blocks are
decimated, all possible configurations of the decimated blocks must be taken into account. Let IT(J )¢ be the probability
that the Ith block is in the &£th configuration. The configuration average over the (I +1)th block in (13) and (14) leads to

AYD=HA°"\D+3I0U - DA LI-D[Zi-A* I —D]'B* T —1,D)
£

+3OU+DH LI+ DI -A* T+ D] BT +1,1) (15)
¢

and

B It D=3 MU+ DA LI+ DA A" q 1)) H e 1+1,1+2) . (16)
£

[

The effective coupling H %I, I+1) gets weaker after
each renormalization. As a— « the fixed point is deter-
mined from H%1I,I+1)=0. The Green’s function

G(LI) for the &th configuration of the Ith block is then
diagonalized and expressed as

From the configuration-averaged Green’s function

G(z;D=3 (DG (z;D);, (18)
§

we can calculate the density of states

G(z;Dg= lim G, D= lim [Z1-A*D]-'. (7
a— oo

a— oo

p(E)=— 1 lim Im Tr8(E +in]) . (19)
T n—0
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FIG. 2. The DOS and the localization length for x =0.01.
(a) 500-atom exact solution, (b) M =1 renormalization result,
and (c) M =2 renormalization result.

Although the above analysis is valid for an arbitrary
size of the block, in this paper we will only present the re-
sults for two coupled chains with both nearest-neighbor
interchain and nearest-neighbor intrachain hoppings.
However, we should point out that even for only the
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FIG. 3. Same as Fig. 2 for x =0.1.

nearest-neighbor intrachain hopping, it is important to
choose the longitudinal dimension of the block M greater
than 1 in order to obtain the correct localized cluster
states. Since each configuration of the block is calculated
separately, cluster states of the size N XM are treated ex-
actly. Therefore, in our calculation we fix N =2 but in-
crease the value of M to achieve convergent results.

We consider a simple random A4;_,B, alloy. The site
energy of the A atoms is E,=1 and of the B atoms is
Ep=—1. The nearest-neighbor hopping is #(u,u); i+
= —0.5 for intrachain and 7(1,2);=¢(2,1);=—0.1 for
interchain hopping. We have computed the density of
states (DOS) for three values of x =0.01, 0.1, and 0.5.
For each case we also compare our calculation to the ex-
act solution which is obtained by first simulating a ran-
dom alloy of 500 atoms and then solving the eigenvalue
problem numerically.

Figure 2 shows the DOS for x =0.01. Part (a) is the
500-atom exact solution, consisting of a continuous spec-
trum for extended states and a sharp low-energy peak
marked as peak 1. From the corresponding eigenfunction
we can identify the origin of this peak 1 as a single isolat-
ed B atom. The probability of having a pair of nearest-
neighbor B atoms is x2=0.0001. Therefore, for a finite
system of 500 atoms, such a pair does not appear.

Parts (b) and (c) of Fig. 1 are the block-renormalization
results for block size M =1 and 2, respectively. At the
stage M =2 the continuous spectrum already converges to
the exact solution. However, in the low-energy region, not
only is peak 1 slightly broadened, but also two new peaks,
2 and 4, appear. Later we will prove that these two new
peaks are due to a pair of nearest-neighbor B atoms.

For numerical calculation the fixed point is reached
when the effective coupling H (I, I+1) becomes smaller
than the numerical lower bound of the computer. For
given energy E this occurs at different values of a(E).
We can define a “localization length”
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FIG. 4. Clusters of B atoms (marked by large dots) in a
computer-simulated two-chain 500-atom system for x =0.1.
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FIG. 5. The DOS for x =0.1. (a) 500-atom exact solution,

and (d) M =3 renormalization result. Only the lower-energy
part of the spectrum is shown.

L(E)=M?2%E) (20)

as a relative measure of the electron localization. At the
bottom of Fig. 2 we have shown the behavior of
log oL (E) for the whole spectrum.

Similar plots are given in Fig. 3 for x =0.1. The low-
energy part of the exact solution [part (a)] from peak 3 to
peak 5 corresponds to various types of cluster states.
Peak 1 is caused by an isolated B atom as we have men-
tioned before. The other kinds of clusters of B atoms
which we can identify for the exact solution are shown in
Fig. 4. The lattice site is occupied by a B atom if it is
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FIG. 6. The DOS and the localization length for x =0.5. (a)
500-atom exact solution, (b) M =1 renormalization result, (c)
M =2 renormalization result, and (d) M =3 renormalization re-
sult.

marked by a large dot. Otherwise, it is occupied by an A4
atom. The bonding and the antibonding orbitals of the
three clusters in row 2 of Fig. 4 produce, respectively,
peak 2 and peak 4 of exact solution. Similarly, peaks 3
and 5 of the exact solution are due to the two clusters in
row 3 of Fig. 4. The rest of the clusters in Fig. 4, grouped
into 1-2, can be considered as either larger clusters or col-
lections of interacting smaller clusters of B atoms. This
group 1-2 is responsible to the states between peaks 1 and
2, and between peaks 1 and 4 of the exact solution.

Peak 2 and 4 in Fig. 2 for x =0.01 have exactly the
same energies as those in Fig. 3, and hence are caused by a
pair of interchain nearest-neighbor B atoms. The slight
broadening of peak 1 in part c) of Fig. 2 is now under-
stood as due to the weak interaction between clusters.

Let us return to Fig. 3. The large change of the con-
tinuous spectrum from part (b) (for M =1) to part (c) (for
M =2) is indicated by an arrow. Therefore, the cluster
states have a sizable effect on the whole spectrum. If we
compare parts.(a) and (c) in Fig. 3, we see the significant
difference in the low-energy region and around the edges
of the continuous spectrum. We then continue to calcu-
late these parts of the spectrum with larger block M =3.
The results are shown in Fig. 5 as part (d). This stage of
computation not only reproduces the detailed features of
the 500-atom exact solution, but also reveals the rich
structure as a result of the interaction between clusters.

The localization length L is shown at the bottom of
Fig. 3. If we compare it to its counterpart in Fig. 2, we
see that as x increases, the localization length gets shorter
in the continuous-spectrum region, but longer in the
discrete spectrum region. This is what one would expect.

For x =0.5, the system is a homogeneous mixture of
equal amount of 4 and B atoms. Since one can no longer
define the clusters of B atoms in a host of 4 atoms, the
properties of the system are not dominated by the inho-
mogeneous distribution of clusters of B atoms. Conse-
quently, convergent results can be derived without using
very large block. This is indeed what we have found. In
Fig. 6, when the block size increases from M =1 [part (b)]
to M =2 [part (c)] and to M =3 [part (d)], the DOS has
already exhibited all the features of the 500-atom exact
solution [part (a)]. We have checked that part (d) is the
convergent result. We also see that for the whole spec-
trum the localization length is between 100 and 200 lattice
constants.

It is important to mention that depending on the value
of #(u,v);; and the number N of coupled chains, one may
need a very large block size (large value of M) in order to
obtain convergent results. It seems that there is no simple
way to estimate the critical size of the block for given
t(u,v); and N. The convergence has to be checked
separately for each individual case.

To close this paper, we would like to emphasize that
not only 6(1,[), but also G(I,J) with IJ can be derived
from (11) by block renormalization.
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