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Theoretical analyses of space-charge doping in amorphous semiconductor superlattices.
I. Doping superlattices
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A theoretical analysis of space-charge doping in "n-i-p-i" doping. superlattices, in particular of
amorphous semiconductors, is presented. It is shown that space-charge doping decreases the inter-

layer barrier height, and hence is a counterdoping. This accounts for the observed blue shift of pho-
toluminescence. The decrease of barrier with the layer thickness also suggests the existence of an
optimum thickness at which the quantum effect is most significant. In heavily doped hydrogenated
amorphous silicon, this thickness is calculated to be several tens of nanometers. This result is con-
sistent with the observation of persistent photoconductivity in superlattices of this layer thickness.

I. INTRODUCTION

There has been considerable interest in fabricating and
characterizing superlattices which consist of alternating
layers of amorphous semiconductors and/or insulators.
This idea follows from the successful demonstrations of
crystalline III-V compound superlattices. ' In this case,
the requirement of a close match in the crystal lattices be-
tween the two layer materials limits the range of materials
from which superlattices can be fabricated. With amor-
phous materials, since the lattice itself is disordered, it is
hoped that the above requirement may be relaxed and su-
perlattices can be formed with a wider variety of materi-
als, and in large areas. In fact, superlattices made from
tetrahedrally bonded amorphous materials, e.g., hydro-
genated silicon, carbon, silicon nitrides, and silicon oxides,
have been reported in the literature. This new type of
materials exhibits electronic properties which are of great
scientific interest and may have practical applications.

An important phenomenon in superlattices is the
space-charge doping that arises from charge transfer
through the interfaces. This causes the band edges near
the interfaces to bend upward or downward depending on
the sign of charge transferred. If the thickness of each in-
dividual layer (referred to as "layer thickness" hereafter)
is larger than or equal to the depletion width, the band
edges at the center of the layer relax to their bulk posi-
tions. However, as the layer thickness is reduced, the
layer becomes fully depleted and the band edges are not
located at their bulk positions even in the middle of the
layer. This can change the effective value of the barrier
height. In general, if electrons are injected into an elec-
tron well (i.e., a well in the conduction band), or holes into
a hole well (i.e., a well in the valence band), the barrier
height increases. On the other hand, if electrons are in-
jected into a hole well, or holes into an electron well, then
the barrier height is decreased. In "n-i-p-i" doping super-
lattices, as shown in Fig. 1, the electron well is in the n;
type layers and the hole well is in the p-type layers. The
charge carriers injected are always the minority carriers.
The actual band edges are deformed as shown by the
dashed curves in Fig. 1. The space-charge doping reduces

the barrier heights (indicated by b, in Fig. 1) at both the
conduction and the valence bands from the value deter-
mined from the difference between the Fermi energies of
the two layers (b,o). The thinner the layer is, the smaller
the barrier becomes. For the quantum effect to be signifi-
cant, a small layer thickness and a large barrier height is
required. Therefore, the existence of an optimum thick-
ness for maximum quantum effect in doping superlattice's
is expected.

In this paper, we present a theoretical analysis of the
space-charge-doping process in doping superlattices. This
involves the calculations of (1) the electronic potential dis-
tributions in the multilayer, and (2) the quantized energy
and the wave function of an electron in this potential.
The mathematical procedures are described in Sec. II. Al-
though the general formulas are applicable to amorphous
as well as crystalline semiconductor superlattices, numeri-
cal results are generated for superlattices made from hy-
drogenated amorphous silicon (a-Si:H). These results are
presented and discussed in Sec. III. A similar analysis for
compositional superlattices are reported in the accom-
panying paper.
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FIGr. 1. The conduction band (CB), the valence band {VB),
and the Fermi level (FL) in an n-p doping superlattice. The
solid lines represent the nominal position while the dashed
curves show the actual positions of the band edge due to space-
charge doping. The barrier height 5 is reduced from the nomi-
nal value 60.
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II. MATHEMATICAL PROCEDURES

A. Electronic potential distributions

Poisson's equation for the electronic potential energy V
(ln units of kg T) 1s,

V ldx = ( q /pk& T)[q (p —p o —n +n o ) +QL ], (1)

where q is the elemental charge, e is the permittivity, k~
is the Boltzmann constant, and T is the absolute tempera-
ture. The space-charge density on the right-hand side of
Eq. (1) consists of two parts. The first part represents the
charge of the excess free carriers due to band bending. By
using this quantity instead of the charge of ionized
dopants, the resultant potential is self-consistent. The
hole and the electron densities, p and n, respectively, and
their equilibrium (bulk) values, po and no, can be ex-
pressed in terms of the intrinsic carrier density n;, the
(bulk) Fermi energy Ep, the hole quasi-Fermi-energy EP,
and the electron quasi-Fermi-energy Eq, with

p =n;exp( V EF); po ———n;exp( Eg ), — (2)

Ev

EG

0

(b)

n =n;exp(EF' —V); no ——n;exp(EF ), (3) (c)
where the energies are measured in units of ks T from the
mldgap.

The second component of the space charge QL, unique
to an1orphous materials, arises from the excess charge in
the localized gap states. The typical distributions of
donorlike gap states NDq(E) and the acceptorlike gap
states N&L(E) can be approximated by the exponential
functions (see Fig. 2),

Ec

0

NDL(E) =NL exp( Elw), —

N«(E) =NL exp(E/w),

(4)

where the energy E is also measured in units of ks T from
the midgap. The parameters XL and m are not necessari-
ly the same for the two distributions. The former
represents the density at the midgap, and the latter
characterizes the exponential increase of the distribution
as E approaches the band edges. A donorlike state is neu-
tral when occupied and positively charged when empty
(i.e., when it lies above the Fermi level). An acceptorlike
state is neutral when empty and negatively charged when
occupied (i.e., when it lies below the Fermi level). Thus,
the space charge in the localized states due to a shift in
the Fermi level QL is schematically illustrated in Figs.
2(b) and 2(c). Using the above two idealized distributions
and the "zero temperature" statistics, one obtains

QL ( V) =qk~ TwNL I exp[( V EF")lw] —exp[(Eg —V)—lw]

+2 sinh(EF/w) I .

When the multilayer is in equilibrium the quasi-Fermi-
levels are constant across the layers and can be set as
EF"——Ez ——0. The Debye lengths with respect to the in-
trinsic carrier density D; and that with respect to the lo-
calized state density DL can be defined by

D; =(ek&T/q n;)'

DL (e/q NI.)'i——

V

log)o NL

FIG. 2. Model of localized state distributions in the band gap
of amorphous semiconductors: (a) for intrinsic material with the
Fermi level EF at the midgap, ' (b) with the Fermi level in the
upper half-gap E~~O; and t', c) with the Fermi level at lower
half-gap.

This equation is to be solved numerically by the relaxation
method over a period ( —S & x & S), consisting of p-, i
and n-type layers, shown in Fig. 3. However, because of
the mirror symmetry of V with respect to the midplane of
each layer, it is necessary to solve only within a half
period from x = —S/2 to S/2. The boundary conditions
at these points are

d V/dx =0 at x = —S/2 and S/2 . (10)

Furthermore, if the p- and n-type materials are antisym-
metric with respect to the zero of energy (i.e., the midgap)
i.e., their Fermi energies are related by Eg = Eg and the-
layers are of the same thickness, then only the solutions in
a quarter period from x =0 to x =S/2 are necessary. In
this case, the boundary condition at x =0 is V(0) =0 (for

Using the Debye lengths and Eqs. (2), (3), and (6), Eq.
(1) can be rewritten for the equilibrium condition as

d V/dx =2[sinh(V)+sinh(EF)]/D;

+2w [sinh(V/w)+sinh(EF/w)]!DL, .
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d~u/dx~ —2k dw/dx+(2m*/fi )[F. E—k —V(x)]u =0,
I

d'w/dx'+2k du /dx+(2m*/fi')[E F—k V—(x)]u =0 .
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Similarly, Eq. (14) can be rewritten as

fudx + f Vwdx fwdx
E =Ek+ 2

fudx + f wax

FIG. 3. Schematic of a potential distribution in an n-i-p-i su-

perlattice, and the coordinate system used in the text.

the i type -layer EF —0).
The potential distributions obtained above can be used

to calculate the electronic sheet conductance 6 from the
expression, .

S/2 S/2
6 =qp f n (x)dx =quan; f exp[ —V(x)]dx, (11)

where p is the electron mobility.

with
T

f Vwdx fudx — f Vudx fwax =0, (18)

III. RESULTS AND DISCUSSION

where all integrals are taken over a period 0 (x (2S. The
three quantities u, w, and E can be solved from Eqs.
(15)—(17) by the relaxation method until self-consistency,
using Eq. (18) as a.supplemental criterion.

B. Quantized energies and wave functions

The wave function for an electron in a one-dimensional
periodic potential can be written as a modulated plane
wave,

A. Electronic potential distributions

Figure 4 shows examples of calculated potential distri-
butions in the quarter period x =0 to S/2 (see Fig. 3) for
an antisym metric p nmultilay-er (no i layers), with
EF —24(k&T). The—potential distribution in the p layerf= U(k, x)exp(ikx), (12)

where k is the wave vector and U(k, x) is a periodic func-
tion with a period 2S. With this wave function, the one-
dimensional Schrodinger equation reads'

1 U/dx +2ik(dU/dx)+(2m" /h' )[E Ek —V(x)]U—=O

(13)

f 2S

o V(x) U(k, x)dx
(14)k+

f SU(k, x)dx
0

Denoting the real and the imaginary parts of U as u

and w, respectively, and substituting into Eq. (13), one
gets the following two equations:

where Ek =(haik) /2m*, m* is the electron effective mass,
and V(x) is the periodic potential. For a square-well po-
tential, the solutions of Eq. (13) can be expressed in terms
of analytic functions, ' and the energy levels E and wave
functions can be obtained by numerical solutions of a
transcendental equation. For a periodic potential of gen-
eral shape, such as those obtained numerically in the pre-
vious subsection, the quantized energy level E and the
wave function U must be obtained from direct numerical
integration of the differential equation, Eq. (13). The pro-
cedure is described below.

First, the lowest-order quantized energy E can be deter-
mined by integrating Eq. (13) over a period, x =0 to
x =2S. Using the periodic boundary conditions:
U(k, 0)= U(k, 2S) and [dU/dx]„o ——[dU/d ]„xq sone

obtains

t-~

0 -l2-

-IS—

0.2
x/$

0.4 0.5

FIG. 4. Calculated potential distribution in a quarter period
{solid-line portion in the inset) for an antisymmetric n-p mul-
tilayer of Fermi energies E~——+24k&T and various thicknesses
S. The Debye lengths are D; = 10 nm and DI. ——10' nm.
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and the other half of the n layer can be generated by mir-
ror images of this curve as illustrated in the inset. The
layer thickness S is varied from 20 to 200 nm. The Debye
lengths are D;=10 nm and DL ——10 nm. The former
corresponds to an intrinsic carrier density of
n; =1.65&10 cm which is consistent with the dark
resistivity of undoped a-Si:H (with Fermi level Ez=6)
being =10 Qcm. ' The DL value corresponds to the
midgap density of XL ——0.66& 10' cm eV '. The pa-
rameter m =2.85 is chosen so that the exponential distri-
butions of localized states increase to a value of
10 cm eV ' at the band edges ( E= +34k' T)

The barrier height which is the difference between the
potential at the center of the p-type layer and that at the
center of the n-type layer, is equal to twice the absolute
value of V at x =S/2. It can be seen from Fig. 4 that as
a result of space-charge doping, the barrier height de-
creases significantly with the layer thickness. Figure 5
shows the barrier height as a function of the layer thick-
ness, calculated for various doping levels of the p- and n-

type layer, represented by the Fermi energy Ez. For the
solid curves, the density of intrinsic carriers and the local-
ized state distribution are the same as those used in Fig. 4.
One can see that the barrier height can maintain the value
determined by the difference of the Fermi energies (2E+
in this case) to a smaller thickness only if the doping level

is higher. However, even at EI; ——24k~T, which at room
temperature ( k~ T=0.025 eV) is almost the upper limit
for a-Si:H, ' the barrier height is reduced to less than half
at thicknesses less than 50 nm. This conclusion is also
valid for other localized state densities (or DI ), as shown

by the dashed curves in Fig. 5. The curve with DL = oo

represents a multilayer in which the localized-state density
is negligibly small (e.g., crystalline).

From the reduction of barrier height shown above, it
can be said that space-charge doping in n-p superlattices
is in fact equivalent to a counter doping. The doped semi-
conductor layers behave electronically more intrinsic.
Since the photoluminescence peaks are found' to shift to-
ward longer wavelengths as the doping level in a-Si:H is
increased, one can expect the photoluminescence of n-p
superlattices to peak at a shorter wavelength than that of
the unlayered constituent a-Si:H. This is indeed observed
experimentally.

Assuming the mobility to be independent of the layer
thickness, one obtains the sheet conductance G, Eq. (11),
as a function of the layer' thickness S as shown in Fig. 6.
The conductance is normalized to the "intrinsic" sheet
conductance G; =quan;S/2 In. the limit of infinitely
thick layers, the normalized sheet conductance approaches
exp(EF). The values of D; and DI are the same as those
used in Fig. 5 for the solid and dashed curves. By plot-
ting the natural logarithm of G/6; versus layer thickness
as in Fig. 6, these curves appear almost identical to the
corresponding ones in Fig. 5. The sheet conductance de-
creases sharply at the thicknesses where the barrier height
also does. This can be expected from the expression, Eq.
(11), and suggests the sheet conductance as a direct experi-
mental measurement of the barrier height.

The above features illustrated by Figs. 4—6 are also
seen with a finite thickness of i-type layers interposed be-
tween p- and n-type layers. Replacing a part of the doped
layer with the i-type layer leads to the decay of barrier
height to start at a larger thickness (S) as shown in Fig. 7.
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FIG. 5. Barrier height as a function of layer thickness calcu-
lated for antisymmetric n-p multilayers of various Fermi ener-
gies EF. The Debye lengths are D; =10 nm for all curves, and
DL ——10 nm for the solid curves. The DI values for the dashed
curves are marked in the figure (in nm).

FKx. 6. Sheet conductance 6, normalized to 6;=qpn;S/2,
as a function of layer thickness, calculated from the same poten-
tial distributions used to generate Fig. 5 (EF——20k& T and 24k~ T
only).
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FIG; 7. Barrier height vs layer thickness calculated for an-
tisymmetric n-i-p-i multilayers of Fermi energies E~——+24k~ T.
The ratios of doped-layer thickness to half-period are S„/S =1,
2, and ~. The three crosses denote the data for a fixed S„
(=40 nm) with different i-type layer thicknesses of 0, 40, and
120 nm, respectively.

B. Quantized energies and wave functions

The quantized energy levels calculated by the method
of Sec. IIB (assuming m*= rest mass) and using the po-
tentials obtained above for n-p multilayers are shown as a
function of the layer thickness in Fig. 8 for EF 20k~T——
and 24k~T. The corresponding barrier heights (dashed
curves) are reproduced from Fig. 5 for comparison. It can
be seen that the quantized energy level increases with de-
creasing layer thickness, in spite of the lowering of barrier
height, to a maximum value of =0.05k& T and
—0 17kgT for EF—20k' T and 24k' T, respectively, at
layer thicknesses of several tens of nm. Further decrease

The thicknesses of the doped layer are 100%, 50%, and
25% of the half-period S, respectively, for the three '

curves. On the other hand, for a given thin doped layer,
the barrier height can be increased (up to 2') by inter-
posing an i-type layer. This is illustrated by the three
data points (+ ) in Fig. 7. In these cases the doped layer
thicknesses are the same (40 nm), but the i-type layer
thicknesses. are 0, 40, and 120 nm, respectively. However,
this increased barrier height does not mean an enhance-
ment of the quantum well effect by the i-type layer, be-
cause the period of the superlattice has also increased.
This can be seen quantitatively from the calculations of
the quantized energy levels presented below.

FIG. 8. First-order quantized energy in an antisymmetric
n, -p multilayer of Fermi energies EF——+20k&T and +24k&T, as
a function of layer thickness. The potential distributions used
are the same as those of solid curves in Fig. S. The barrier
height (dashed curve) is reproduced from Fig. S for comparison.
The three crosses are data for n-i-p-i multilayers corresponding
to the three data on Fig. 7.

in the layer thickness cannot increase the energy because
of the diminishing barrier height. The three data points
(+ ) are the calculated energies for the three cases with
the same doped layer thickness (40 nm) but different i
type layer thicknesses, cf. Fig. 7.

Persistent photoconductivity (PPC) has been observed
in a-Si:H n -p superlattices of layer thickness 5 =27 to 50
nm. %'hile this thickness is an order of magnitude larger
than that of a-Si:H compositional superlattices reported
in the literature, it is consistent with the findings from
the present theoretical studies. The calculations above
have indicated that at smaller thicknesses than this, the
space charge doping effect would diminish the barrier
which makes PPC possible. It can be predicted that a
thickness dependence study of PPC will find the optimum
thickness in this range of layer thickness.

Even with the high doping levels assumed in this exam-
ple, the quantized energy is only a small fraction of 1k& T.
Although it is still larger than that expected from a
square-well potential, ' it is much smaller than the energy
fluctuation due to the effects of disorder in amorphous
semiconductors. Therefore, while it is consistent with the
persistent photoconductivity data, the concept of
quantum-well effect in amorphous semiconductor mul-
tilayers should be taken cautiously.

IV. SUMMARY AND CONCLUSION

The effects of space-charge doping in n-i-p-i doping
superlattices (in particular, of a-Si:H) are quantitatively
analyzed. First, the electronic potential distribution in the
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multilayer is calculated by solving Poisson's equation.
Then, the quantized energy and wave function of an elec-
tron in this potential are determined by numerical solution
of the Schrodinger equation. It is demonstrated that
space-charge doping decreases the barrier height signifi-
cantly as the layer thickness is reduced. Therefore, it acts
as a counter doping, and the layer behaves more intrinsic-
like than its constituent semiconductors. This accounts
for the observed blue shift of the photoluminescence
peak. Another consequence of the reduction of barrier
height with thickness is the existence of an optimum
thickness for carrier confinement in the layer. In a-Si:H,

it is found to be in the range of several tens of nm. This
is nearly an order of magnitude larger than the thickness
of a-Si:H compositional superlattices in which the quan-
tum effects are found, experimentally and theoretical-
ly, to be most significant. Yet, this is the thickness of a-
Si:H doping superlattices in which persistent photocon-
ductivity has been observed. This distinction between the
critical thicknesses in the two types of superlattices arises
from the significant barrier height reduction due to
space-charge doping in doping superlattices. This is
quantitatively elucidated by the analyses in this and the
following paper.
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