
PHYSICAL REVIEW 8 VOLUME 32, NUMBER 2 15 JULY 1985

Dielectric response of a semi-infinite layered electron gas
and Raman scattering from its bulk and surface plasmons
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An exact solution of the random-phase-approximation equations is worked out for the density-
density correlation function of a semi-infinite system of two-dimensional electron-gas layers, with
different dielectrics outside and inside the layered system. From this solution, analytic formulas are
derived for the dispersion relations of the bulk and surface plasrnons and for the intensity of the
light scattered inelastically from such a system. The intensity is written as a sum of the bulk and
the surface terms. The theory is applied to semiconductor multilayers. The line shape of the bulk-
plasmon peak, obtained after cancellation of van Hove singularities in the bulk piece by the surface
piece, is compared with experiment. Conditions for observation of the Giuliani-Quinn surface
plasmon are outlined.

I. INTRODUCTION

The electronic properties of a layered electron gas
(LEG) have recently attracted much attention. ' In par-
ticular, the predicted dispersion relation for the bulk
plasmon ' of the LEG, which is quite different from the.
dispersion relations for the plasmon in, a two-dimensional
or a three-dimensional electron gas, was confirmed exper-
imentally by Olego et al. ' in an experiment of inelastic
light scattering from GaAs-(AlGa)As heterostructures.
The bulk-LEG-plasmon dispersion relation is' '

cop(q~qz )
2mne . sinh(qd )

em cosh(qd) —cos(q, d)

1/2

where q and q, are the components of the plasmon wave
vector parallel and perpendicular to the planes, n is the
density of the electrons (per unit area) in the plane, m is
the electron mass, e is the background dielectric constant,
and d is the distance between two successive layers. Be-
cause electrons are confined to layers, this system has a
surface plasmon only when the background dielectric con-
stant of the LEG differs from that outside the LEG. The
dispersion relation for the surface plasmon was obtained
by Giuliani and Quinn, by imposing the standard electro-
dynamic boundary conditions at the layers of a semi-
infinite LEG.

To the best of our knowledge, no theory of Raman
scattering from a LEG exists. In this work we present
such'a theory. (A short paper of parts of this work has al-
ready been published. ) We calculate exactly [in the

. random-phase approximation (RPA)j the density-density
correlation function (or, effectively, the susceptibility) for
a semi-infinite LEG. It can be written as the sum of a
bulk and a surface term. From this correlation function
we calculate the surface™plasmon dispersion relation. A
full theory for the Raman scattering cross section is given,
including line shapes and intensities of various collective
modes. We shall see that ignoring the surface term leads
to spurious peaks in the Raman spectrum at the one-

electron layers
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FIG. 1.. The semi-infinite system of layered electron gas

under consideration.

dimensional Van Hove singularities of the plasmon densi-
ty of states.

Following Visscher and Falicov, ' we take the electron
density to have a 5-function localization in the plane. The
electrons are free to move in the plane and electrons in
different planes interact only via the Coulomb interaction.
The possibility of tunneling between two planes and of in-
traband transitions has been ignored. The planes of the
two-dimensional electron gas are situated at z =Id where l
goes from 0 to ao and are embedded in a space of dielec-
tric constant eo for z & —d' and e for z & —d'. This sys-
tem is shown schematically in Fig. 1.

The plan of the paper is as follows. In Sec. II the
density-density correlation function is derived for the
semi-infinite LEG described above in the random-phase
approximation. In Sec. III, an exact RPA dispersion rela-
tion for the surface plasmon is obtained which is shown in
the Appendix to be identical to the Giuliani-Quinn result.
Section IV contains the theory of Raman scattering: the
Raman intensity is written in terms of the density-density
correlation function. In Sec. V the Raman spectrum is
calculated theoretically and the bulk-plasmon line shape is
compared with experiment. Predictions are made about
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the experimental conditions in which the surface plasmon
would be observable.

D (z,z') =+5(z ld—)5(z' ld—)D
l

(10)

II. DENSITY-DENSITY CORRELATION FUNCTION

The time-ordered density-density correlation function is
defined in the usual way:

D(x,z, t;x',z', t') = i (Tn—(x,z, t)n (x',z', t') ), (2)

V(x —x';z, z')= V, + V, ,

Vo ——e /e[(x —x') +(z —z') ]'~

VI=ae /e[(x x') —+(z+z'+2d') ]'~

a=(e —eo)/(e+eo) .

(3a)

(3b)

(3c)

(4)

This can also be Fourier transformed with respect to
x—x, glvlng

V(q;z, z') = Vqf(q;z, z'),
Vq=2vre /eq,

e
—q lz —z'I +(ae 2 & )e

—q Iz+z'I

(5)

(6)

In the rest of the paper, we shall take d'=0. The case of
nonzero d' can be easily obtained by replacing a by
a exp( —2qd') in all the following formulas.

I.et D (q, co;z,z') be the value of D(q, co;z,z') in the ab-
sence of Coulomb interactions. The standard RPA treat-
ment yields (Fig. 2)

where x and x' are vectors parallel to the planes and T is
the time-ordering operator. (In the following discussion
all vectors will be parallel to the plane, or perpendicular
to the z axis. ) The quantity n(x, z, t) is the electron-
density operator in the Heisenberg representation.
D(x,z, t;x', z', t') depends on x and x' only through the
difference x-x' due to translational symmetry in the xy
plane, and therefore one can Fourier transform it in the
variables x-x' and t-t' to get D(q, co;z,z'). The Coulomb
interaction between two electrons situated at (x,z) and
(x',z') is given for z & 0, z' & 0 by"

Note that for D (z,z') to have a nonvanishing value, both
z and z' must be on the same plane because D (z,z') is the
value of D(z,z') in the absence of Coulomb interactions,
i.e., when there is no coupling between two different
planes. D must also be l independent. It is given by, in
standard notation,

(&
2

1 )1/2

+ (a' —1)' ' (12)

where a+ (co+i y)!q——UF+q/2kb. The quantities eF and
k~ are the Fermi energy and the Fermi wave vector, and
the complex square root is chosen to be the branch with
positive imaginary part For. to»qUF, ReD (q, co) can be
approximated by nq /mto

. %'hile calculating the Raman intensity, we shall use the
corrected form of D, suggested by Mermin, ' which is

D (q, co+i y )( 1+iy /a) )

[1+i(y/co)D (q, cu+iy)/D (q, 0)]
Making this correction does not lead to significant
changes in the final result.

On substituting Eqs. (9) and (10) in Eq. (8) we get

D(l, l')=D 50+D Vgf(1, 12)D(12,1')
l2

(14)

with

f(1,12)= exp( —qd ~1—12
~
)+aexp( —qd ~1+1 ~)2.

Do(q +, ) 2f d's' f(p+q) —f(p) (11)
(2n. )' e(p+q) —e(p) —~—iy

'

where to & 0. D has been calculated exactly by Stern for
y~0+ and T =O. The calculation can be extended to the
case of finite y and the answer is

n 2kF qD (q, co+i y) =— 2
2E'P IQ 2k'

D(z, z ) = D'(z, z )

+fdzi fdzpD (z,z, ) Vf (zi,zz)D(z2, z'), (8)

This is the equation that we seek to solve for D (1,1').

A. Bulk properties

D (z, z') =+5(z ld)5(z' 1'd)D (1—,1'), — (9)

where q and cu dependence is everywhere suppressed.
From the fact that the density of electrons has a 5
function localization at z=ld, D(z,z') and D (z,z') must
have the following structure:

To get the bulk properties of the system, we take the
planes to be situated at z=ld with 1 going from —00 to
+ oo, and the dielectric constant to be e everywhere so
that f ( 1,1') =exp( —qd

~
1 —1'

~
). The derivation of the

density-density correlation function is well known but we
sketch it here for comparison with the semi-infinite case.
In this case, D (l, l')=D"(1—1') and with a change in
variables Eq. (14) becomes

CO J
Z

D (1)=D 5to+D Vgexp( —qd ~1 —m
~

)D (m) . (15)

+ Z
I

Z

I 2

FICx. 2. Dyson's equation for the electronic density-density
correlation function D (z,z').

Now we make the following transformation:

Db(l)= f dq, D (q, )e

b ~ le Id

l

(16a)

(16b)
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T

D(q)=D+D V ge ' D(q, ).
I

(17)
ble to solve Eq. (14) for D(l, l') by making the following
Fourier transformation:

The sum over I can be done and is equal to

sinh( qd) /[cosh(qd) —cos(q, d ) ] .

Thus the solution of Eq. (15) is written as

D (q, )=D /e(q, ),
e(q, ) = 1 —D Vsinh(qd)/[cosh(qd) —cos(q, d )j .

(18)

(19)

The bulk-plasmon dispersion relation (1) follows by set-
ting e(q, ) in Eq. (19) to zero and using the small-q value
for D (q, co), i.e., D =nq /men .

B. Semi-infinite LECx

In this case D(/, l') depends on 1 and I' separately and a
simple solution is no longer possible. But it is still possi-

D(q„q,')= —g e ' e ' D(l, l'),
l, l'=0

D(l, l')= —g e ' e * D(q„q,'),
I

(21)

where q, and q,
' can take values 2mn/Nd, N =number of

planes, n =0, . . . ,X —1. Later we shall be interested in
the limit X~~. This transformation is similar to one
used by Grecu' in connection with layered thin films.
We tested Grecu's Fourier transform, and found that al-
though the formulas in the intermediate stages look very
different, the Raman intensity was the same by both
methods.

The Fourier transform of Eq. (14) is

D(q„q,' ) =D 5(q„q,' )+D Vgf(q„k,)D(k„q,' ),
k

N —1

f(qg, k, )=—g e ' f(l, l')e
1,1'=0

=5(q„k,)sinh(qd)/P(q, )+[(1—e «")/2NP(q, )P(k, )]I (1+ 2a'e «—")+(1+—,'a')e

(22)

(23a)

—[cosh(qd)+ —,'a'e«~](e ' +e ' )I, (23b)

P (q, )=cosh(qd) —cos(q, d), (24)

~( 1 e N«d)— (25)

The first term of the matrix f(q„k,) is diagonal and corresponds to bulk LEG. The second term vanishes as N goes to
oo. However, in this limit the matrix dimension is also infinite, and the second term of (23b) will yield finite corrections
to D (l, l') when I or I' are near the surface ( I =0). Formally inverting Eq. (22), we have

. D D '(k„q,')=5(k„q,') DVf(k„q,') . — (26)

The matrix f is a finite sum of factorable pieces and thus can be explicitly inverted. By direct multiplication it can be
verified that

D(q„k,) =5(q„k,)D (q, )+D'(q„k,),
where D is given by Eq. (18), and the surface part is

D'(q„k,)=[(1—e «)(D ) V/2Ne(q, )e(k, )P(q, )P(k, )Q][A B(e ' +e ' )—+Ce * ' ] .

(27a)

(27b),

This is the exact RPA answer for a finite LEG of N
layers. It is expressed as the bulk answer D plus a sur-
face correction D'. Corrections beyond RPA can be in-
cluded in D if needed. The quantities A, B, C, and Q
are defined as

Q= 1 —6[2+ 2 a'(1+e «)]+(H —G')sinhz(qd)

+H [2 cosh(qd ) +a'e «"],
G =D. V[(1—e «")/2N]+1/[P(q, )j e(q, ),

(29)

(30a)

A =G sinh (qd) + 1+—,
' a'e «",

B=H sinh (qd)+cosh(qd)+ ,
' a'e«", —

C=G sinh (qd)+1+ —,'a',

(28a)

(28b)

(28c)

H =DOV[(1 —e ~«")/2N]ge ' /[P(q, ) j'e(q, ) . (30b)

In the limit N~ oo, the sums over q, in Eq. (30) can be
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explicitly performed: b =cosh(qd) —D Vsinh(qd),

(31) u =b+(b 1—)'

(34a)

(34b)

G = —,[(b —1) '~2 —1/sinh(qd)]/sinh(qd),

H = —,[u '(b2 1—) '~ —e ~"/sinh(qd)]/sinh(qd),

Q = —,
'

I 1 (b —1) —'/ [1 bco—sh(qd)]/sinh(qd) )

,' ae t"(—b2 1) '—~ [cosh(qd) —b]/sinh(qd),

(32a)

(32b)

(33)
I

d ~ ~idl
—~I ~(b2 1)—I/2

2m 0 b —cos(qz d)
(35)

we can write an analytical formula for the real-space
correlation function D(l, l') in the limit N~ oo.'

The imaginary part of b is always positive. Again the
complex square root is chosen to be the one with imagi-
nary part greater than zero. Notice that

~

u
~

& 1.
Using Eqs. (21) and (27) and the formula

D(l l') =D 5„+DVsinh(qd)(b2 —1)—i&2u —
I

t t'1 +—DoV(1 e Nqd) —
u

—(t+t')
2u (b —1)Q

(36)

The first two terms on the right-hand side give D (l, l')
and the last term gives D'(i, l'). As expected, D (),l') de-
pends only on the difference l —1', and D'(l, l') decays in
magnitude as one goes far from the surface, i.e., as l and
l' become large.

III. BULK AND SURFACE PLASMONS

The poles of the density-density correlation function
yield the energies of collective excitati. ons that couple to
the ground state via the density operator. Thus the poles
of D (q„k,) given by Eq. (27) will give the plasmon ener-
gies.

(i) Bulk plasmon As ha. s already been noted, the pole
e(q, )=0 of D"(q, ) leads to the dispersion relation of the
bulk plasmon, Eq. (1). The relation can also be written as
b =cos(q, d), where b is defined in (34a). The range
—1 & b & 1 defines the plasmon band which occurs for a
fixed q parallel to the plane by considering all possible
values of q, .

(ii) Surface plasmon The .dispersion of the surface
plasmon is given by the relation

For a ~ 0 this solution continues above the bulk-plasmon
band, and for a &0 it continues below the bulk-plasmon
band. We have plotted the dispersion relation of the sur-
face plasmon in Fig. 3 for three values of u. En light
scattering only a very small momentum exchange q is ac-
cessible and therefore it is desirable to have a large

~

a
~

in
order to be able to see the surface plasmon.

IV. THEORY OF RAMAN SCATTERING

The coupling of the system to the external laser field
A(x, z, t) is given by

H;'„,=g[ ep; A(r;, t)+e A(r;, t).p; +e [A(r;, t)] ]/2m, ,

(39)

where p; and r;=(x;,z;) are the momentum and position
of the ith electron. For external laser frequencies cot
small compared to interband electron resonances, we use
the standard trick' ' of using only the A term, but with

Q(q, co) =0, (37)

which describes the pole of the surface term D' in Eq.
(27). An analytic form of Q is given in Eq. (33); the
dispersion relation (37) is exact in the RPA. When eo e-—
or a=0, it reduces to b =cosh(qd) which does not have
any nontrivial solution as can be seen from the definition
of b in Eq. (34a). However, for a&0, Eq. (37) may have
solutions. This equation may be rewritten as

(b —1)'~ si h(nqd)+ e abt+c sho(qd)(b —ae~")=1 .

(38)

In the Appendix we show that Eq. (38) agrees exactly with
the result obtained by Cxiuliani and Quinn. In particular,
because of the presence of the factor (b 1)'~, this equa-—
tion does not have any solution within the bulk-plasmon
band —1 & b & 1. At the boundaries of the plasmon band,
namely b = + 1, it has the simple solution e ~ =

~

a
~

.

O
loE

3

I.O 2.0
q {lO cm )

5.0

FIG. 3. Dispersion relation for the surface plasmon for cer-
tain values of a. The shaded region is the bulk-plasmon band
and has no surface plasmon inside it. a=0.86 corresponds to
vacuum outside the semi-infinite LEG.
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2

H;„,= d x dz n(x, z)A (x,z, t) .
2&l

(40)

the bare mass m, replaced by the band mass m, to ac-
count for the p A terms. Then the interaction Hamil-
tonian becomes

Let us denote the state of the system composed of the
electrons and photon before the scattering by

i
I ) =

i
i,a )

and after the scattering by i F) =
i f,b ). Here i,f are the

electronic (many-body) states and a, b denote the photon
quantum numbers. The scattering matrix squared and
summed over the final electronic state is given by

g i SFt i

z=2n.g i (,F i H;„,i I ) i
z5(EF E)—

f f

I d'xdzdt fd'x dz dt'&i
i
n(x, z, t)n(x', z', t') ii)

X (a
i
A*(x,z, t).A (x,z, t)

i
b ) (b

i
A(x', z', t'). A(x', z', t')

i
a ) .

)

(41)

J(q, co,z,z') = —8(co)2 ImD(q, co,z,z') . (43)

This is the basic formula used for the calculation of the
cross section for the Raman scattering. It contains a fac-
tor which depends solely on the electronic properties of
the material, namely,

(i
i

n (x,z, t)n(x', z', t')
i
i ) .

Call this factor J(x x', t t', z, z—') an—d its Fourier
transform J(cl,co,z,z'). At zero temperature

i
i ) is the

many-electron ground state and J is related to
D(q, co,z,z') in the following manner:

J( q, co,z,z') =i 8(co)[D(q, co,z,z') D'( —q, ——co,z,z')] .

(42)
This is a fluctuation-dissipation relation for zero tempera-
ture, i.e., when ii ) is the many-electron ground state. It
can be proved by transforming J(x,z, t;x',z', t ') and
D (x,z, t;x', z', t') to their spectral (Lehman) representation.
The invariance of D [Eq. (9)] under (q,co)~( —q, —co) en-
ables us to write Eq. (42) as

k, =k+, k= Rev e,25' c
(45)

5 '=2 Imv e.
c

(46)

Ak in Eq. (44) is related to the polarization of the photon
outside the material. ' '

Using these formulas we find

The photon matrix elements in Eq. (41) are calculated
in the following manner:

A(x, z, t) =QAk Iakexp[ —i(k x —copt +k,z)]+H.c.I,
k

(44)

where k, =(e—sin 8)' cop/c, e is the complex dielectric
constant of the material, and cop is the frequency of the
light incident on the surface making an angle 8 with the z
axis (the surface lies in the xy plane). If Ree is large and
0 small, we can approximately write

(a
i
A'(x z, t).A'(x z, t)

i
b) (b

i
A(x', z', t').A(x', z', t')

i
a )

= ( A, .Ab ) exp —i [q (x—x') co(t —t') ]——i 2k (z —z')—2 '
~

(z +z')
(47)

where

q =kz —kb, co =co+ —
cob (48)

g i S~J i
/AT=2(e /2m) (A Ab) I(co)8(co),

f
I(co)= —QlmD(q co l, l')e "+' '" e

1,1'

(49)

and k and 5 are the same as in Eqs. (45) and (46) with cop

replaced by co, or cob (because we are interested in the case
when co is very small and co, -cob).

Using Eqs. (9), (43), and (47), Eq. (41) becomes

which gives us the probability per unit time ( T) per unit
area ( A) of an exchange of momentum q (in the plane of
the LEG) and energy co. As D(q, co, l, l') is symmetric
under the exchange of l and l', exp[ —2ik(l —l')d] can be
replaced by cos[2k (l —l')d] and we explicitly see that the
probability is real. The different factors in Eq. (49) are in-
tuitively understandable. We have the usual Ima which is
characteristic of processes where energy is transferred to
electrons by a probe coupled to the density. The factor
exp[ —(l+l')d/5] decays as we go away from the sur-
face, and how many layers are important depends on the
value of d/5. The factor exp[2ikd (l —l')] is a coherence
factor which would generate perpendicular momentum
conservation if 5 were infinite.
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V. INTENSITY OF RAMAN SCATTERED LIGHT

Now we can substitute the expression for D(l, l ), Eq. (36), into Eq. (49) and obtain the intensity of the Raman scat-
tered light as a function of its energy loss for a fixed value of momentum exchange. After performing the sums over I
and l, I(co), which is proportional to the intensity, is given by

D Vsinh(qd)(u e " —1) D Ve (u A —2u8+C)
(b 1)'—E 2Q (b 1)E—

(50)

E=u e ~s+1 —2ue"~icos(2k/) . (51)

The first term on the right-hand side of Eq. (50) gives the
bulk contribution I"(co) and the second term gives the
surface contribution I'(co).

A. Bulk plasmon

Now we compare this result with the experiment of
Qlego et al. ' The intensity given by Eq. (50) is plotted in
Fig. 4, as is the intensity observed in the experiment. For
comparison we also include the intensity given by a naive
theory, i.e., I(co)- —Irrd) /e(q, 2k). The naive formula
for the intensity, unlike Eq. (50), does not take into ac-
count the broadening of the perpendicular momentum k,
caused by decay of the photon inside the material due to
the lack of translational invariance in the z direction. The
complete theory, Eq. (50), gives a much better agreement -.

with the experiment. In order to calculate I(co), the
values of parameters have been chosen to be the same as
those of sample 1 of the experiment of Olego et al. ' They
are q=4. 8X10 cm ' (which corresponds to 8=20' in
their notation), effective mass m =0.07m„static dielec-
tric constant e = 13.1, electron density n =7.3 &( 10"
cm, d =890 A, 6=6000 A, 2kd =4.94, eo ——1, electron
mobility p=5X10 cm /Vs, and' y=e/mp=0. 3 meV.

To see the influence of the purity (or of y) of the sample
on the line shape, we plot also the intensity for y=0+, or
mobility p= oo (and all the other parameters same as be-
fore), in Fig. 4. This shows that the width of the plasmon
peak arises mainly from the spread of the perpendicular
momentum k and the decay of the photon, with electronic
damping giving a smaller contribution. Even for a com-
pletely pure sample the plasmon peak would not be a 5
function [as one would get from the naive formula
I(co) ——ImD /e(q, 2k)].

B. Van Hove singularities

& =-+1,
b =cos(2kd),

(52)

(53)

Hidden in the calculated intensity I(co) in Fig. 4 is a
surprising cancellation between bulk and surface parts at
the boundaries b =+1 of the bulk-plasmon band. This is
shown in Fig. 5 in which I (co), I'(co), and I(co) have
been plotted separately for y=0. 1 meV. I (co) has an in-
teresting structure which is explained as follows. The
denominator of Eq. (50) becomes zero or small at three
separate frequencies given by

where Eq. (53) is the solution of E=0 in the limit
d/5~0, and is the same as the dispersion relation of a

L
O

nfl

0)
L
O
L

O
E
O
0

0
2 4

cu ( rneV)
~ ~

~ ~~ s

W

4

~0
~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~

FIG. 4. Comparison between the experimental and theoreti-
cal line shapes of the bulk-plasmon peak in the Raman spec-
trum. The experimental peak has been shifted along the co axis
to align it with the other peak. The result of a naive theory
I(co)= —Em D /e(co) is also shown. All the spectra are normal-

. ized separately.

4
~ ( meV)

FEG. 5. I"(co), I'(co), and I(co). When the surface term Is is
added to the bulk term I to get I, it cancels the peak in I at
cg;„=2.5 meV.
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2k). For the parameters

) ~ive the limits o t ew co (~) and co

ener ies a
two enef gies tom j~

nd which is t e c
wave vector qlasmon ith a fixed in-plane w

ddf h hdd

e visible on the sca e

3 V h
r &0.1 me

th o of th kTo s& o M
t ctive to use Eqs.Ib(co), it is ins ru

write

L
O

JD

Imin /
0 gr

I

fI

I I
I I

I

I

. I

I

I

QJp

cu ( meV)

~max

I (co)= ——mIm+D—S(q, )/e(q, (54)

'=2e ~ Icosh(d/5) —cosl' q, —s ( —2k)d]J .

all- formula for D nq -mUsing the sma -q
a roximation as) in plasmon po e apprwrite e(q,

co =1 co&(q—,q, )/co{co+iri

deflilled 111 Eq. (1). Eqllatlonwhere a)p is e in
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Raman spectroscopy provides a way of enhancing the sur-
face plasmon intensity.
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FIG. 8. I"(co), I'(~), and I(~) are plotted for a= —0.6
which means that the dielectric constant E'p outside the semi-
infinite LEG is greater than the background dielectric constant
e inside the LEG. The surface plasmon now appears below the
bulk-plasmon band at 4.8 meV.

Raman scattered light predicted by Eq. (50) for
q=1.0&&10 cm ', y=0. 1 meV, and eo ——1 (vacuum in
z &0 space). The surface plasmon is visible at —12.2
meV. The intensity at the surface plasmon is enhanced as
the mobility of the electrons increases, or as y decreases.
The width of the surface plasmon comes from y alone
which means that it is free from Landau damping, as
pointed out by Giuliani and Quinn.

A surface plasmon on the lower side of the bulk-
plasmon band can be observed if the dielectric constant eo
outside the LEG can be increased significantly above e,
making o. negative. In Fig. 8 we give the energy spectrum
of the scattered-light intensity for a= —0.6. Such a large
value of a can be possible if the experiment is done on a
layered system made of a material with a low dielectric
constant e.

Note added in proof. We have recently worked out the
response functions of a film of finite thickness, using the
same method. This calculation shows that transmission

APPENDIX

In this appendix we show the equivalence of the disper-
sion relation of the surface plasmon given by Eq. (38)
with the one obtained by Giuliani and Quinn in Ref. 2.
Equations (1) and (2) of Ref. 2 can be written in our nota-
tion as

b =cos(q, d),
e ~~=e/[eosinh(qd) —esinh(qd)+2eb] .

(A 1)

(A2)

For definiteness consider the regime b ~ I. Then accord-
ing to Ref. 2, q, =i /g and Eq. (A 1) becomes
b =cosh(d /g) whose solution for g is

ed/a b+(b2 1)1/2 (A3)

The other solution b —(b 1)' is dis—carded as it corre-
sponds to a negative value of g which is unphysical (g is
the penetration depth ). Now g' can be eliminated from
Eqs. (A2) and (A3) and the surface-plasmon dispersion re-
lation obtained in Ref. 2 becomes

eosinh(qd)+e[b+(b I)'~ —cosh(—qd)] =0 . (A4)

Now it takes a lengthy and straightforward algebraic ma-
nipulation to show that Eq. (A4) is exactly the same as
Eq. (38).
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