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The total scattering rate and momentum relaxation rate are evaluated for-an ideal, periodic super-
lattice by taking matrix elements of the electron-phonon interaction between basis states which are
plane-wave combinations of finite quantum-well wave functions. This is done for quasielastic
deformation-potential scattering by acoustic and nonpolar optical phonons. The intrawell scattering
rate is of the form found by other workers for a quasi-two-dimensional electron gas and superlattice.
In addition, contributions due to interwell transfer and due to the interference of intrawell and in-
terwell processes are obtained. The respective form factors for these processes are identified and
evaluated, and the dependence on density of final states is found.

I. INTRODUCTION

Man-made heterostructures with precise interfacial and
dimensional control made possible by molecular-beam-
epitaxy (MBE) have been the subject of much current in-
terest. ' Considerable work has been done on the electrical
and optical properties of single quantum wells and multi-
ple quantum-well structures (MQW), in which the indivi-
dual wells do not interact with one another and all physi-
cal phenomena are simply additive. However, the physi-
cally interesting case is that of an ideal periodic array of
wells separated by barriers sufficiently thin that the over-
lap of well wave function is appreciable —a superlattice.
As is well known, the additional long-range order of the
superlattice results in a reduced Brillouin-zone scheme of
minibands separated in energy by miniband gaps. Indeed,
the original predictions of negative differential resistance
(NDR) and Bloch oscillations by Esaki and Tsu were
based on the acceleration of Bloch electrons to the
negative-mass regions and Brillouin-zone boundaries of
the minizone structures, respectively. Predictions have
also been made of large nonlinear optical susceptibilities
due to mobile carriers in the highly nonparabolic mini-
bands, and the use of low-temperature thermoelectric
power measurements to map out the superlattice band
structure. However, while the long-range order of the su-
perlattice has been observed experimentally in zone fold-
ing of LA phonon spectra in GaAs as seen in Raman
scattering, the same has not been unequivocally observed
in the electronic spectra, in spite of some early claims to
the contrary. It would appear that the electrons are
much more sensitive than are phonons to structural varia-
tions from well to well, compositional fluctuations (e.g. ,
Al content in the Al„Ga& „As barriers), and interfacial
disorder. These random fluctuations would be expected to
smear out the superlattice band structure at the very least,
or possibly lead to localization and hopping transport be-
tween individual wells. (The question of disorder in su-
perlattices is a separate problem in its own right which
will not be addressed here. ) However, with the continual
progress in growth and interfacial quality made possible
by MBE, the superlattice behavior cited above is likely to

be realized. The present paper is a study of electron-
phonon scattering in such ideal systems.

Electron-phonon scattering in quasi-two-dimensional
semiconductor quantum-well structures has been studied
for a variety of scattering mechanisms. ' In these stud-
ies, the electronic wave function is taken to be confined in
the direction perpendicular to the layers. The dependence
of the total scattering rate and momentum relaxation time
on energy, well size, and density of states (constant for
this ease) has been obtained. In the present work, these
results are extended to a superlattice, as previously de-
fined. Here, the discrete levels of the quantum well are
broadened into a series of minibands of narrow width into
which the electron can scatter with momenta perpendicu-
lar to the layers. Our approach is to take matrix elements
of the electron-phonon Hamiltonian using basis states
which are plane-wave combinations of individual,
quantum-well eigenfunctions. In analogy with the tight-
binding approximation of energy-band theory, such a state
strictly applies in the narrow-band limit appropriate to
weakly coupled wells in which only nearest neighbor over-
lap of well wave functions is appreciable. In addition to
the intrawell scattering already obtained for the isolated
quantum well, interwel1 electron-phonon transitions are
identified in which absorption or emission of phonons
with momenta perpendicular to the layers is accompanied
by transfer of the electron from one well to an adjacent
well. As might be expected, the amplitude for this pro-
cess is proportional to the overlap factor exp( —2aIC), with
2a the barrier thickness and K the inverse decay length.
The interwell transfer is evaluated for the case where
transfer occurs within the same subband and between ad-
jacent subbands. The total scattering rate and momentum
relaxation times are evaluated for both the intrawell and
interwell processes for the case of deformation potential
scattering by acoustic and optical phonons, which, in the
usual approximation, is independent of phonon wave vec-
tor Q. In addition, there is an interference between the in-
trawell and interwell amplitude which is larger by a factor
of exp(aX) than the interwell process alone.

An earlier study" of electron-phonon scattering in su-
perlattices for elastic, deformation-potential scattering
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was based on a tight-binding approximation of the elec-
tronic dispersion perpendicular to the layers. Only the in-
trawell contribution, proportional to the superlattice den-
sity of states, was obtained. This work was subsequently
generalized to the Kronig-Penney model and also to the
case of polar-optic scattering. ' In the present study, not
only is the form of the dispersion left arbitrary, but, more
important, the explicit form of the Bloch state of the su-
perlattice [cf. Eq. (5a)] gives rise to the additional in-
terwell and interference terms referred to previously.

II. FORMULATION

L=2b

SINGLE QUANTUM WELL

The normalized wave function for a quasi-two-
dimensional quantum well with infinite potential barriers
1s

g( r, z) =e'"'
V

1/2

sin(k„"'z),
2a @n~

where

k„' =nm/L, n =12,. . . (2)

2
sin(k„' 'z)~P„(z), (4)

L =2b is the well width in the z direction [see Fig. 1(a)],
V is the well volume, and K=(k, k„' ') is the total wave
vector, with k and k„' ' the components in the (x,y) plane
and z direction, respectively. A similar notation applies
to the position vector of the electron (r,z) and phonon
wave vector Q=(q, q, ). The energy eigenvalues corre-
sponding to P(r, z) in the effective-mass approximation
are

E( K)=E(K)+&."'
/2k 2/2m s +n 2( /2~2/2m eL 2)

There are two basic modifications of Eq. (1). First, since
the barriers of the superlattice are necessarily finite, we re-
place

I /2

j = —1

SUP ERLATTICE

FIG. 1. Geometry and wave functions for quantum well (a)
and superlattice (b).

zJ ——jd, j =0,+1,+2, . . . (5b)

where d =2a+2b is the period of the superlattice [see
Fig. 1(b)]. The energies corresponding to the state of Eq.
(5a) are

where k, is the quasimomentum in the z direction, X is
the number of wells in the sample, and A is the projection
(on the xy plane) of the area of each well. The centroid of
the jth well is

where P„(z) is a normalized solution of the isolated finite
well referring to the nth band, and includes a portion
which decays exponentially into the barrier region [see
Fig. (1)]. The energy eigenvalues E„"'of P„are the solu-
tions of the finite well problem.

Second, because of the long-range order of the superlat-
tice, the total wave function must satisfy Bloch's theorem.
In the limit of weakly interacting quantum wells, it is
written as a plane-wave superposition of well eigenfunc-
tions given by Eq. (1) with the modification given by Eq.
(4),

~
k, k„n)=(AN ) '~ ge *'e' 'P„(z —zj),

J

E(K,n ) =E(k)+E„(k,) =(A' k /2m*)+E„(k, ), (6)

where E„(k,) gives the dispersion along z for the nth
miniband and is not further specified at this stage. As
stated in the Introduction, Eq. (5a) strictly applies in the
narrow-band limit of small, nearest-neighbor overlap,
though it would be expected to provide a good extrapola-
tion to larger overlap as does conventional tight-binding
theory. Moreover, the results of the present theory (in-
terwell and interference effects) would be expected to be
general features of any band scheme adopted.

In the basis of Eq. (5a), the matrix elements of the
electron-phonon Hamiltonian are

(k', k,', n
~
H, zh ~

k, k„n ) =(AN„ ) 'gee ' 'e *' J dr J dzP*„(z zJ )e '"'H, &he' 'P—„(z—zj) .

The integral of Eq. (7) is treated analogously to the case of the isolated quantum well given in Ref. 8. We get
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~
)e

957

(8a)

where

R (K', K)= (A/2MNmg )'~ C(Q)(Ng+ —,+ —,)'~ (Sb)

where M is the ionic mass, co~ is the angular frequency of the mode of momentum Q, C(Q) is the coupling strength, and
5&

——5q j,+q gives momentum conservation in the (x,y) plane.
With regard to the overlap integral of Eq. (Sa), in the approximation of Eq. (5a) this is appreciable only if zj and zj

are identical or refer to the centroids of adjacent wells, the orbital overlap of more distant pairs of wells taken to be negli-
gible,

zJ —zj =0 or +d

Thus Eq. (Sa) becomes

R(K', K) N„'ge ' ' ' "
5q f dzqP„(z)P„(z)e ' + pe ' f dzP„*(z+d)P„(z)e (9)

for the intrawell and interwell contributions, respectively. The second factor gives momentum conservation in the z
direction. Thus, momentum conservation, which was smeared out in the case of the single well, is here recovered because
of the long-range periodicity of the superlattice. Equation (9) is then written

~ I

(k', k,',n'
~
II, ~h ~

k, k„n) =R(K,K')5q5~ (G„'„'(q,)+[e ' G„'+'(q, )+e' 6„'„'(q,)]), (10)

where

G„'„'(q,)= f
ized*„(z)P„(z)e

G„' „(q,)= f dzp*„(z+d)p„(z)e' " (12)

trawell contribution is evaluated; it makes a contribution
comparable to the interwell term considered below [Eq.
(23) et seq. ] However, both of these terms are smaller
than the interference term [Eqs. (33) and (34)].

With regard to the interwell form factor given by Eq.
(12), it is easily shown that

6q =6k,
z z 2

Equation (11) is identical to the intrawell form factor ob-
tained elsewhere, but with sin(k„' 'z) appropriate to infi-
nite potential barriers here replaced by P„(z). In that case,
with k„' '=no. /L, it becomes a sum of functions of the
form (sinx )/x, each giving momentum conservation

q, = +(k„+k„) to within Aq, =L ', with L the well
width. In the momentum-conservation-approximation
(MCA) adopted by Ridley, these are replaced by delta
functions (L~oo), the error of which is estimated for
various cases of interest. In the present case, k„ is given
by k„=(2mE„/fi )', where E„=E„(k,) denotes the nth
miniband. Thus, (k, n )—+(k,', n') denotes intersubband
transitions, while (k„n )—»( ,'k, )ndenotes intrasubband
transitions.

A procedure identical to that in Ref. 8 gives for Eq.
(11) [cf. Eq. (11)of Ref. 1]

1 sin[[q, +(k„'+k„l]b j

[q, +(k„'+k„)]b

if P„and P„are both even or both odd, while

(15)

if P„ is even and P„odd, or vice versa.
Initially, intrasubband scattering (n'=n) will be con-

sidered, so that Eq. (15) is obeyed, and, in Eq. (10),

—lk d' G„„+ (q, )+e ' G~« '(q, )=2cos(k,'d)G„'~+'(q, ) .

(17)

P„(q)=C„e ", b (z (b+2a
where

A'K„= [2m' ( Vo E„)]'~~—
(18)

The dominant contribution to the interwell form factor,
Eq. (12), comes from the overlap of the exponential tails
of well eigenfunctions in the barrier region. Thus, for the
well centered at the origin in Fig. 1(b),

)&exp(i [q, +(k„'+k„)]b],
where one of the terms is a maximum when

(13) and where mb is the effective mass in the barrier. In-
tegrating over the barrier, we obtain

q, =0 or +(k„'+k„) .

There is also an exponentially small contribution arising
from the tails of P„ that will be considered when the in-

~q dz sin(q a )

q, a

where the normalization constant

(19)
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sin(2k„b)
fC f

=cos(k b) b +1
n

cos (k„b )

K„b
(20)

Now k„and E„are functions of E„and even though
n '= n, E„(k,)&E„(k, ) because k,' &k, . However, we
shall neglect this dependence here and take k„and K„ to
be given by E„'",the energy of the isolated finite well, and
hence independent of k, or k,'.

The absolute square of the transition matrix element,
Eq. (10), is

I
&k'k' n'lH. —hlk k. n)

I

= fR(K', K)
f

5z &+~5„, k I f
6„'„'(q,)

f
+4cos (k,'d)

f
6„'+'(q, )

f
+[2cos(k,'d)6„'„'(q, )6„'~+'(q, )+ c c ]I., .(21)

where R(K',K), is given by Eq. (Sb).
The first term in the curly brackets of Eq. (21) is the intrawell contribution studied in Ref. 8 and elsewhere, the second

term is the interwell contribution, while the last term is an interference term between the intrawell and interwell process-
es. The total scattering rate is given by

8'K —— f f
&K' fH, h f

K)
f

5(EK EK+ficog—)dK'.

We will consider deformation-potential scattering by acoustic or optical phonons, where, in the usual approximations,

f

R(K', K.)
f

'=R'=
Cok~ T

acoustic phonons2CLV'

AD 0 1&[&(~ol')+ 2 + —,], optical phonons
2pcoo V

(22)

(23)

where Co 1s the acoustic deformation potential Do the optical deformatlon potential, CL the elastic constant, and p the
mass density. For this case,

f

R(K', )
f

=R is independent of g=
f g f

=
f

K' —K f.
For the interwell scattering rate given by the second term in the curly brackets of Eq. (21),

2
sin(q, a )(R'1')4a'I Cn I'e " ' f f f ' 4cos'(k;d)k'dk'd8'dk, '5(EK EK,)—

(2m )' q,a

having taken the deformation-potential scattering to be
elastic. Integrating over 0' and k', the quantity in large
square brackets becomes

E„=t„[1—cos( k,d )],
t„—E

k, (E)=—cos
d

(24b)

sin[(k,' —k, )a]
2 z f k, ,

dk,', 4cos (k,'d),
2~'X' ".~~~ '

(k; —k, )a

provided that energy is conserved

E(K', n ) =E(K,n ) =E

The magnitude of k, (E) for typical superlattice doping
levels will be estimated at the end of this section.

To evaluate the integral of Eq. (23), it is noted that
since d=2a+2b, a/d = —, for a=( —,

'
)b, and a/d= —,

' for
a =b. Then the first (form) factor in the integral is quite
broad and nearly constant over the integration range, and
approximately independent of k, . Then Eq. (23) becomes

with E(k, n) given by Eq. (6). Here, the limiting values of
k, for the given energy E is the solution of

p'z""'- —p2a2
f
C„ f

"e "
I sin[2k, (E)d]

+2k, (E)d ], (25a)
E=E„(k,(E)) .

For example, in the tight-binding approximation

(24a)
with p =R V, and k, (E) may be related to the density of
states per spin:
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k {E)

4H~' -"*iE)dk,'

k, (E) .
2m fi

(25b)

p(E)= 3 f d K'5(E —EK')
(2~)'

', f dk,' f dk k f den E—"". E—(k; )
(2m. ) 2'

It is noted that, because of the different length scales in-
volved, this approximation for the superlattice is opposite
the momentum-conservation-approximation (MCA) for
the isolated quantum well. There, the (sinx)/x factors
are taken to act as delta functions.

The second term in the curly brackets of Eq. (25a) gives
the proportionality to the density of final states; the first
term is an additional oscillatory contribution due to
scattering into forward and backward quantum wells.

Specifically, in view of Eq. (22), Eq. (25a) becomes

{inkier) 8 0 B 2 PZ 4 —2E„a
2

a
3 ~

C„~ e "
I sin[2k, (E)d]+2k, (E)d I (acoustic phonons)

2CI

a
3 ~

C„~ e " (N(top) I sin[2k, (E)d]+2k, (E)d I
2Pc00

(26)

+ [N (Cop) + 1]I sbn[2k (E+Atop)d]+2k (E+Atop)d j )

(nonpolar optical phonons) (27)

m*ti
N=

meed
cos

E
1 ——

2 ] /2

where, in Eq. (27) for scattering by nonpolar optical pho-
nons via the deformation potential, the inelasticity has
been taken into account in the phonon population and
density-of-states factors, but not in the matrix element,
following standard procedures.

The magnitude of k, (E) compared to the size of the re-
duced minizone (m/d) is easily estimated for various dop-
ing concentrations. The carriers introduced into the su-
perlattice form an anisotropic degenerate electron gas at
low temperatures. Taking the dispersion to be of tight-
binding form for this example [cf. Eq. (24b)], the density
of carriers in the lowest miniband (n =1) corresponding
to Fermi energy E, is

and the prefactor of Eq. (28) is

N] —— ——3.9X 10 cm
m tl 17 3

meed

For %=X), E=ti ——33 meV, and k, (E)=m/2d. Since
this is a relatively high doping level, k, (E) &m/2d over
which the form factor varies very little, confirming the
approximation made in obtaining Eq. (25a).

As for the isolated quantum well, the momentum re-
laxation rate ~~ is identical with the total scattering rate
WK for a superlattice in the case of deformation-potential
scattering. This is shown explicitly in the Appendix.

From Eqs. (13) and (21), the intrawell contribution may
be evaluated in the same approximations as before. As for
other treatments for deformation-potential scattering, we
find the rates proportional to the density of final states,

(28) ~(intra)
(

—1)(intra) ~ 2
k +k (29)

For a typical CxaAs-Ga~ Al~ As superlattice with
2b=50 A, 2a =25 A (d =75 A), m*=0.067m„and
conduction-band offset of 160 meV (x=0.15), Kronig-
Penney calculations give a bandwidth

E)(k, =m/d) E)(k, =0)=—2ti ——65 me—V,

There is an additional contribution to the intrawell
scattering arising from the tails of the P„, which is com-
parable to the interwell term given by Eq. (25a). Inserting
the exponential wave function of Eq. (18) into Eq. (11),
the integral over the range b & ~z

~
& oo is readily carried

out, with the result that to Eq. (13) gets added a "wing"
term

2(K„b )cos(q, b) (q, b )sin(q, b)—
b, G„'„'(q,)=2

i
C„ i

e "b
(2K„b) +(q, b)

(30)

In evaluating the first term of the curly brackets of Eq. (21), there is now an additional cross term between Eqs; (13) and
(30) above, giving
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Wintrawing 2ir ~2 I f f f dk k dg dk
1 ~ ~ z z " - ' likz kzi —~kn ~t')

(2~)' 2 [ ~
(k,' —k, )+2kn

~

b]

2(K„b )cos[(k,' k,—)b ]—(k,' —k, )b sin[(k,' k—, )b ]
X2

~
C,

~

'e "b, ,
' '

5(Ek —Ek')+c.c.
(2K„b) +(qzb)

(31)

Again, for low doping levels, k, (EF)d «1, the principal contribution comes from the vicinity of q, =k,' —k, =(), with
the result

—2K„b
intrawing iM

I

C
(K„b)

(32)

Finally, we write down the interference contribution to WK, given by the last term of Eq. (21). Using Eqs. (13) and (19),
we get

sin [q, + (k„' +k„)]bWK""" ' —— tLt'
~
C„~ 'e " 5 g dk,'cos(k,'d)

sin(q, a )
cos q, —+b +(k„'+k„)b

q, a ' 2
(33)

It is noted that, in order of magnitude, this interference term is larger by a factor exp(K„a) than the interwell contribu-
tion given by Eq. (25a). In general, this expression is not readily integrable. However, it may be evaluated in the low-
density limit k, (EF)d «1. For the example given previously [Eq. (28) et seq. ]., this would apply for N & 10' cm . In
this case, the trigonometric factors in the integral are expanded in a Taylor series valid for k, (EF)d «1. Since

q, ~

& 2k, (EF), only the q, =0 term of Eq. (13) contributes. The result is

k d~~r(interf) 2~ 2 i i 2 Knd
I&n I

d
2k, (E)— [k,(E)] (34)

where

(d) =31 +a +b +3 —+b
2

2

From Eq. (12), we get
b,Ka —EKa

(36)

and k, (E) is given Eqs. (24) and (25b). Again, using Eq.
(22), this can be written explicitly for deformation-
potential scattering by acoustic and optical phonons in
analogy with Eqs. (26) and (27) for the interwell contribu-
tion.

where hK=E„—K„+iq,. For K„=K„,we get

(+ )
—K„d (K„—K„.)d/2 iq d/2

sin(q, a ) + (Kn Kn )a cos(q, a —)
q, a

(37)

III. INTERSUBBAND TRANSITIONS

Finally, we shall briefly examine the interwell transition
rate for intersubband transitions (n'&n) for the case of
deformation-potential scattering. We would expect this to
correspond to the phonon-induced transition from the
lowest n =1 subband of a given well to the n'=2 subband
of the neighboring well. For this case, P„and P„would
be expected to have opposite parity so Eq. (16) holds, and,
instead of Eq. (17), we have

I ~ I

e * G„'„'(q,)+e ' G„'„'(q,)= 2i sin(k, 'd—)G„'+„'(q,) .

(35)

For the well centered at z=0, the wave function in the
barrier region is given by Eq. (18), while for the well cen-
tered at z=d,

K„' (z —d)q„(z)=C„'e ",b &z & b +2a .

Assuming as before that the interband form factor is
constant over the integration range of k,', the dependence
of the interband transition rate on the density of states is
found to be

Wk'""'(n +n') I
——sin[—2k, (E)d]+ [2k, (E)d] I

', [k,(E)d]—, k, (E)d «1 (38)

in contrast to that given by Eq. (25a) for the intraband
transition rate. Again, k, (E) is given in terms of the den-
sity of states (per spin) by Eq. (25b).

IV. SUMMARY

We have evaluated the total scattering rate and momen-
tum relaxation rate for an ideal, periodic superlattice by
taking matrix elements of the electron-phonon interaction
Hamiltonian using basis states which are plane-wave com-
binations of finite quantum-well eigenfunctions. In addi-
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tion to the contribution due to scattering within individual
wells, terms due to interwell transfer and to the interfer-
ence between the intrawell and interwell processes are
identified. This has been done for deformation-potential
scattering by acoustic and nonpolar optical phonons. The
form factors for the two processes are approximated in
the present treatinent. Further work will focus on incor-
porating these factors more exactly, and treating scatter-
ing mechanisms with explicit wave-vector dependences:
polar optical scattering and piezoelectric scattering.

APPENDIX: EQUALITY OF MOMENTUM
RELAXATION RATE AND TOTAL SCATTERING RATE

FOR A SUPERLATTICE
%ITH DEFORMATION-POTENTIAL SCATTERING

To obtain the momentum relaxation rate ~k
' rather

than the total scattering rate W~, Eq. (21) must be multi-
plied by 1 —cos[y(K', K)], where y(K', K) is the scatter-
ing angle between total momenta K and K'. In view of
the somewhat complex dependence on the wave vector, it
is not obvious that ~K ——8 K for deformation-potential
scattering in this case; however, we see immediately below
that it is.

With K=k+zk„and k taken along the x direction (z

is a unit vector along z),

K'.Kcos[y(K', K)]= K' K
kk'cosO'+ k,' k,

(k'+k,')'"(k'+k,')'" '

where 8' is the polar angle that appears in Eq. (23). In-
tegrating over 0', the first term above vanishes. Carrying
out the integration over k' by making use of the energy-
conserving delta function, the integral of Eq. (23) becomes

'z, , f „, , dk,'
' 4cos'(k,'d)

[E E(k,' )—]+k,'

Again taking [sin(q, a )/q, a ] to be approximately con-
stant over the integration range, the integrand is odd in k,
and vanishes. Thus,

—1 q(inter) ~~~(inter)
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