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We describe a comprehensive neutron scattering study of a- and B-O,. In a-O,, an inelastic
feature at 10 meV is identified with the b* /2 zone boundary, enabling the first measurement of the
intrasublattice exchange in this system. We find the intrasublattice exchange constant to be
—1.240.1 meV. Taken in conjunction with the intersublattice exchange, —2.4 meV determined
from magnetic susceptibility, we find that the system is very close to a magnetic instability. The a-
phase staggered magnetization drops with increasing temperature, extrapolating to a purely magnet-
ic transition at 31 K, which is 7 K above the a- transition. This is only 40% of the mean-field or-
dering temperature, implying that the magnetic couplings are predominantly two-dimensional (2D).
B-0, has 2D short-range magnetic correlations. These results are discussed in light of a model of
magnetoelastic coupling in a frustrated triangular antiferromagnet.

I. INTRODUCTION

The magnetism of solid oxygen has generated much
confusion. a-O, is one of the only localized-spin systems
in which the exchange interaction results from the direct
overlap of magnetic orbitals. Nevertheless, no complete
description of the magnetic behavior has yet been accept-
ed. One can identify two reasons for this difficulty: the
lack of sufficiently large single crystals required for many
measurements, and the interaction of magnetic and lattice
degrees of freedom.

In this paper we describe a series of elastic and inelastic
neutron scattering experiments on powders of a- and S-
O,. The techniques used enable us to separate lattice and
magnetic excitations, and to study the elementary excita-
tions as a function of momentum and energy. A con-
sistent picture of the magnetic structure of both phases, as
well as the mechanism for the a-f8 transition, emerges
from our analysis.

Magnetically, the low-temperature phases of O, can be
modeled with antiferromagnetic interactions on a two-
dimensional (2D) triangular lattice. The fact that no ar-
rangement of classical spins satisfies the magnetic interac-
tions suppresses the transition temperature, so that 5-O,
has only short-range magnetic order. a-O, circumvents
the magnetic frustration by means of a lattice distortion,
so that a two-sublattice magnetic structure is favored.
Each spin has four nearest neighbors on the opposite mag-
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netic sublattice, and two next-nearest neighbors on the
same sublattice. It is quite plausible that the competition
between the relief of magnetic frustration and the elastic
strain energy results in a ratio of next-nearest to nearest-
neighbor magnetic interactions which is less than unity,
but not negligible.

We review the current status of knowledge of the mag-
netic interactions in a-O, in Sec. II, and present our neu-
tron measurements on a- and $-O, in Sec. III. Section IV
discusses the implications of this work, particularly in
reference to the a-f transition. This work has been sum-
marized in a preliminary communication.’

II. REVIEW OF MAGNETIC INTERACTIONS IN -0,

The choice of magnetic interaction parameters in a-O,
has been rather controversial, with different experiments
yielding apparently vastly different results. In a
comprehensive survey, DeFotis was unable to bring all of
the work into accord.? In this section we review some of
the previous work, with a particular emphasis on optical
properties and susceptibility.

The inset to Fig. 1 shows the lattice and magnetic
structure of a-O,. The structure is derived from a rhom-
bodedral lattice of stacked triangular sheets by a small
distortion within the basal plane. Magnetically, a-O, is a
two-sublattice antiferromagnet (AF), with spins that are
oriented in the plane, directed along lines parallel to the b

1 ©1986 The American Physical Society
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FIG. 1. Intensity of a-Oz( magnetic (To1) diffraction peak
versus temperature. Smooth curves show the sublattice magnet-
ization for K;NiF, (Ref. 3) and the Ising model (Ref. 4).
Dashed line shows the in-plane lattice strain determined from
Ref. 5. Inset shows the lattice and magnetic structure of a-O,
(Refs. 5—7). The conventional unit cell, indicated by monoclinic
translation vectors, contains two molecules, and is also the mag-
netic cell.

axis.” Each spin is therefore surrounded by four nearest
neighbors on the opposite magnetic sublattice, and two
next-nearest neighbors on the same sublattice, all within
the same ab plane. The nearest neighbors on the adjacent
planes are also on the opposite sublattice.

The magnetic electrons in the O, molecule come from
one unpaired 2p atomic orbital on each atom. Hund’s
rules imply that these combine to form a ground state
with orbital angular momentum L=0 and spin S=1.
Various interactions within the free molecule and between
molecules in the solid act to split the single-molecule
ground state.

We describe the magnetic system with the spin Hamil-
tonian,

H=-23 J;8;S;+ 3 (—DS,L—D'S;+D'S}). (1)
(ij) i

Here the x and z axes are in the average spin ( b-axis) and
molecular (c¢* axis) directions, respectively. The first sum
runs over pairs (ij) of sites with a non-negligible ex-
change interaction. In the present case, J;; takes the value
Jnn for four nearest neighbors in the ab plane, which are
on the opposite magnetic sublattice, Jyyn for the in-
trasublattice interaction with two next-nearest neighbors
in the plane, and J, to four opposite sublattice neighbors
on adjacent ab planes. Because the exchange interaction
depends on the overlap of orbitals, one expects that J
drops rapidly with increasing intermolecular separation.
For this reason, we neglect further neighbors. If
D =D’> 0, the model has easy-plane magnetization-(XY)
anisotropy; if D>0 and D’'=0, the anisotropy is Ising-
like.

In general, the most straightforward probe of magnetic
properties is the magnetic susceptibility. In the limit of

low temperature, the mean-field susceptibility of the Néel
state of a two-sublattice AF, for applied field perpendicu-
lar to the spin easy-magnetization axis, is given by
N g2 2
X?’IF — _.ﬂ . )
417 |

Here J is the sum of all intersublattice exchange con-
stants. In the present case, J =4Jyn+4J,. Corrections
to the Néel state enter through a multiplicative factor,

X, =[1—AS/S —i(a) MF . 3)

The two corrections are due to spin-wave corrections to
the Neéel state; the first is due to the change in magnetiza-
tion, the second to corrections to the ground-state ener-
gy.2® Both terms depend weakly on the anisotropy via
the parameter a, defined as (DD')!/?/(z |J | ), where z is
the number of neighbors. Based on the exchange and an-
isotropy parameters discussed below, a is approximately
0.01, a sufficiently small value that the a=0 value of
these corrections may be taken.

In view of the uncertainty of the dimensionality of the
magnetic coupling, we consider both 2D and three-
dimensional (3D) values of these corrections. For the
Heisenberg AF on a square lattice, Lines and Colpa et al.
give AS=0.197 and i(0)=0.08."° In three dimensions,
both corrections are significantly smaller: AS=0.078 and
i(0)=0.04. We therefore see that the spin-wave correction
lowers the susceptibility of a 2D Heisenberg magnet by
28%, and that of a 3D magnet by 12%.

Experimentally, DeFotis has determined X,=(2.4
+0.03)X 103 cm3/mole.? Meier, Schinkel and deVisser'!
are in agreement, with a published value of 2.46x 1073
The mean-field analysis then leads to intersublattice ex-
change Jyn +J; = —3.4 meV= -39 K. Corrections for
spin deviation decrease this number as much as 28%, de-
pending on the dimensionality.

DeFotis’> and Meier et al.'! have presented this value
for Jyn, without the spin-wave corrections. Meier et al.
have also argued that the dependence of the susceptibility
on temperature through the a and B phases can be ex-
plained by assuming a power law variation of exchange
interaction on intermolecular separation, modeling the B
phase as an ordered two-sublattice AF. They have further
extended this analysis to the pressure dependence of the
susceptibility of @ and y phases.!! This leads to an esti-
mate of the intrasublattice exchange of Jynn=—0.9
meV.!!

We next take up a discussion of the magnetic dynamics
in a-0,. Lindgard et al.'? give the magnon spectrum for
the Hamiltonian of Eq. (1) with S=1,

EXQ)=(2—2J, =25 +DP?— [, +(—19D']*, (4

where Jo= 3, J;e'Y" with the sum running over neigh-
bors on the same sublattice, and J, is similarly defined
for opposite sublattice neighbors. a={0,1} is the branch
index. To lowest order, the ground-state-energy correc-
tion discussed above also increases all of the spin-wave en-
ergies by a factor 1 + i(a).® We note several differences
with other published magnon dispersion relations.
Marshall and Lovesey treat the case of Ising-like anisotro-
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TABLE 1. Magnon energies at q=0 and zone boundaries, calculated from Eq. (4). The lowest-crder
correction for spin deviation multiplies these energies by 1 + i (a) (Ref. 8).

q E(q)
(0,0,0) [(—16Jyn—16J, XD +D’)]'?
(3,0,0),(%,0,— 3) —8Jan—8J,4+D
(0,3,0) —8J\n—8J, +8Innn+D
(0,0,) [(—8Jun—8J, +D)*—(—8Jxn+8J+D")?*]?

py of the form +uS,H,, with anisotropy field H ,."
Their results are the same as Eq. (4) with D’'=0, except
for a factor of 2 in the anisotropy. This is evidently the
result of carrying out one fewer term in the 1/S expansion
of the Holstein-Primakof transformation. Several other
authors have ignored or incorrectly treated intrasublattice
couplings and give expressions which are approximately
the same as Eq. (4).14~!" The difference appear to lie in
the order in which approximations are made in deriving
the dispersion relation.

In the following we will be concerned with magnon
densities of states, and in particular with the peaks of the
density of states at zone-boundary (ZB) energies. The ZB
energies are listed in Table I.

Wachtel and Wheeler identified two antiferromagnetic
resonance (AFMR) modes at 6.4 and 27.5 cm™! in in-
frared absorption.!* Their magnetic nature is demonstrat-
ed by the fact that the energies depend upon applied mag-
netic field. Meier et al. have extended these measure-
ments to higher fields, and have shown that single-
molecule anisotropies derived from the free-molecule
value [D +D'=0.5 meV (Ref. 18)] and the calculated
magnetic dipole energy are unable to match the observed
antiferromagnetic resonance frequencies.!” They suggest-
ed magnon-phonon hybridization as a possible explana-
tion for the observed frequency shifts.

The optical-absorption spectrum of a-O, is dominated
by double-molecule transitions with a rather complicated
sideband structure.”” The absorption lines are generally
blue-shifted by some 75 cm ™! relative to the free-molecule
energies. Evidently, the absorption of light is accom-
panied by the creation of excitons, magnons, etc. Wachtel
and Wheeler interpreted the 75-cm ™! shift in the double-
molecule transitions as twice the energy of the excited
state of a single molecule in the environment of the crys-
tal.'* They assumed all intersublattice exchanges were
equal. In that case, there is one zone-boundary energy,
which is essentially equal to the single-molecule excitation
energy, leading to exchange energy Jyn=J,=-—0.25
meV.

Bhandari and Falicov have presented a more detailed
model of the intermolecular interactions which is compa-
tible with all of the details of the optical-absorption spec-
tra.2’ They regard the derived parameters as being only a
rough estimate, but they are in close agreement with the
present work.

The relative strength of intra- and interplanar exchange
interactions has been widely discussed, with no real con-

sensus. The nearest-neighbor spins on adjacent planes
have oppositely directed spins,® implying that J, <O.
Burakhovich et al. argued that ryy<r, implies
| Jnn | >> |J1|. They proposed a model in which 37.5
cm™ ' was the zone boundary perpendicular to the planes
and 75 cm~! was the in-plane zone boundary.!® Little
justification was given for that particular assignment of
energies. Slyusarev et al. sought another means to deter-
mine the relative inter- and intraplanar exchanges.'® They
fixed the easy-plane single-molecule anisotropy D + D’ at
the free-molecule value of 4 cm™!, and set an average
zone-boundary energy to 37.5 cm~!. This resulted in
J, /Inn=0.01, and Jyn=22 meV. The result is mean-
ingless, based as it is on the assumption of a single zone-
boundary energy in an anisotropic system.

Clearly, the prime difficulty with these accounts is the
fact that it is not clear what ZB magnon energy dominates
the optical absorption. Except for Bhandari and Falicov,
all of these interpretations have ignored the significance
of the intrasublattice interaction, and the exchange con-
stants derived are incompatible with the magnetic suscep-
tibility.

Several groups have tried to determine Jyny and J,
from less direct methods, such as magnon heat capaci-
ty,>>!5 parallel susceptibility,” or AFMR frequencies with
assumed anisotropy.>'® These measurements disagree
with the exchange derived from X, leading some authors
to claim that there is a large uncertainty in the experimen-
tal determinations of interaction parameters.>?"??> This
criticism is unjustified, inasmuch as the analysis of in-
direct experiments is based upon generally weak assump-
tions, such as the accuracy with which phonon heat capa-
city may be subtracted, the applicability of magnon theory
at high temperature, and the neglect of crystal field ener-
gies. We emphasize that the susceptibility measurements
are in good agreement, with the largest uncertainty in the
determination of Jyn+J, arising from the spin deviation
correction.

More recently, the intrasublattice exchange Jynn has
attracted some attention. Krupskii et al. inferred that
JNNN <0 from precise measurements of the lattice con-
stants.” They noted that the thermal expansion coefficient
along the monoclinic b axis was negative near the a-8
transition temperature. Because the magnetization de-
creases with increasing temperature, this implies a mag-
netic repulsion between molecules on the same sublattice.
They were not able to quantify this relation, partly be-
cause they had no direct measurement of the staggered
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magnetization.

The first measurement of JynN Was given in a previous
communication by the present authors.! Inelastic polar-
ized neutron scattering shows a distinct maximum at 10
meV (81 cm™!). The basic strength of the neutron
scattering technique is the fact that the cross section can
be modeled quantitatively. We have interpreted this as a
peak in the magnon density of states at a zone boundary;
model calculations show that the b*/2 energy strongly
dominates the density of states. This implies that
JanN—INn—J 1 =—1.2 meV. Temporarily assuming
that the couplings are 2D (J; =0), the susceptibility leads
to a spin-wave corrected Jyn=—2.4 meV, so that
Jann = — 1.2 meV. In Sec. III we present the model cal-
culations and discuss this interpretation in full.

On the theoretical front, van Hemert et al. performed
an ab initio calculation of the magnetic interaction be-
tween O, molecules.?! They found Jyn= —1.08 meV,
and suggested that lattice motions might increase the ef-
fective exchange toward the experimental value. For mol-
ecules oriented parallel as in a-O,, their exchange may be
represented as J(R)<exp(—R/0.27 A), which implies a
value of Jynn/Jnn=0.42. Finally, their calculated J,
was + 0.05 meV, but they argued that an appropriate
average over lattice motions could change the sign of this
number. The coupling between magnetic and lattice de-
grees of freedom has been considered in greater detail by
Jansen and van der Avoird, who show that the lattice
motions actually decrease the effective exchange slightly
to —1.0 meV.2

III. EXPERIMENTAL RESULTS

The samples of solid oxygen were prepared by condens-
ing oxygen gas of 99.98% nominal purity in a cylindrical
cell, 1.0 cm diameter by 2.5 cm long. This was cooled
through the ¥ phase into the 8 and a phases in approxi-
mately one hour. The experiments were performed on the
H-4 and H-8 spectrometers at the High Flux Beam Reac-
tor at Brookhaven National Laboratory.

We performed several checks for preferred orientation
in the sample. @ scans about the sample axis showed a
variation of 10% (standard deviation) in the 8-O, (101)
and (003) (hexagonal indices) Bragg peaks. The ratio of
these two intensities was 2.1, compared with an expected
ratio of 4.9 (product of multiplicity, structure factor
squared, Lorentz factor, and Debye-Waller factor ~7).
We therefore conclude that there is little preferential
orientation within the plane, but that the hexagonal c axis
tends to be oriented along the sample axis. Deviations
from a random powder of this magnitude do not have a
qualitative effect on the interpretation of the present ex-
periment.

A. a phase, diffraction

Figure 1 shows the temperature variation of the mag-
netic (101) diffraction peak, measured with pyrolytic gra-
phite (002) monochromator and analyzer, 20’-40’-40’-40’
collimation, and a pyrolytic graphite filter. The incident
neutron beam was masked to 6 mm height, in order to
minimize possible thermal gradients in the sample. The

intensity of this peak is proportional to the square of the
sublattice magnetization. The data were taken on warm-
ing. At 23.5 K, we observed a slow conversion from a to
B phase. Note, however, that no 5-O, diffraction peaks
were seen in any scan below this temperature. The square
of the staggered magnetization has fallen to roughly 65%
of its saturated value at the first-order a-B transition.
The magnetization curve was the same on cooling, with
hysteresis of approximately 2 K at the transition. It is of
interest to compare this magnetization curve with other
systems. The smooth curves in Fig. 1 show the diffrac-
tion peak intensity in K,NiF,, a planar Heisenberg AF,>
and the square of the magnetization for the 2D Ising
model on a square lattice.* While the data for a-O, do
not get sufficiently close to a purely magnetic transition
to make any judgment of critical behavior, the shape of
the magnetization curve is certainly more similar to that
of the Ising system then the continuous-symmetry Heisen-
berg magnet. Evidently, if the a-O, lattice were held rig-
id, the magnetic order would disappear at a critical tem-
perature in the range 25—32 K.

Also shown is the in-plane distortion determined by
Krupskii et al.’> It is evident that the loss of magnetic or-
der due to thermal fluctuations is stronger than the relax-
ation of the strain. We will return to a discussion of the
coupled magnetic and lattice degrees of freedom at the a-
B transition in Sec. IV.

B. a phase, inelastic

In the ideal case of a single-crystal sample, neutron
spectroscopy can be used to map out the dispersion curves
of phonons or magnons. Hence, the main obstacle to the
determination of magnetic exchange parameters is the
lack of single crystals of a-O,. Nevertheless, it is possible
to obtain significant information about the magnetic
dynamics from inelastic scattering measurements on
powders. For a powder sample, one may crudely think of
the inelastically scattered neutron intensity as a measure
of the density of states at specified energy and magnitude
of the scattering wave vector |Q|. For a detailed
analysis, one must take into account the neutron scatter-
ing cross section, which depends on Q. In general, a neu-
tron interacts with both the nuclei and the magnetic mo-
ments of a target. In order to restrict our attention to the
magnetic subsystem, we have applied polarized scattering
techniques to this system.

The polarized neutron measurements were made with
Heusler alloy monochromator and analyzer, with 0.2-T
guide fields arranged so that the neutron spin parallel to
the scattering vector was resolved. In this configuration,
magnetic interactions flip the neutron spin, whereas nu-
clear scattering does not.”* These measurements were
made with a constant final neutron energy of 31.4 meV,
40'-40'-open-40’ collimation, and no filter. The second-
order reflections from the monochromator and analyzer
are essentially unpolarized. Any feature in the inelastic
spectra due to second-order contamination would there-
fore appear equally in both flipper-on and flipper-off
channels. The flipping ratio was R=10. We corrected
for the finite flipping ratio by subtracting a fraction 1/R
of the signal with the flipper off from that with the
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FIG. 2. Panels (a) and (b) show the non-spin-flip and spin-
flip inelastically scattered neutron intensity from powders of a-
O,. Panel (c) shows the result of the model calculation discussed

in the text for 2D magnetic coupling parameters, Jyn = —2.44
meV, Jnnn=—1.22 meV, J, =0, D +D'=0.25,
D —D’'=0.014.

flipper on, to obtain the spin-flip cross section, and like-
wise for the non-spin-flip cross section.

The resulting contour map of intensity as a function of
the magnitude of neutron momentum difference and ener-
gy loss is shown in Fig. 2. The magnetic (101) and (100)
Bragg peaks are visible in the spin-flip intensity at 1.32
and 1.58 A~!; the nuclear (001) Bragg peak at 1.68 A~ ! is
in the non-spin-flip channel. Scans at selected wave vec-
tors, extended to higher energy, did not reveal any further
excitations.

The principal inelastic feature seen in the data of Fig. 2
is the peak at 1.3 A~!, 10 meV. This feature is nearly
resolution limited in energy. The analysis of this data is
based on the identification of this 10-meV feature with a
peak in the magnon density of states. An alternative in-
terpretation, that of magnetovibrational scattering, is
dismissed in the Appendix.

The total intersublattice exchange, Jyn+J;, is deter-
mined from the susceptibility. Using the ZB energies
from Table I, we see that this implies that the (5,0,0) and
(—+,0,3) ZB energies are on the order of 20 meV, in-

dependent of the relative magnitudes of Jyy and J,. If
this were the only singularity in the density of states, it
would appear to contradict the description of the 10-meV
feature as a ZB magnon. However, Table I shows that the
(0,7,0) ZB can have a lower energy, depending on the
value of JNNN'

We proceed by considering the magnon density of states
for the dispersion relation given by Eq. (4). Figure 3
shows the magnon dispersion curves along several direc-
tions for three different choices of exchange parameters.
In all three cases, the total intrasublattice exchange was
chosen to agree with the spin-wave-corrected magnetic
susceptibility, as described in Sec. II. We calculated the
magnon density of states by sampling points at random
within the first Brillouin zone. The strongest contribution
to the magnon density of states comes from the van Hove
singularity at the (0 3 0) ZB. This observation may be ex-
plained by noting that this point is a saddle point in the
dispersion relations, so that the constant-energy surface at
this energy covers a large region of the interior of the
zone. Figure 3 shows that this is the case regardless of
whether 2D or 3D magnetic exchange couplings are
chosen.

Figure 3(a) points up an interesting effect: If
—JnNN > —(InN+J1 )72, the calculated spin-wave ener-
gy becomes imaginary for a region along the (010) direc-
tion. This is a manifestation of the fact that the Néel
state is unstable for sufficiently strong antiferromagnetic
intrasublattice exchange.?*

T
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FIG. 3. Magnon dispersion curves and density of states for
three sets of magnetic interaction parameters, constrained to
agree with the experimentally determined AFMR energies and
the magnetic susceptibility of a-O,.
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In order to confirm the assignment of the 10-meV ridge
in the inelastic neutron scattering measurements as the
peak in the density of states at the (0 + 0) ZB energy, we
have caiculated the distribution of inelastically scattered
neutrons from a powder. Such a model calculation is
necessary because the neutron scattering measurements
are performed at specified wave vectors rather than aver-
aged over the entire zone, and the cross section has a rath-
er complicated dependence on wave vector.

Marshall and Lovesey!® give the dynamical structure
factor for the creation of one magnon in an AF as

S(Q)=(1+Q2)[ug+(—1"w,I?
X 8(E,(q)—#w)8(Q—q—7) . (5)

Here, #iw is the neutron energy loss, #( kiz—k})/ZM, Q,,
is the component of the unit vector along Q in the spin
(X) direction, q is a vector in the first Brillouin zone, and
7 is an element of the (magnetic) reciprocal lattice. m =0
if 7 is a nuclear peak (Miller indices h +k even), 1 if ris a
magnetic peak (h +k odd). The factor [uq—+-(—1”‘)vq]2
depends on the Holstein-Primakof transformation coeffi-
cients. We take?

[ug+(— 1™y ]2
2Jo—20y—2J +D —(—1™[2J +(—19D’]
E,(q) )

This contains the strongest dependence of the magnon
cross section on energy, approximately [E(q)]™' in a
zone with an allowed antiferromagnetic diffraction Bragg
peak.

The neutron scattering cross section o(Q,w) is propor-
tional to?

exp( —2W)[n (fiw)+ 11FH(Q)S (Q,0) ,

where exp(—2 W) is the Debye-Waller factor, n(E) is the
Bose factor [exp(—E /kT)—1]"!, and F(Q) is the mag-
netic form factor.?”’

In the experimental data of Fig. 2, the neutron scatter-
ing cross section in a powder sample was measured as a
function of the energy loss 7w and magnitude of scattered
wave vector Q. These data are compared with the
orientationally-averaged cross section,

0,(Q0)= [ d0qa(Qua) .

We calculated this integral by sampling Qg at random,
calculating E,(Q), and accumulating o(Q,w) into bins 1
meV wide.

Finally, the powder-averaged structure factor must be
convoluted with the spectrometer resolution function.
The resolution ellipse, obtained by integrating the
Cooper-Nathans?® resolution function over the transverse
component of Q, is nearly aligned with the momentum
and energy axes at the point (1.5 A~!, 10 meV), where it
has half width at half maximum (HWHM) of 0.05 A~ in
Q and 2.5 meV in energy. Away from this point, it is
tipped, so that the experiment integrates over a somewhat
larger range of wave vectors. Nevertheless, its projection
remains sharper in Q than the calculated variation of o,,.
The resolution correction therefore consists only of a con-

=28

volution of 0,(Q,w) with a Gaussian of 2.5 meV HWHM
in fiw.

The resulting contours for the case of 2D magnetic cou-
plings, consistent with the spin-wave-corrected magnetic
susceptibility, Jyn=—2.44 meV, Jynn=—1.22 meV,
J, =0, D=0.134 meV, D’'=0.120 meV, are shown in Fig.
2(c). The agreement between the model calculation and
the experimental data is generally good. The decrease in
intensity with increasing Q, due primarily to the magnetic
form factor, is in agreement with experiment. The model
calculation has the peak of the scattering map at slightly
higher energy and smaller wave vector than the experi-
mental results.

Note that the choice of model interaction parameters is
constrained by the requirement of magnetic stability
—JNnN < —(InN+J1)72. Tt is not possible to lower the
calculated energy of the peak, into better agreement with
experiment, by making Jyyn more negative without
violating this stability requirement.

We have also considered 3D magnetic couplings, i.e.,
J, nonzero. Because of the smaller spin-wave renormali-
zation, the fit to a 3D model consistent with the magnetic
susceptibility is significantly worse. Consider the extreme
case of J, =Jyny=1.5 meV. Figure 3(c) shows that, for
parameters just at the edge of magnetic stability, the dom-
inant (05 0) ZB energy is 12.5 meV. The asymmetry of
the density of states shifts the peak to slightly higher en-
ergy, 14 meV. It is expected that the spin-wave renormal-
ization effects would be predominantly 3D even for J,, a
rather small fraction of Jyy. These results therefore pro-
vide indirect evidence of the 2D nature of the magnetic
couplings.

This analysis is rather sensitive to the spin-wave renor-
malization of the susceptibility and magnon spectrum. If
AS/S is assumed to be larger than the values discussed
above, it reduces Jyy determined from the susceptibility,
which in turn lowers the expected energy of the magnon
ridge seen in the neutron scattering results. The i(a)
correction is less relevant: For a given value of the sus-
ceptibility, i (a) acts to lower J, but this is canceled by the
increase in E(q).

Another limitation inherent in the present treatment is
the neglect of dynamical spin-strain couplings. It is possi-
ble that the hybridization of magnons and phonons is sig-
nificant, and that the coupled spin-strain excitations have
a lower energy that those of the spin-only system, without
violation of the magnetic stability. Some work has been
done along these lines,? but there is not yet any direct dis-
cussion of the stability issue.

The general agreement between model and experimental
results shows that the 10-meV feature in the neutron
scattering spectra is indeed dominated by the (0 5 0) ZB.
In conclusion, the neutron inelastic scattering measure-
ments on a-O, powder provide a direct measurement of
the combination of exchange constants,

8(JNNN—INN—J 1)+ D =10%1 meV ,
and provide less direct evidence that J, /JyN is small.

We discuss the interpretation of this result in the context
of other measurements and theory in Sec. IV.
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C. B phase, quasielastic

The structure of B-O, is rhombohedral, made up of tri-
angular sheets of molecules with the average molecular
axes perpendicular to the sheets.’ This structure is ob-
tained from the a phase by relaxing the in-plane distor-
tion, so that each molecule is surrounded by six neighbors
separated by 3.30 A. Molecules on a given plane are in
the centers of triangles of molecules in the adjacent
planes, with an ABCABC stacking sequence.

It is well known that the lowest energy for classical AF
spins on a 2D triangular lattice is the three-sublattice
Yaffet-Kittel® structure shown in Fig. 4. Several authors
have ?omted out the possible relevance of this structure to

0,31 The fact that each molecule is equally close to
1ts three neighbors on each adjacent plane implies that
there is rigorously zero magnetic coupling between adja-
cent planes of the Yaffet-Kittel structure, justifying the
2D description of this magnetic structure for -O,. How-
ever, in the first neutron diffraction work on B-0,, Collins
showed that there was no long-range magnetic order.?
Later, Stephens et al. noted that the diffuse scattering ob-
served by Collins is in the position of the expected V'3
magnetic peak of the three-sublattice structure, implying
that there is short-range magnetic order.*!

We have investigated the nature of this short-range or-
der in the B phase was quasielastic neutron scattering.
Polarized neutron scattering, discussed below, establishes
that this diffuse peak is indeed magnetic in origin. Figure
4 compares quasielastic scattering intensity in two- and
three-axis modes of neutron analysis. In both cases, the
incident neutron energy was 13.5 meV, with 20’ collima-
tion. The two-axis configuration integrates over neutron
energy changes, so that it measures instantaneous correla-
tions between spins. The resulting spectra show a diffuse
peak at the V3 position of 1.28 A~ We observe
no change in the shape of this peak between 27 and 41 K,
essentially the full range of stability of 8-O,. On the oth-
er hand, in the triple-axis configuration, the energy resolu-
tion is 0.4 meV HWHM, and no peak in the diffuse
scattering is observed. This indicates that the 1.29- A-!
peak results from dynamical correlations, with an energy
scale greater than 0.4 meV. We shall return to a discus-
sion of the energy scale of these fluctuations below.

In view of the lack of coupling between layers in the
Yaffet-Kittel spin structure, it is appropriate to discuss
the instantaneous spin correlations in a 2D model. If

there were long-range correlations in the plane, the dif-
|

I(Q): foﬂ/Z

where F(Q,B) is the magnetic form factor of the O, mole-
cule at scattering vector of magnitude Q at an angle 8
from the molecular axis.”’” The smooth curye in Fig. 4
shows the result of a fit with 1/k=3.6+1.0 A and a con-
stant background of 75 counts. The fitted value of « de-
pends strongly on the assumed background, causing the
large uncertainty in k. We note that the asymmetry of the
Warren-model line shape is here masked by the rapidly
decreasing molecular form factor.
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FIG. 4. Quasielastic scattering from $-O; in the region of the

3 magnetic wave vector. The smooth curve is a fit to a
powder-averaged 2D Lorentzian, discussed in the text. The in-
set shows the three-sublattice magnetic structure, described for
B-0,.

fraction from a powder would assume the characteristic
sawtooth waveform first discussed by Warren.3* This line
shape has a sharp edge below the peak, which provides a
measure of the correlation length, and a broad trailing
edge, due to the projection of Bragg rods onto the scatter-
ing plane. The sharp leading edge is not observed in 5-O,,
implying that the correlations have relatively short range.
We assume that the spin correlations decay exponentially
with a distance 1/k, and calculate the diffraction profile
by averaging over crystallite orientations. We take the
energy-integrated structure factor for a single plane to be
given by

P

S Q=———"7——, (6)
K+ |Q—qo|?

where Q; is the projection of Q onto the plane and q is
the zone center of the V'3 magnetic structure. The aver-
age over orientations is performed as described by
Stephens et al.,* yielding an intensity proportional to

w/6
d cosy fo do K2FX(Q, m/2—)(kK* + Q? cos’p+ g —2q0Q cosycosd) !, @)

[
D. B phase, inelastic

Having established the spatial extent of the magnetic
correlations, we take up a discussion of their energy scale.
Figure 5 shows the results of a polarized neutron scatter-
ing study, resolving the signal into nuclear and magnetic
components. The neutron measurements were made in
the same configuration as the a phase data of Fig. 2. The
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FIG. 5. Inelastic neutron spectra from powdered -O,.

non- spm—fhp cross section shows the (003) Bragg peak
at 167 A~! and the (101) Bragg peak visible at 1.18

!, due to second-order contamination in the beam. Be-
cause this second-order contamination is unpolarized, it
makes a comparable contribution to the spin-flip measure-
ment. The diffuse scattering centered around 1.3 Al ap-
pears only in the spin-flip cross section, and has an energy
scale of ~6 meV. The energy resolution of these mea-
surements is 2—2.5 meV HWHM, sufficiently poor to
preclude a determination of whether the inelastic scatter-
ing peaks at zero or at finite-energy transfer.

Before discussing these results, we consider the magnet-
ic scattering from a disordered magnet in two limiting
cases. DeGennes has discussed the inelastic scattering
from a paramagnet in the high-temperature limit.>* For
large momentum transfer, one expects a Gaussian distri-
bution in energy, having a standard deviation

2[28(S + ]2 |J | . (8)

The distribution becomes narrower and changes its shape
as the scattered wave vector is reduced to values compar-
able to 7/a, where a is the interspin separation. The
energy-integrated dynamical structure factor,
f S(Q,0)dw, is independent of wave vector Q, so that
the only dependence of the scattering cross section on Q is
through the magnetic form factor. At the opposite limit
is the case of critical scattering in a system with large spa-
tial correlations. Such a system lacks long-range order,
but correlated regions of size / produce a quasielastic peak
of width /™, centered at the position of the Bragg peaks
of the incipient ordered phase. The energy scale of this
critical scattering decreases to zero as the correlations in-
crease.

The case of B-O, appears to lie between these two ex-
tremes, with spatial correlations extending to one or two
nearest neighbors. Interpolating between the experimental
values for the a-phase exchange constants, one derives an
in-plane exchange of — 1.8 meV for S-O,. When this re-
sult is substituted into Eq. (8), it predicts an energy scale
of 7 meV HWHM for the paramagnetic scattering, in
reasonable agreement with the results of Fig. 5.

IV. DISCUSSION

A. a phase

In Sec. III A we described the synthesis of inelastic neu-
tron measurements with existing susceptibility data,
which lead to the result that the intrasublattice exchange
interaction, JynN, has magnitude which is half that of the
total intersublattice exchange, Jyn+J,. A direct inter-
pretation of the susceptibility and neutron scattering re-
sults imply Jynn/Jnn >3, but that would cause the
magnetic structure to be unstable against the formation of
a static spin wave along b*.

A number of authors have argued that the magnetic in-
teraction between adjacent planes is a small fraction of
that within each plane of molecules.!>!®?! None of the
data presently available permits us to quantify the ratio
J, /JnN; however, based on the apparent magnetic transi-
tion temperature, one can argue that the interactions are
principally 2D.

It is useful to review the nature of the magnetic order in
quasi-2D magnets. While it is well known that the 2D
Heisenberg model does not have long-range order at any
finite temperature, 3D magnets comprised of weakly cou-
pled magnetic sheets aquire 3D magnetic order as a conse-
quence of the growth of 2D magnetic correlations. This
magnetic transition takes place well below the mean-field
ordering temperature,

For example, consider the Heisenberg S=1 antiferromag-
net, K,;NiF,, for which the ratio of inter- to intraplanar
exchanges is on the order of 10~%>° This magnet orders
at 36% of TuF, compared with 72% for the analogous
3D system, KNiF;. Other quasi-2D magnets surveyed by
DeJongh and Miedema® with S >1 have T,/Ty in the
range 0.36—0.48.

In the case of a-O,, the data of Fig. 1 shows that the
magnetic system would disorder at a temperature of ~ 30
K if the a-p transition did not intervene. DeFotis arrived
at a comparable value for the hypothesized loss of mag-
netic order in a-O, by extrapolating to the point where
the parallel and perpendicular susceptibilities become
equal.” Taking the (2D spin-wave corrected) value of
JNN=—2.4 meV and considering only the nearest-
neighbor interaction, a-O, has Tyr=100 K. Including
the correction to the total exchange from Jynyn lowers
this by 25% to 75 K. The extrapolated ordering tempera-
ture of 30 K is 40% of this value. This agreement with
other quasi -2D magnets is quite good. On the other hand,
the ratio is well outside of the range of 3D Heisenberg
magnets, 0.70 to 0.81.° It is therefore clear that the loss
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of magnetic order in a-O, is inconsistent with J, /Jyn on
the order of unity, although a quantitative estimate of this
ratio is not possible. In any event, the proximity of the
extrapolated critical temperature to the expected value for
2D couplings leads us to regard the spin-wave correction
to the susceptibility and magnon energies as being correct-
ly given by the 2D values of AS and i(0).

We next discuss the single-spin anisotropy terms, D and
D’. As shown in Table I, these govern the q=0 antifer-
romagnetic resonance (AFMR) energies. The measured
values of the two q=0 energies, 0.8 and 3.4 meV, togeth-
er with exchange constant Jyny= —2.4 meV, leads to the
values D +D'=0.25 meV, D —D'=0.014 meV.

The single-molecule term in the spin Hamiltonian, Eq.
(1), has energy eigenvalues 0, —(D —D’), and —(D +D’).
This Hamiltonian describes a system with easy-plane an-
isotropy in the case that D =D’, so that the single-spin
term has a twofold degenerate excited state with energy
2D above the ground state. In the present case, this excit-
ed state is split by anisotropy within the easy plane,
D’s£D. The fine-structure splitting in an isolated O, mol-
ecule is 0.5 meV,!? twice the value of D + D’ that we infer
from the AFMR energies.

The relatively weaker in-plane anisotropy may be com-
pared with the magnetic dipole energy. For a two-
sublattice antiferromagnet of classical point magnetic di-
poles, the energy per spin is given by

(L r,)
Edipo]e_ 2# z —-_'_!i_— ’
l

where u=2up is the magnetic moment of an oxygen mol-
ecule with a g factor of 2, the sum runs over all lattice
sites r;, and the sign in each term is taken as + for spins
on the same, — on the opposite magnetic sublattice. The
factor + avoids double counting the lattice sum. Consid-
ering only the 12 nearest neighbors, this magnetic energy
per spin is —0.013 meV for spins pointing along +%,
0.016 meV along *¥, and —0.003 meV along +2%. Fur-
ther neighbors make a significant contribution. We have
calculated the energy by summing over all sites within a
circle of radius r., and have checked for convergence as
r.— . There is no systematic effect of 7, on energy for
r. > 12 A; however, one must go out to 30 A for fluctua-
tions of the estimated energies to be less than 1%, as 7, is
varied. The sums converge to —0.009, 0.014, and —0.005
meV for spins oriented in the x, y, and z directions,
respectively. The observed spin direction along X there-
fore minimizes the magnetic dipole energy. Meier et al.
have calculated a dipole energy difference of 0.021 meV
between the ® and § orientations, in basic agreement. 17
This is close to the value determined from the spin-flop
field."”

If we identify the difference in energy for classical spins
pointing along X and § with D —D’, the dipole contribu-
tion to the anisotropy is D —D’'=0.023 meV, nearly twice
that inferred from the AFMR energies.

We therefore see that both the in-plane and out-of-plane
anisotropy energies derived from the spin-wave spectrum
of a-O, are approximately half the expected values.
These differences could be due to intermolecular crystal-
field effects, or to systematic error in the quantum correc-

tions to the magnon spectrum. Because the anisotropies
are a relatively small fraction of the intermolecular ex-
change, it is possible that magnetic coupling to nearby
molecules affects the single-spin energies. It would be in-
teresting to see if crystal-field energies can be derived
from the present level of understanding of O, molecular
wave functions and interactions.?! On the other hand,
quantum corrections to the magnon spectrum may need to
be refined. In Lindgard’s analysis, the anisotropies are
multiplied by a finite spin correction term 1—1/2S.'> 36
For the present case with S=1, it is possible that trunca-
tion of this series may make a significant change to the
anisotropies derived from the magnon spectrum.

B. B phase

Experimentally, $-O, is a paramagnet, with some de-
gree of short-range spin order in a three-sublattice struc-
ture. From the measured a-O, magnetic exchange param-
eters, we can estimate the nearest-neighbor exchange in
B-O,. Assuming a power-law dependence of exchange on
intermolecular separation, J(R) «< R ~" the parameters for
a-0,, J(3.20 A)=—2.44 meV and J(3 43 A)=-—1.22
meV, leads to an estimate of n=10 and a 8-O, exchange
J(3.30 A)=—1.8 meV.

Lee et al. have considered the classical planar antifer-
romagnet on a triangular lattice, and have found that the
three-sublattice state is stable below a transition tempera-
ture = —J.37 For B-0,, that predicts an estimated transi-
tion temperature of 21 K. It therefore appears that the
a-f transition preempts the formation of three-sublattice
magnetic order.

The extent of the magnetic correlations well above this
presumed transition point is a consequence of the 2D na-
ture of the system. Other quasi-2D magnets such as
K;,NiF, show strong magnetic fluctuations well above
their critical temperatures.3 Indeed, in the present case,
frustration appears to be more important than thermal
disorder in destroying the spin order, and so it is not
surprising that the correlation length is independent of
temperature, as shown in Fig. 4.

C. a-B transition

In the previous sections we have described the measure-
ment of the magnetic interactions in a- and B-O,.
Numerous authors have suggested that the distortion of
a-0, from the triangular structure of B-O, takes place in
order to maximize the magnetic energy by readjusting the
distances to neighbors on the same and opposite sublat-
tices.’%31:38:3% We now present a simple model for the a-8
transition in the light of these observations.

Consider an initially triangular array of spins, subject to
elastic and magnetic interactions between near neighbors.
The total energy is given by

H=3 5C(R;—Ry)?-2 2 J(R;)S
(ij)
Here R, is the unstrained bond length, C is the stiffness,
and J(R;;) is a distance-dependent exchange, assumed
negative, which grows weaker with increasing separation.
In order to obtain an analytically solvable model, we
linearize J(R) as

S; . 9)
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J(Ry)=—|Jo|[1—n(R;j—Ro)/Ro] .

We minimize the energy by variation of the parameters
for various assumed spin structures. Consider first the
three-sublattice structure, for which S,»'sz—% for all
neighbors. It is useful to introduce the ratio of magnetic
to elastic energy scales

j=2n?|Jy| /CR}
and the strain
Ujj =(R,'j —Ry)/Ry .

For the three-sublattice structure, it is intuitively clear
that the strain is uniform, so that the reduced energy per
particle,

es=E/N |Jo| =3n*u?/j —3+3nu .

This is minimized for a uniform contraction u = —j/2n,
giving e;=—3—3j/4. One can also consider a two-
sublattice phase, having the structure of a single plane of
a-0,. In this case, the energy must be minimized with
respect to two different strains, #; between opposite sub-
lattices, and u, on the same sublattice. The reduced ener-
gy of this phase, e,, takes the minimum value —2— 3; for
strains u,=—u,=j/n.

If one now imagines varying j, there will be a first-
order transition between two- and three-sublattice phases
when the two energies are equal, which occurs at j = .
At this transition, the ratio of intra- to intersublattice ex-
changes,

J(Ro(14+u5))/J(Ro(1+uy)),
is 3.

We establish the connection between this model and the
phases of solid oxygen by assuming that the temperature
affects j via the sublattice magnetization. B-O, lacks
long-range magnetic order; consequently, it is not precise-
ly the three-sublattice phase of this simple model. This
difference will change the value of j at the transition. The
predicted value of -5 for the ratio of exchange parameters
is significantly less than the observed 3. With a related
model, Etters et al. predicted that the ratio of exchanges
should be 0.253.%

This model predicts that in the two-sublattice phase,
the strain u, = —u; =j/n, which is therefore proportional
to the square of the magnetization. Krupskii et al.> have
published accurate measurements of the temperature
dependence of the lattice parameters of a-O,. Based on
these data, we have computed the strain, defined as
(ro—ry)/(ry+ry), where r; and r, are the nearest and
next-nearest (equivalently, inter- and intrasublattice) dis-
tances in the plane. According to the simple model
presented here, the strain should be equal to j/n. It is
plotted in Fig. 1. At the transition, the strain takes the
value 0.0337. Taking the critical value of j to be -5, this
implies n=11.4, a reasonable agreement with other mea-
surements. On the other hand, it is clear that the strain is
not proportional to the square of the magnetization as the
temperature is reduced. This effect could be due to the
neglect of fluctuations in the model, or to anharmonic

elastic interactions. It would be interesting to see whether
the more detailed model of Etters et al. can account for
the connection between magnetization and strain.*®

Monolayer and bilayer films of O, physiadsorbed on
graphite basal planes have a transition at 11.5 K which is
similar to the - transition in bulk solid 0,.* This vast-
ly different ordering temperature in the literally 2D sys-
tem appears to challenge the model put forth here that the
phase-transition properties of solid O, can be quantitative-
ly understood on the basis of a 2D model. However, a
closer examination shows significant differences between
the adsorbed film phases and their bulk analogues. The
film ¢ phase, stable above 11.5 K, is not a thin layer of -
0,. Different experiments support different models of the
¢ phase; high-resolution x-ray diffraction is consistent
with a model of two mutually incommensurate triangular
layers,*! while low-energy electron diffraction results im-
ply that the {-phase film is stable for one monolayer, and
has a slightly strained triangular structure.*’ The magnet-
ically ordered® e phase has an in-plane strain which
varies from 0.023 to 0.029 as the temperature is lowered
below the £-€ transition.*>*! This is significantly smaller
than the distortion in a-O,. Taken in conjunction with
the power-law form for J(R) discussed above, this range
of strains predicts the Jynn/Jnn=0.56—0.64, which
violates the magnetic stability requirement. It is therefore
likely that the magnetic structure of adsorbed O, films are
different from the bulk system, vitiating the comparison
between bulk and adsorbed film transition temperatures.

In conclusion, we have found that the structure of the a
phase of solid O, follows naturally from the competition
of the van der Waals interaction between O, molecules,
favoring a triangular in-plane structure, and the antifer-
romagnetic interaction, which is satisfied when each mol-
ecule is surrounded by immediate neighbors having oppo-
sitely directed spins. As a consequence of this mecha-
nism, Jynn is a substantial fraction of Jyn. We have
presented the first quantitatively consistent picture of the
magnetic behavior of a- and S-0,.
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APPENDIX: MAGNETOVIBRATIONAL COUPLING

Magnetovibrational (MV) coupling, in which a neutron
couples magnetically to lattice motions, is a potential ar-
tifact in this work. In this appendix, we describe the ef-
fect in general, showing that it has the expected polariza-
tion behavior and intensity relative to nuclear phonon and
magnon signals. We then discuss its possible magnitude
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in the inelastic magnetic scattering measurements
described in Sec. III B.

A two-sublattice AF has magnetic diffraction peaks at
reciprocal-lattice vectors 7, which have zero intensity for
nuclear diffraction. The sign of the interaction between
the neutron and the localized magnetic moments alter-
nates between the two sublattices, producing constructive
interference at reciprocal-lattice vectors where the nuclear
amplitudes interfere destructively. The magnetically scat-
tered neutrons can gain or lose energy to lattice motions,
through the annihilation or creation of phonons. This
produces phonon branches with the antiferromagnetic
Bragg peaks at the zone centers, as illustrated in Fig. 6(a).

Because the neutron has coupled to the system magneti-
cally, the selection rules for polarized neutrons are the
same as for the corresponding Bragg peaks. Consequent-
ly, for neutron spin aligned along the scattering vector,
MV scattered neutrons should appear in the spin-flip
channel 2}

As simple as these arguments may seem, we are
unaware of any previous experimental demonstration of
MV scattering in an antiferromagnet. Accordingly, we
performed a brief study of the effect in MnF,.
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FIG. 6. (a) Bragg peaks and dispersion curves in an antifer-
romagnet. Solid dots and lines arise from nuclear scattering.
Open circle is an antiferromagnetic Bragg peak, and dashed line
is a MV phonon. (b) Dispersion curves of transverse-acoustic
phonon and magnon in MnF,. (c) Inelastic polarized neutron
scan in a zone containing a nuclear Bragg peak, showing the
phonon in the non-spin-flip channel. (d) Scan in an antifer-
romagnetic zone, showing magnon and MV phonon, both in the
spin-flip channel.

The spectrometer configuration was essentially the
same as described in the text of this paper, with Heusler
alloy monochromator and analyzer, 40’ collimation, con-
stant final neutron energy of 31 meV, and a flipping ratio
of 23.

The dispersion curves of a transverse-acoustic phonon
and magnon are sketched in Fig. 6(b). Figure 6(c) is an
inelastic scan near the nuclear (200) zone center, showing
the phonon with an energy of 5.8 meV. In the magnetic
zore [Fig. 6(d)], we observe a magnon at 3 meV,* as well
as the same 5.8-meV phonon. As expected, both inelastic
peaks are spin-flip in the magnetic zone.

It is of interest to compare the intensities of MV and
conventional nuclear phonon scattering. The nuclear
cross section for an unpolarized neutron to create a pho-
non is'?

d%o ke (m)? Q- ; _in|?
_X b.elQ4Q- M2
ANAE ~ k; ooy (@) | 20 Qd M

Xe—zw[n(ﬁw)+1]8(a)—wj(q))8(Q-q-"') :

(A1)

Here j is the branch index, d indexes the nuclei in one unit
cell, My and b, are the mass and scattering length of the
dth nucleus, and #iw;(q) is the energy of the phonon.
e~ " and n(#iw) are the Debye-Waller and Bose factors,
respectively. The dimensionless polarization vectors,
o’;(q) give the relative amplitude and phase of the motion
of the dth nucleus.

The corresponding MV cross section is obtained by re-
placing b; by *p for each magnetic site, where the mag-
netic scattering length

p=(ye?/2m,c*)g{J)F(Q) .

Here y=1.91 is the neutron magnetic moment in nuclear
magnetons, and g, J, and F(Q) are the g factor, angular
momentum, and magnetic form factor. The cross section

is multiplied by an overall factor (1—6,2‘), where Qx is
the cosine of the angle between the scattering vector and
the spin direction.

By studying an acoustic phonon at small q, the dis-
placement is identical at all sites, so we replace
a’(qQM;'? by o, which is in the (100) direction in the
present case.

At the position of an antiferromagnetic Bragg peak,
e.g., (300), the nuclear scattering completely vanishes.
However, there is a nuclear scattering component for
q+0. With neutron spin parallel to Q, there is no
magnetic-nuclear interference, and so one may consider
the nuclear (non-spin-flip) and magnetic (spin-flip) in-
teractions separately. Thermal fluctuations diminish the
spin (J) 70% below its saturated value of < at the exper-
imental temperature of 50 K. Together with the form
factor from Ref. 45, this leads to a magnetic scattering
length p=0.30%x 10~'? cm. Based on Eq. (A1), we calcu-
late that the ratio of spin-flip to non-spin-flip cross sec-
tions is 3.0 at (3,0,—0.16), and the ratio of spin-flip at
(3,0,—0.16) to non-spin-flip at (2,0,—0.16) is 0.15. The
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non-spin-flip peak at (3,0,—0.16) is not visible with the
experimental signal to noise of Fig. 6(d), but the ratio of
peak intensities in magnetic to nuclear zones is 0.1310.05,
in agreement with the expected ratio.

For a discussion of the relative significance of MV and
magnon scattering in @-O,, we need to derive the ratio of
MYV to magnon scattering cross sections. From Egs. (5)
and (A1), the ratio of MV to magnon cross sections at a
given wave vector Q is

S +e'iQ-ah(qM; ' 2
1-QF 2w | ¢
1+Q2 ;@)

Here #iw is the phonon energy; the magnon energy enters
only through ug and vg. In the case of experiments per-
formed at constant k; with a monitor after the mono-
chromator, this gives the ratio of integrated intensities of
the two inelastic peaks. Substituting the appropriate pa-
rameters for the two excitations shown in Fig. 6(d), the
predicted ratio of MV phonon to magnon integrated in-
tensities is 0.022, in agreement with the experimentally
observed value 0.025+0.010.

Having established that the MV scattering from an an-
tiferromagnet has the expected intensity and polarization
dependence, we turn to a discussion of the possible effect
of MYV scattering in the interpretation of our data on a-
O,. Specifically, we need to address the possibility that
the 10-meV inelastic peak is due to MV rather than mag-

) (A2)
(ugtvg)

nons. Without knowing the phonon polarization vectors,
we can still argue that the strongest possible phonon
scattering occurs when o is parallel to Q, and each term
in the sum of Eq. (A2) contributes in phase. The numera-
tor of the third factor of Eq. (A2) is then bounded by
Q?/M, where M=16 amu. The interpretation of Sec.
III B is based on the assignment of the 10-meV feature as
a zone boundary magnon, for which (u +v)?=2 for each
of the two (degenerate) branches. Equation (A2) then
predicts that the maximum possible ratio of MV to mag-
non scattering at 1.6 A~' and 10 meV is 0.04. It is there-
fore clear that magnon scattering overwhelmingly dom-
inates MV scattering at the wave vectors studied in a-O,,
and that the magnetic feature seen at 10-meV energy loss
represents an inelastic process in the magnetic system, not
the lattice.

There is one remaining detail regarding the applicabili-
ty of Eq. (A2). Because a-O, is a molecular solid, there is
a group of relatively soft librons, involving tilting motion
of the molecules. The one phonon cross section is derived
under the assumption that Q2(u?2) is sufficiently small
that its exponential may be approximated by the first two
terms in the Taylor series. The largest published estimate
for the zero-point rms librational angle is 19° along one
direction.® The experimental temperature of 10 K is suf-
ficiently below the libron gap of 60 K (Ref. 46) that the
amplitude is unlikely to exceed significantly this zero
point value. Q?%(u?) is therefore at most 0.07, justifying
the neglect of multiphonon terms.
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