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Interference of electric-dipole and magnetic-dipole interactions
in conduction-electron-spin resonance in InSb
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The contributions of the electric-dipole and magnetic-dipole matrix elements to conduction-
electron-spin resonance in zinc-blende crystals are investigated theoretically and experimentally. Us-

ing time-dependent perturbation analysis, we show that these contributions interfere at the reso-
nance condition, resulting in an anomalous dependence of the resonance intensity on the sign of ei-

ther the dc magnetic field Bo or the wave vector q of the photon. In the context of macroscopic
dielectric response, it is shown that the above interference can be represented by time-reversal sym-

metry associated with the wave vector. The effects of electric-dipole —magnetic-dipole (EDMD) in-

terference at spin resonance have been studied experimentally by far-infrared (FIR) magneto-
transmission in a series of InSb samples with various orientations and electron concentrations. Ex-
periments were performed in magnetic fields up to 60 kG in both Voigt and Faraday geometries, at
FIR wavelengths 96.5, 118.8, 163, and 251.1 pm, in' the temperature range between 2 and 35 K.
Measurements of the absorption coefficient as a function of orientation of Bp in (100), (110), (111),
and (112) planes, and as a function of the sign of Bo and q, are in excellent agreement with the pre-
dictions of the theory. These experiments provide an elegant method for determining the inversion-

asymmetry parameter 6O, yielding a value of 56 a.u. (3.6&(10 erg cm ). In addition to the EDMD
interference, the FIR magnetotransmission spectra also conclusively demonstrate that the dominant
mechanism allowing electric-dipole-excited spin resonance in InSb is inversion asymmetry.

I. INTRODUCTION

The possibility of observing electric-dipole-induced spin
resonance (EDSR) of conduction and donor-bound elec-
trons in semiconductors has been known for some twenty
years. This transition is allowed in the presence of spin-
orbit coupling, as a result of wave-function mixing
through either k p interaction' ("nonparabolicity"), inver-
sion asymmetry, ' or warping. Of these, only inversion
asymmetry allows the EDSR transition in the parallel
Voigt geometry (E~ ~Bc, where Bo is the dc magnetic field
and E is the electric field of the incident wave).

Our far-infrared (FIR) measurements of conduction-
electron-spin resonance in n-type InSb indicate that
EDSR is in fact stronger in the E~ ~BO geometry than in
the other configurations, thus establishing —contrary to
earlier studies —that the dominant mechanism allowing
this spin-flip transition is the lack of inversion symmetry.
What is more, we have observed a striking dependence of
the resonance line intensity either on the sign of the mag-
netic field or on the direction of wave propagation with
respect to the crystal axes of the sample, as illustrated by
the magnetotransmission spectra shown in Figs. 1(a) and
1(b). The two figures show spin resonances of conduction
and donor-bound electrons observed for opposite direc-
tions of the dc magnetic field. Comparing Figs. 1(a) and
1(b), we see that the intensity of EDSR changes quite
strongly (by a factor of about 2) when the field is reversed.
We found this result to be extremely surprising, because in
the E

~ ~
Bo geometry the response of the medium is
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FIG. 1. Typical FIR magnetotransmission spectra for the
parallel Voigt (E~ ~Bo) configuration, obtained at 118.8 pm and
4.5 K on sample MD9 (q~ ~[111]). Two electric-dipole spin-

resonance lines (marked EDSR in the figure and shown in insets
on an expanded scale) are clearly seen. The stronger line in the
doublet is the free-electron EDSR, and the weaker is the EDSR
of donor-bound electrons. (a) corresponds to B~ ~[110]. (b) is

obtained by reversing Bo relative to (a). The scale is the same
for both sets of data.
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described by a diagonal. element of the dielectric tensor,
which by simple symmetry arguments must remain in-
variant under magnetic field reversal, unless the effect of
the wave vector of the propagating light is included.

In this paper we show, using a quantum-mechanical ap-
proach, that the observed anomalous behavior is actually
a result of the interference between electric-dipole and
magnetic-dipole matrix elements of the spin-resonance
transition. This result is rather unexpected, because in the
analysis of optical or infrared spectra the magnetic-dipole
interaction is extremely weak, and is generally neglected.
We find, however, that in the case of spin-flip transitions
in InSb, even though the intensity of the magnetic-dipole
term taken by itself is indeed small (about 2% of the in-
tensity of the corresponding inversion-asymmetry-allowed
electric-dipole transition), the intevfevence of the two con-
tributions does play an important role in the response of
the medium to the incident electromagnetic wave. For ex-
ample, it can change the total spin-resonance absorption
coefficient by as much as a factor of 2. Using macroscop-
ic arguments, we have shown that the above behavior can
be represented by the effect of the photon momentum on
the dielectric response function.

In addition to reporting the observation and theoretical
analysis of electric-dipole —magnetic-dipole (EDMD) in-
terference at FIR frequencies, this paper also constitutes
the first systematic experimental study of the effect of in-
version asymmetry on EDSR. Comparing the EDSR
strength in the parallel Voigt geometry with other
geometries, we conclude that inversion asymmetry is in
fact the principal mechanism allowing this transition in
InSb, at least in the parameter range corresponding to our
experiments.

The structure of this paper is as follows. In Sec. II we
develop the microscopic theory underlying the effects of
EDMD interference in a zinc-blende semiconductor. In
Sec. III we describe the FIR magnetotransmission ap-
paratus and sample preparation. In Sec. IV we present
the experimental results and their interpretation. Finally,
the macroscopic formulation of the dielectric response
function equivalent to the EDMD interference is present-
ed in the Appendix.

II. THEORY

In this section we first demonstrate, in quantum-
mechanical terms, how the EDMD interference occurs,
and how it leads to an anomalous dependence of the spin-
resonance (SR) absorption on the sign of either the dc
magnetic field Bo or the wave vector q. Next we focus on
the EDMD interference in crystals with zinc-blende struc-
ture. We discuss SR for various experimental configura-
tions (Faraday, Voigt), with special attention to the angu-
lar dependence of the absorption coefficient of SR for
samples with (100), (110), (111), and (112) faces in the
parallel Voigt geometry (E~ ~Bolq).

A. General expression for the EDMD interference

When an electromagnetic wave with a vector potential
A' acts on a charged particle, the perturbation Hamiltoni-
an has the form

A'= Re(Aoe'~' q") (2)

Out task is to solve the time-dependent Schrodinger equa-
tion

im =(ao+H')t/,
Bt

where Ho is the unperturbed Hamiltonian, which is time
independent. The eigenstates of the unperturbed system
are given by

IIog =E
The solution for the wave function g may be written as

(4)

g= ga (t)P~(r)e = ga P e (5)

Following elementary time-dependent perturbation theory,
we obtain
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where Vm„and Mm„are matrix elements corresponding
to the electric- and magnetic-dipole terms, respectively,
given by

V „=J P* Vg„dr—= (m
~

V n ),
M~„= j (b~MP„dr: (m M

~

n—),
M=g/3ocv/2 is the magnetic-dipole moment, and

Em —En
~mn =

In Eq. (6) we have neglected the retardation factor by as-
suming that A' varies slowly in space. For the case of
resonance, only terms which have the difference ~ „—co

in the denominator are important. The transition proba-
bility per unit time from the initial state

~

n ) to a particu-
lar excited state

~

n') is then given by
2

W= V ' 'Ao+iM„„(q)&Ao) 5(~—(~ —~ ))
2A'

(10)

where energy-broadening effects have been neglected. The
corresponding absorption coefficient a, with the occupa-
tion factors for initial and final states included, then be-
comes

e, g/3oH'= —V A'+ a.VX A',
c 2

where V is the velocity operator, g is the g factor of the
electron, /3o ef——i/2moc is the Bohr magneton, mo is the
mass of the free electron, cr =(o,oz, o, ) is the Pauli ma-
trix, and A' is the vector potential of the electromagnetic
wave,
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a= —V„„.g'+i M„„(q&&g)Oncet c

&&(fn f,—)o(ro (co„— co„—)),

where 0 is the volume of the crystal, n is the refractive
index, g is the polarization unit vector, and f„ is the prob-
ability that state n is occupied. Expanding the above
equation, we obtain

4~ c
CX=

Qncok

2

—V„g' —2Re i (g—V'„„)[M (qXg')]' +
~
iM„„(qXg) (f„f„)o(—a) (ro„—co„))—.

c C
(12)

In addition to the usual absorption coefficient associat-
ed with the square of the matrix element of the electric-
dipole transition, Eq. (12) contains a magnetic-dipole con-
tribution, as well as an electric- and magnetic-dipole
(EDMD) interference term. From the above equation we
can see immediately that reversing the direction of propa-
gation (which changes the sign of the wave vector q) re-
sults in changing the sign of the interference term. It will
also be shown later that reversing the direction of Bp
changes the sign of V„„,which has a similar effect on the
interference term. Thus, because of the electric-dipole
and magnetic-dipole interference, the absorption spectrum
can now depend on the sign of either Bp or q.

B. EDMD interference in zinc-blende semiconductors

We now turn to the analysis of the EDMD interference
at the conduction-electron-spin-resonance condition in
zinc-blende semiconductors, with particular attention
given to the dependence of the effect on the sign of Bo
and q, and on the orientation of Bp and q relative to the
crystallographic axes. The precise nature of the effects of
EDMD interference —which arises from the coupling be-
tween the electric-dipole and the magnetic-dipole terms in
the Hamiltonian —depends upon band-structure details of
the particular material considered. For zinc-blende semi-
conductors the EDSR can arise from three possible
sources: the lack of inversion symmetry, ' wave-function
mixing through k p interaction' (nonparabolicity), and/or
warping. As will be shown in Sec. IVC, we know from
experimental data that EDSR in InSb is dominated by in-
version asymmetry, and we will therefore confine our
analysis to that mechanism.

We use an effective-mass Hamiltonian in a magnetic
field, generalized to include the term contributed by inver-
sion asymmetry and the magnetic-dipole term. In the
analysis of the anisotropy of the effect, we essentially fol-
low the formalism developed by Rashba and Sheka, but
we retain the magnetic-dipole matrix element along with
the electric-dipole term throughout the analysis. Retain-
ing terms up to third order in k, the effective-mass Ham-
iltonian is given by

A' k gPoa" Bo
H = + +5pcT'K,

2m

where m* is the effective mass, Ak is the kinematic:
momentum associated with the vector potential A of the
dc magnetic field,

Ak= —iAV+ —A,e

c

6p is a parameter which is associated with the spin-orbital
interaction and the inversion asymmetry, and K is a vector
given by

K =kyk ky —k, k k, , (15)

with the indices x, y, and z 'corresponding to the cubic
crystal axes. K~ and K, are obtained from K by cyclical
permutation of the indices.

A shown in Ref. 2, when the inversion asymmetry con-
tribution in the Hamiltonian is treated as a perturbation,
the matrix elements of electric-dipole spin-flip transitions
have the form

Z„=—g(l, —
~

V. ~l, +)

5oe Bo g'=V'2 g B(~,2) (2l + 1 —2g ),
c2A q —)8"

(16)

for an arbitrary magnetic field orientation and arbitrary
polarization. Here I is the Landau-level quantum number
of the initial and final states; +=1,2, 3 is the polarization
index corresponding to left-circular [cyclotron-resonance-
active (CRA)], right-circular [cyclotron-resonance-
inactive (CRI)], and parallel Voigt (E~ ~Bo) polarizations,
respectively; and q is the change in Landau quantum
number under the action of the operator a, where

1/2

a) —— (k„—i' ),
2eBp

1/2

a2= (k +i'),2eBp

1/2

k, :—g
eBp

(i.e., a) and a2 are lowering and raising operators, respec-
tively, for inter-Landau-level transitions). Thus q = —1,
1, or 0 as n = 1, 2, or 3, respectively. Further,
I3' =m g/2mo is the ratio of the spin splitting to the cy-
clotron spacing, and B[ 12] are trigonometric functions of
the angle between the crystal axes and Bp, derived in Ref.
2. These functions —which contain all information con-
cerning the anisotropy of the matrix element for electric
dipole transitions —are as follows:
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where 8 and P are the polar and azimuthal angle of the
magnetic field Bo, respectively. Note that the matrix ele-
ment of V~ in Eq. (16) is linear in Bo, i.e., it changes sign
when the direction of Bo is reversed, as has already been
mentioned.

Proceeding similarly as in the calculation for the
electric-dipole transition, we obtain the matrix element for
the magnetic-dipole term,

In this expression Md (which depends on the components
of the magnetic field of the incident wave expressed in the
coordinate system where z~~Bo) is not necessarily isotro-
pic, and may contain both real and imaginary parts. This
feature is a consequence of the particular choice of coordi-
nates. However, the resonance intensity, which is propor-
tional to

~
Md ~, is isotropic —i.e., independent of 8 and

P—for all the principal geometries, as would be expected.
We will examine these properties in a later section.

Substituting Eqs. (16) and (18) into Eq. (12), we obtain
the absorption coefficient for the spin resonance, includ-
ing the EDMD interference term, for a zinc-blende crys-
tal:

4m. c &o e Bo —P" i5o e B() ga= v 2 2 B( ]2)(2l+1—2g ) —2Re
2 gPpB(~]2)(2l+1 —2$ )(qXg')2

Qnp)A' R c2g q —P' c ]]2 q~ —P"

2
iv2+ gPo(qx g)2 (f],+ f], +(p) —(p)],— —

2

For a pure InSb sample (i.e., one with sufficiently low electron concentration) in a high magnetic field, the electrons are
in the ground state

~

0, + & before perturbation. We can assume this to hold in the case of our measurements. We shall
also neglect the small contribution 2$ =2(ckleBp)k, with respect to unity. The absorption coefficient then simplifies to

6e B 2
4]r cX ~2 boe Bo —g'
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fl c
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(20)

where X is the free carrier concentration. If the energy states are broadened to some degree, we may replace the 6 func-
tion by a normalized broadening function, i.e.,

5(co —(p)] —p)] +))~ y/2m

[~ (~I, ~],—+ )l'+ l"~4
(21)

where y is a phenomenological broadening constant. At spin resonance (o) =co] —p)] +) the absorption coefficient then
takes the form

2 2 28nc& &oe B.o —P" l6pe Bp p"v 2 B( ]2) +2Re
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(22)
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In Eq. (22) we have assumed that the broadening parame-
ter y is the same for the electric- and the magnetic-dipole
transitions. This assumption is physically justified be-
cause the above formulation is for a single electron under-
going the same transition (and therefore experiencing the
same level broadening) under the simultaneous action of
an electric and a magnetic field.

Using Eq. (22), we shall now examine the EDMD in-
terference in the principal experimental configurations.

C. EDMD interference in specific geometries

1. Faraday geometry

The Faraday geometry refers to the configuration
where wave propagation is parallel to the dc magnetic
field. In this case there are two normal modes which can
be supported by the medium, the cyclotron-resonance-
active (CRA) polarization, i.e., that circular polarization
which excites cyclotron resonance of conduction electrons,
and the cyclotron-resonance-inactive (CRI) polarization.
For the CRA polarization there is no magnetic-dipole
transition because g ~0, and the EDMD interference will
therefore vanish for this mode. In the CRI polarization,
the matrix element for the electric-dipole transition at suf-
ficiently low electron concentrations and high magnetic
fields (so that only the ground state is occupied) is

—ape'Bo p"
Ed ——&2

~ z B(2(z)
A' c /3" —1

i3v'2 ~oe Bo (tl*
sin(2$) sinO sin(28) .

A' c g' —1
(23)

From Eq. (18), the matrix element for the magnetic-dipole
transition for CRI excitation is

v'2
gape2

(24)

Where q =con/c is the wave vector inside the medium, n

being the index of refraction. We immediately see that
for this polarization Md and Eq are always out of phase
(one is imaginary while the other one is real), and the in-
terference again vanishes.

We thus conclude that there is no EDMD interference
at spin resonance in the Faraday geometry, and conse-
quently the spectrum does not depend on the sign of Bp or
q. (Note that Bp reversal of course changes CRA to CRI
in the Faraday geometry. What we mean here is that
there is no change in the spin-resonance intensity when Bp
and the circular polarization are reversed simultaneously,
or when the sample is flipped front to back. )

i sin(2—$) sinO(2cos 8—sin 8)] .

(25)

Using Eq. (25), we now consider EDSR for the magnetic
field Bp in specific planes.

Bp In the (110) plane: An arbitrary orientation of the
dc magnetic field Bp in the (110) plane is described by
/=45', and 8 ranging from 0 to 2~. Substituting /=45'
into Eq. (25), we have

3 &pe'&p
sinO(2 cos 8—sin 8) .

g2 2 (26)

From Eq. (18), the matrix element for the magnetic-dipole
transition is

g(-loQ

2
(27)

where q=con/c. Comparing Eqs. (26) and (27), we note
that both matrix elements are real (both are in phase), and
EDMD interference will therefore occur. Substituting
Eqs. (26) and (27) into Eq. (22), the resulting absorption
coefficient is given by

2. Voigt geometry

The configuration where the propagation of the wave is
perpendicular to the dc magnetic field is referred to as the
Voigt geometry. There are two independent modes which
can be supported by the medium in this geometry: the
parallel, or ordinary Voigt geometry (OV), where the elec-
tric field is parallel to the dc magnetic field (and the mag-
netic field H' of the wave is perpendicular to Bp); and the
perpendicular, or extraordinary Voigt geometry (EV),
where the electric field is perpendicular to Bp, and the
magnetic field of the wave is parallel to Bp.

We see immediately that the EV geometry does not
manifest magnetic-dipole spin resonance because there
H'~ ~Bp, so that Md =0, and hence the interference also
disappears. The OV geometry, on the other hand, turns
out to be most interesting in the spin-resonance context,
and we will investigate it in detail. In particular, we shall
examine the angular dependence of spin resonance in this
geometry for the dc magnetic field in the (110), (100),
(111),and (112) planes.

From Eqs. (16) and (17), the matrix element for the
EDSR transition in the OV geometry, for the magnetic
field in an arbitrary plane, is given by

6pe Bp
Ed =V'2 B(3(z)

Q2 2

6pe Bp
i —[cos(2$) sin(28)

4 g2 2

sacs
ncoAy

2
'2

2
3 &oe Bo . 2 . 2 3 &oe BogPot1 . 2 . 2 gPot1
4 R2c~

sinO(2cos 8—sin 8) —— sinO(2cos 8—sin 8)+
g2 2 2

2
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0.8— Efo in I 110j plane

In this expression, the first term describes the contribution
of EDSR alone, the second term represents the EDMD in-
terference (its sign depending on the signs of Bo and q),
and the third term shows the isotropic contribution of the
magnetic-dipole absorption. In Fig. 2(a) we show the an-
gular dependence of e caused by the electric dipole alone
and magnetic dipole alone. Figure 2(b) shows the total o.
as given by Eq. (28), including the EDMD interference.
The horizontal axis in Fig. 2 is the angle between the
[110] direction and Bo in the (110) plane. The bottom
straight line in Fig. 2(a) shows the isotropy of the
magnetic-dipole spin-resonance absorption. Figure 2(a)
also shows the 180' symmetry for the electric-dipole tran-
sition, i.e., reversing the magnetic field with respect to the
crystal axes yields the same absorption. However, Fig.
2(b) does not restore the value of n when the sample is ro-
tated by 180 about q (or when the field is reversed).
Comparing Figs. 2(a) and 2(b), we thus see that the
EDMD interference strongly affects the angular depen-
dence of the absorption coefficient, and leads to the
dependence of the absorption on the sign of the magnetic
field with respect to the crystal axes. Figure 2 uses pa-
rameters such that the ratio between the magnetic-dipole
resonance intensity (if it occurred alone) and the max-
imum electric-dipole resonance intensity is about 2%%uo.

Thus, even when the magnetic-dipole interaction is itself
very weak, it does play an important role in the spin-
resonance spectrum through interference with the
electric-dipole interaction.

The interference provides a direct method for obtaining
the parameters associated with inversion asymmetry. In
EDSR itself the anisotropy, which is purely a tri-
gonometric function, does not provide a measure of 6o. In
the presence of EDMD interference, however, both 5o and
6o terms enter into the angular dependence of the absorp-
tion. Thus, by reversing the magnetic field Bo and
measuring the ratio of the respective absorption coeffi-
cients a, we are able to obtain an accurate value of 5O, in-
dependent of other parameters, such as sample thickness,
electron concentration, or the broadening parameter y.
For instance, if Bo is parallel or antiparallel to the [110]
direction, and the ratio of the absorption coefficients for
the two orientations is R, 6o is related to R by the expres-
sion

2(v'R +1)g Poncfi

3(v'R —1)e

which in atomic units (i.e., A'=ma ——e = 1) becomes

1 (&R +1)6o= g nAFs a.u. ,6( R —1)

(29a)

(29b)

3 6oe Bo
Ed ———i- sin(28) .

p2 2 (30)

As for Bo in the (110) plane, the matrix element for the
magnetic-dipole transition is

where ups ——
,37 is the fine-structure constant.

Bo in (IOO) plane: Magnetic field Bo in the (100) plane
corresponds to /=90' and 8 ranging from 0 to 2m. Sub-
stituting /=90' into Eq. (25), we obtain the matrix ele-
ment for the EDSR transition

g Pov
d 2

(31)

0.2—

0.0

0.8-

I

(b)

EDSR + EDMD + MDSR

3 5oe Bo g13%
z sin(28) +4 g2 2 2

2

. (32)

The magnetic-dipole and electnc-dipole matrix elements
are therefore out of phase, which leads to the disappear-
ance of the EDMD interference for this case.

Substituting Eqs. (30) and (31) into Eq. (22), the total
absorption coefficient for this plane is given by

0.2—

0 45 90 l 35 l80 225 270 315 360
ORIENTATION (deg)

FIG. 2. Calculated absorption coefficient a of spin resonance
calculated as a function of orientation of Bo in the (110) plane.
(a) shows the relative intensities for the electric-dipole (EDSR)
and magnetic-dipole (MD SR) spin resonances, calculated
separately. (b) shows the total spin-resonance absorption coeffi-
cient, including the EDMD interference. cosH=( 3 ) slnP((i)),1/2 (33)

In this expression o. is simply the sum of the electric-
dipole absorption and the magnetic-dipole absorption, tak-
en independently. The presence of the magnetic dipole
shifts the absorption coefficient upwards by a very small
amount, but does not affect its angular dependence, as
shown in Fig. 3. The coefficient a thus preserves its 180'
symmetry, and the absorption spectrum does not change
when either the magnetic field or the direction of propa-
gation is reversed.

Bo in (111) or (112) planes: To describe an arbitrary
orientation of Bo in either the (111)or the (112) plane, P is
no longer a fixed angle, as was the case for the (100) and
(110) planes. Instead, P and 8 have to satisfy the follow-
ing constraints: For Bo in the (111)plane:
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In Eqs. (39) and (40) the first term represents the absorp-
tion coefficient for "bare" EDSR, the second term is the
contribution of the EDMD interference, and the third
term gives the isotropic magnetic-dipole spin-resonance
absorption.

Here we have only analyzed crystals of the zinc-blende
type. Extending these considerations to other types of
acentric crystals (e.g., wurtzite) should lead to similar re-
sults. In view of the recent observation of EDSR in
Cdi „Mn„Se, such analysis would be useful and timely.

III. EXPERIMENTAL PROCEDURE AND SAMPLE
PREPARATION

The characteristics of the n-type InSb samples used in
these experiments are listed in Table I. Carrier concentra-
tions were obtained from far-infrared (FIR) Fabry-Perot
oscillations, and confirmed by microwave helicon inter-
ferometry. Each sample was oriented by the standard
Laue x-ray technique, cut on a diamond-wire saw such
that the sample faces were parallel to a desired crystal
plane, and then cut in the form of a 7-mm-diam disk.
The surfaces of the disk samples were ground in succes-
sion with 600- and 1200-grit carborundum powder, and
then polished on a microcloth saturated with a suspension
of 5-pm alumina powder in distilled water. After polish-
ing, the orientation of the samples was again checked and
found to be within 2' of the specified orientation.

For III-V compounds with zinc-blende structure, the
polarity along the [111] directions leads to pronounced
physico-chemical differences between the (111) surfaces
terminating in group-III atoms and those terminating in
group-V atoms. ' " A 3-sec etch in a solution of 2 parts
HF, I part HNO3, and 1 part CH3COOH applied to the
InSb samples reveals etch pits on the (111),or In, face and
no etch pits on the (1 1 1), or Sb, face. Thus, for our mea-
surements it is possible to distinguish physically between
the [111]and [111]directions by etching, and hence to
determine the direction of the magnetic field and the wave
vector with respect to the zinc-blende lattice in absolute
terms. This in turn, as will be seen, permits systematic
comparison of spin-resonance anisotropy data obtained on
different samples.

Far-infrared magnetotransmission measurements were
performed at liquid-helium temperatures, at a series of
fixed wavelengths (A, =96.5, 118.8, 163, and 251.1 pm).
The source of the radiation was an optically pumped FIR
laser (Apollo Lasers, Inc. , model no. 118), with CH3OH as
the lasing gas filling the FIR cavity. The samples were
mounted in a Janis "supervaritemp" optical Dewar at the
center of a split-coil superconducting solenoid with a
maximum magnetic field of 60 ko. The transmitted FIR
signal was detected by a carbon bolometer placed directly
behind the sample. A lock-in amplifier with a 16-Hz
chopper and an XF plotter were used to amplify and
record the signal. The measurements were carried out in
both the Voigt and the Faraday geometries, using linearly
polarized waves (E

~ ~
Bo and EJ-Bo) in the former, and cir-

cularly polarized waves (CRA and CRI) in the latter con-
figuration. Circular polarizations were produced using
quarter-wave plates ground from xy cut crystalline
quartz.

IV. RESULTS AND DISCUSSION

A. Dependence of spin-resonance absorption
on the sign of So and q

The unusual behavior of InSb magnetotransmission
spectra at spin resonance observed on reversing Bo or q in
the parallel Voigt geometry is illustrated by the data
shown in Fig. 4, obtained on a sample with (110) faces in
a sequence of configurations. Figure 4(a) shows the SR
signal for Boii[110] (in the face of the sample), with
qadi[110] (normal to the sample). Figure 4(b) shows SR
when the sample is rotated by 180' about q with respect to
Fig. 4(a). Figure 4(c) is for the sample rotated by 180'
about Bo relative to Fig. 4(a) (i.e., flipped front to back
about the [110]axis), without changing the direction of q
in the laboratory frame. Figure 4(d) is observed for the
sample rotated by 180 about q&&BO relative to Fig. 4(a)
(in this case, flipped front to back about the [001] cubic
axis). Figures 4(a')—4(d') show spin resonance observed
with the field reversed relative to Figs. 4(a)—4(d), respec-
tively. The scale is identical for all data in Fig. 4. The
following features emerge from the figure.

Sample
No.

W-3106-C
MD1
MD4
MD5
MD6
MD7
MD8
MD9
MD10
MD11

Carrier
concentration

(cm )

(FIR)

1.6x 10"
9.0X 10'4

4.7X 10"
4.5X 10"
4.5 x 10"
2.3 x 10'"
3.6x 10'"
4.5 x 10"
6.8x10'"
3.0x 10'

TABLE I. Sample parameters.

Carrier
concentration

(cm )

(helicons)

1.3 x 10"
9.0X 10"
4.2x10"
4.7 X 10"
3.9x 10"
2.7x10"
2.ox 10"
5.0x 10'4

7.1X10'4
2.5 x 10'

Thickness
(mm)

2.07
2.49
1.98
1.98
3.00
4.52
3.95
3.94
1.87
3.64

Orientation

(112)
(112)
(110)
(100)
{111)
(110)
(100)
{111)
(112)
(112)
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(a) (a)

(b')

(c)

(d),
4I.O

(d

42.0 41.0
B(kG)

I

42.0

FIG. 4. Symmetry characteristics of spin resonance in
n-InSb, observed on sample MD7 in the parallel Voigt geometry
at 118.8 p, m and 4.5 K. (a) spin resonance for So~~[110],
q~ ~

[110];(b) the sample was rotated by 180' about q relative to
(a); (c) the sample was rotated by 180 about Bo relative to (a);
(d) the sample was rotated by 180 about q & Bo relative to (a).
The sequence (a')—(d') corresponds to configurations (a)—(d),
respectively, but with the magnetic field reversed. In each reso-
nance doublet the higher-field, stronger line is the conduction-
electron spin resonance, and the weaker line is spin resonance of
donor-bound electrons.

(1) The intensity of SR changes quite strongly (by a fac-
tor of about 2) when the direction of the magnetic field is
reversed relative to the crystallographic directions. This
is observed by reversing the field itself [compare, e.g. ,
Figs. 4(a) and 4(a')] or by rotating the sample by 180
about q while keeping Bo fixed in the laboratory frame
[compare Figs. 4(a) and 4(b)].

(2) It is easily shown that rotating the sample by 180'
about Bo is equivalent to reversing the direction of q rela-
tive to the crystallographic directions, while keeping Bo
fixed relative to the crystal frame. A change in SR inten-
sity similar to that which takes place on reversing Bo is
observed when q is reversed in this manner [compare
Figs. 4(a) and 4(c)].

(3) Rotating the sample about qX Bo is equivalent to
reversing the direction of both q and Bo with respect to
the sample. This operation leaves the SR intensity un-
changed [compare Fig. 4(a) with Fig. 4(d); Fig. 4(a ) with
Fig. 4(d')].

We have carried out SR measurements on all the speci-
mens listed in Table I, which also includes samples with
(100), (111),and (112) faces. All these samples contain at

least one [110] direction (or equivalent) in the sample
plane, facilitating comparison. When Bo was parallel to
the [110] in the case of the (111) and (112) samples, a
similar asymmetry was observed with respect to field re-
versal and/or sample rotation as that shown in Fig. 4.
The results for the (100) samples were unique, however, in
that for this case the dependence of SR on reversing of Bo
or q vanished. This is completely consistent with the
analysis of the EDMD interference described in Sec. II.
This result can also be understood on intuitive grounds.
In the case of a slab with (100) faces, a 180' rotation about

q (i.e., about the [100] direction) leaves the InSb crystal
microscopically invariant, as can easily be seen by per-
forming this operation on a laboratory model of the zinc-
blende lattice. Since in the Voigt geometry such a rota-
tion is equivalent to changing the sign of the magnetic
field with respect to the sample frame, any effect related
to reversing the magnetic field in this plane must vanish.

We found the EDMD interference effects described
above. to be very reproducible in all the samples studied,
with various electron concentrations, thicknesses, and
orientations. The effects occurred as an inseparable part
of the EDSR in the parallel Voigt geometry at all tem-
peratures (2.0 & T & 35 K) and FIR wavelengths
(96.5&A, &251.1 pm) where the experiments were per-
formed. Additional evidence that the EDMD interference
effect is a basic property of the material is provided by the
study of how this effect depends on the direction of the
magnetic field with respect to the zinc-blende lattice in
absolute terms. Since—as has been pointed out in Sec.
III—in InSb it is possible to distinguish physically be-
tween the [111]and [1 1 1] directions by appropriate etch-
ing, we were able to ascertain that the EDMD interference
effects observed in different samples were consistent
among themselves. For example, SR intensity was strong
for Bo~ ~[110] ql I[112) and weak for Bl 1[110] ql I[112]
in all (112) samples.

Spin-resonance measurements were also carried out for
all the above samples in CRA and CRI circular polariza-
tions in the Faraday geometry, as well as in the perpendic-
ular Voigt geometry (EIBo). We found that the EDMD
interference effects disappear in all these configurations,
i.e., spin resonance does not depend on reversing Bo or q
(in the case of CRA and CRI, on simultaneously reversing
Bo and the sense of circular polarization). Again, this is
consistent with theoretical predictions.

As we have mentioned in Sec. II, the dependence of the
resonance intensity on reversing Bo provides a convenient
way of obtaining the inversion asymmetry parameter 6O.

The ratio of the absorption coefficients for Bo parallel and
antiparallel to [110] in the (110) plane obtained at 118.8
pm is 1.96+0.07. Using Eq. (29), we then calculate
6o ——56+3 a.u. or (3.6+0.2)&&10 ergcm . Here we
have used g =43.25 obtained at 118.8 pm (i.e., at 41.5
kG) from the present measurements, and the refractive in-
dex n =4. 1 from the work of Dixon et al. ' Rashba and
Sheka have estimated the value of 5O to be of the order of
200 a.u. , but they point out that this estimate may differ
significantly from the true value. Also K. Sugihara' es-
timated 5O in InSb to be 100 a.u. by fitting the linewidth
of microwave spin-resonance data. We believe that the
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[ I l I ]

Be in(ll2) plane
Voigt E II 5,

[ iio]

2,.0

0.5

0.0
0

I I ~ I I

30 60 90 120 150 180
OR I EN TAT ION (deg)

FIG. 8. Spin-resonance absorption coefficient of conduction
electrons in n-InSb as a function of orientation of Bp in the
(112) plane. Solid and open circles correspond to opposite signs
of 80, respectively. The solid and dashed curves are the theoret-
ical angular dependences fitted to the experimental data for op-
posite field directions. The horizontal line near zero shows the
calculated intensity of the magnetic-dipole spin resonance alone.
The data were taken on sample MD1 at 118.8 pm and 4.5 K.
At the point where the solid and dashed curves cross
EDSR = 0, and a is determined entirely by the magnetic-dipole
contribution.

C. Effect of inversion asymmetry on electric-dipole
spin resonance

As has already been pointed out, eIectric-dipole-excited
spin resonance (EDSR) is allowed in the presence of spin-
orbit coupling by one or more of the following mecha-
nisms: wave-function mixing through k p interaction
("nonparabolicity"), inversion asymmetry, or warping. Of

interference vanishes for all orientations of 80, as shown
in Fig. 5. For the other planes the agreement between ex-
perimental and theoretical angular dependence of the SR
absorption coefficient (Figs. 6—8) provides an excellent
demonstration of the existence of EDMD interference in
the spin-resonance absorption in zinc-blende semiconduct-
ors.

these only inversion asymmetry is predicted to allow
EDSR in the parallel Voigt (OV) geometry. This pre-
diction is fully verified by the excellent agreement be-
tween the inversion-asymmetry-based analysis of Sec. II
and the experimentally observed anisotropy of spin reso-
nance for the OV configuration.

In addition to the measurements in the OV geometry,
we have also investigated spin resonance in the Faraday
configuration (for both CRA and CRI polarizations) and
in the perpendicular Voigt (EV) configuration. Compar-
ison between EDSR intensities for the Faraday and the
OV geometries for three samples with similar electron
concentrations is shown in Table II. "Zero" in the table
indicates that the resonance, if present, was too weak to be
detected. We also list, in Table III, the mechanisms and
incident polarizations which allow the EDSR transition
when Bo is applied along principal crystal directions (after
Ref. 3). On the basis of Tables II and III we conclude
that inversion asymmetry is in fact the dominant mecha-
nism allowing EDSR in InSb in all configurations. This
can be seen as follows.

(1) Having established that EDSR in the OV geometry
is exclusively due to inversion asymmetry, we note from
Table II that the intensity of the OV resonance is much
stronger than in the other configurations (where in princi-
ple other mechanisms could also allow EDSR).

(2) As can be seen from Table III, nonparabolicity is a
possible mechanisms for EDSR only in the CRI
geometry. We exclude it as the principal mechanisms
even in that configuration, because nonparabolicity-
induced EDSR is expected to be isotropic, contrary to the
data in Table II. Our data for the EV geometry (which is
in effect a superposition of CRI and CRA contributions)
is also highly anisotropic, confirming that the principal
mechanism of EDSR for ElBo is strongly angle depen-
dent.

(3) Comparison of Tables II and III also eliminates
warping as the chief mechanism of EDSR. Warping con-
tribution to EDSR occurs only for CRA and is anisotro-
pic, with maximum intensity for 80~~[110] and zero for
Bo~ ~[100]. The observed EDSR, on the other hand, van-
ishes for Bo~

~

[110]and is maximum for Bo~ ~[100] in the
CRA geometry.

(4) While the observed anisotropy disagrees completely
with the behavior expected for nonparabolicity- and
warping-induced EDSR, it is in excellent agreement with
the theoretical predictions for inversion asymmetry in all
the configurations studied.

These arguments of course do not exclude the possibili-
ty that the other mechanisms also contribute weakly to
EDSR. Indeed, data for InSb samples with N=4&10'

TABLE II. Relative EDSR intensities in various geometries.

Sample
No.

Carrier
Concentration

(cm ) Orientation CRA

Absorption coefficient (cm ')
Voigt

CRI ~f
I
~ol

I
[1&o&

MD7
MD8
MD9

2.3X10'4
3.6X10'4
4.5 X 10'

(110)
(100)
(111)

0
0.07
0

0
0
0.18

0.65
0.86
1.27
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TABLE III. Selection rules for EDSR in zinc-blende crystals induced by inversion asymmetry (IA},
nonparabolicity (k p), and warping {W). [From M. H. Weiler, R. L. Aggarwal, and B. Lax, Phys.
Rev. B 17, 3269 (1978).]

Bp/ i[100]
Bp/

i
[110]

Bpi /[111]

IA

yes
no
no

CRA
k.p
no

no

no
yes
no

IA

no
no
yes

CRI
k-p

yes
yes
yes

no
no
no

IA

no
yes
no

Parallel Voigt
k.p
no

no

no
no
no

cm show a weak resonance in the CRI polarization for
Bp~ ~[100] and Ho~ ~[110]' which, according to Table III,
can only be ascribed to nonparabolicity. This resonance,
however, is invariably much weaker than in any geometry
where EDSR is allowed by inversion asymmetry. Thus
we are forced to conclude that —at least in the range of
electron concentrations and magnetic fields involved in
these experiments —inversion asymmetry is by far the
most important mechanism for allowing the observation
of EDSR in n-lnSb.
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APPENDIX: MACROSCOPIC APPROACH TO EDMD
INTERFERENCE, ONSAGER RELATIONS,

AND TIME REVERSAL

The frequency-dependent dielectric response tensor
@geo,Bo) is not sufficient to describe the Bp and q depen-
dence described above. This can be seen from the Onsager
relations, which require that

blende crystals), we first write e;j(co,q, Bp) in a power
series, '

E I (co, q, Bo) =E 'j ( co ) + ' 7 Ijqi +ccijlBl +Pij Im Blcpm +
(A3)

(&) . (&)
Pij lm +Pij lm (A4)

It can be shown that pIji' can be represented in the form'

~(A)
I&ij lm —~lmn ~nij (A5)

where elm„ is the antisymmetric unit matrix, and C„;& is
an ordinary tensor of rank three, C„,z ——C„J,. The sym-
metry properties of tensor C«j are exactly the same as
those of the tensor characterizing the piezo'electric effect.
Thus,

(3)
Pij lm B!Cjm Cnij ~lmn Bl jm

=C„;,(Bp Xq)„. (A6)

For crystals belonging to Td symmetry, the nonvanishing
components of the tensor C«j are the following

Here we will concentrate on the term /3ijlmBlqm, because it
exists only when the crystal lacks a center of inversion,
and because it depends on the sign of Bp or q. These are
the exact properties which we have described in the
preceding section for the spin-resonance spectra. We can
rewrite /3, jl as

1 1

pijlm T(pij lm +pijml )+ I (pijlm pijml )

e;j(co,Bo)=ej;(co, —Bp) . (A 1)
C123 C231 C312 C132 ~213 321 9 ~ (A7)

Since the dielectric response in the parallel Voigt (E~ ~Bo)
geometry (for 8~iz) is described by e, Eq. (Al) as it
stands immediately implies that the spectra cannot depend
on the sign of Bp, which is contrary to observation. This
suggests that, to describe the observed results, we must
generalize the dielectric tensor to include first-order terms
in wave vector q, i.e., we must use the nonlocal form of
the response function, efco, q, Bp). In this case the Onsager
relations require that

e"(co,q Bp)=e-(co —q —Bp)

&e;j(co,q, —Bo)=ej;(co, —q, Bo) . (A2)

As a consequence of including q, the diagonal com-
ponents of e thus acquire a dependence on the sign of q or
Bp.

To examine the nonlocal contribution to the dielectric
response function for crystals with Td symmetry (zinc-

(BpXq)3 (BpXq)I

(BoXq)1
0

0
/3' I' Biq =I) (B Xq) 0

(BpXq)I (BpXq)1

The contribution of p,'ji
' Blq to the dielectric response in

the OV geometry for an arbitrary orientation of Bp is ob-
tained by a coordinate transformation of Eq. (A8) from
the cubic crystal axes to a coordinate frame where z

~ ~

Bp,
yielding

b eov ——2I) [sin9 cos8 sing( Bp Xq)1+ sin0 cos8 cosg(Bp X q) 2

+ slI1 6) cos(p sing(Bo Xq)3] (A9)

all of which are equal to some value rj. P';jlmBlqm can
then be written as
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Aeov ——0,
for Bo in the (110)plane

(A10)

where 0 and P are the polar angle and the aximuth,
respectively, of Bo. The results of the angular dependence
of b,eov for Bo in the (100), (110), (111),and (112) planes
are given as follows. For Bo in the (100) plane

cn
(A14)

the coefficient rj contained in the elements of the tensor
Cpp'j is therefore equal to

5oe'gPorrXq=6
RQ) p

beov gBo——q sin0(2cos 0—sin 0),
for' Bo in the (111)plane

b Eov g——Boq [sin 0 sin(2$)(cosg+ sing )
3

+ sin0sin(20) cos P

(Al 1)

For the Faraday geometry, we have Bot fq. We can thus
see immediately from Eq. (A6) that the contribution of
the term p'~l'Blq vanishes. Again, this is consistent
with the disappearance of the EDMD interference in that
geometry. For the perpendicular Voigt geometry, the con-
tribution of /3~~jl'BIq to the dielectric response is given
by

—2cos 0sin0(cosg+ sing)],

and for Bo in the (112) plane

(A12)
b ez ———g[sin0 cos0 sing(Bo X q) &+ sin0 cos0 cosg(Bo && q)2

+ sin 0singcosg(Bo&q)3] . (A16)

b eov —— rIBoq [—sin 0 sin(2$ )(sing+ cosP)v'6

—2sin0sin(20)cos P

+2 sin0 cos 0(sing + cosp ) ] .

(A13)

Comparing Eqs. (A10)—(A13) with the interference term
in Eqs. (28), (32), (39), and (40), we find that the angular
dependence is exactly the same. Since the relationship be-
tween the imaginary part of the dielectric response func-
tion and the absorption coefficient is

Thus, if there simultaneously existed both electric and
magnetic-dipole transitions, then from symmetry argu-
ments for the zinc-blende structure the dielectric response
function of the EDMD 'interference would be described by
the above angular behavior. If, however, one of the dipole
transitions vanishes, the parameter g must vanish, and the
contribution of 13;'z~' Btq to the dielectric response must
also disappear. Again, this is exactly the case for the spin
resonance in the ElBO geometry.

From the above analysis we therefore conclude that
EDMD interference is equivalent to a nonlocal contribu-
tion (i.e., to an explicit contribution of the photon
momentum) to the dielectric response function.
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