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Relative magnitudes of the single-particle relaxation time and the scattering time that enters in conduc-
tivity are given for two- and three-dimensional electron gases in the presence of random distributions of
charged Coulomb scattering centers. We find that for accessible electron densities in the usual three-
dimensional metallic systems the scattering time is at most a factor of ~ 2 larger than the single-particle re-
laxation time, whereas in high-mobility GaAs-based heterojunctions the spatial separation between the im-
purities and the carriers gives rise to scattering times which can be as much as two orders of magnitude
larger than the corresponding single-particle relaxation times.

In the transport theory of normal metallic systems, one
must deal with two different characteristic times—a single-
particle relaxation time 7, and a scattering time 7,."? The
single-particle relaxation time is related to the imaginary
part I's of the single-particle self-energy function by

Cy=#/271, . 1)

It is a measure of the time for which an electronic momen-
tum eigenstate can be defined even in the presence of
scattering. The scattering time is related to the dc conduc-
tivity o by

o=ne*r/m , (2)

where n is the density of carriers and e and m are the elec-
tronic charge and effective mass, respectively. In this Rapid
Communication we discuss the quantitative difference
between these two times and show that this difference can
become very large for electrons in some high-mobility
heterojunctions.

From a many-body-theory viewpoint the single-particle re-
laxation time 7 is related to the one-electron Green’s func-
tion of the coupled electron-impurity system, whereas the
scattering time 7, is related to the two-electron correlation
function that defines the conductivity in the system.> Even
though 7, is more directly related to experiment, 7, enters
in an important way into many theoretical calculations. In
particular, the single-particle level broadening I'y determines
the modifications of the electronic density of states due to
the electron-impurity interaction.’ It also determines the
modification of screening of an electron gas due to the pres-
ence of impurities, as discussed for three dimensions by de
Gennes* and for two dimensions by Ando’ and Das Sarma.®

In this paper we consider a two- (2D) or three-
dimensional (3D) electron gas at absolute zero in the pres-
ence of charged impurity centers and calculate 7, and 7 by
assuming the interaction between an electron and an impur-
ity to be a linearly screened Coulomb potential. For the
screening function we use the static random-phase-
approximation screening, as given for three dimensions by
Lindhard’ and for two dimensions by Stern.! The charac-
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teristic times in three dimensions are given by

8(k'— kr)
k' ’
3)

where f(8)=1—cosf for obtaining 7, and f(8) =1 for ob-
taining 7,.° In Eq. (3), N; is the concentration of impuri-
ties, kr is the Fermi wave vector, and u(q) is the screened
electron-impurity interaction calculated®”® in the static
random-phase approximation. A slightly modified expres-
sion gives the characteristic times for two-dimensional elec-
tron systems, as noted below.

The relaxation time and the scattering time are equal for
short-range (8-function) scattering, for which the scattering
cross section is independent of angle and for which the
average value of cosf vanishes. However, if the scattering
is strongly peaked in the forward direction, 7, can be consid-
erably greater than 7, as we show below.

Figure 1 shows the ratio 7,/7s for a three-dimensional
electron gas as a function of y = kz/qtp, Where g1f is the
three-dimensional Thomas-Fermi screening constant.!® The
solid curve gives the results calculated with the full wave-
vector-dependent polarizability function,” whereas the
dashed curve is calculated using the long-wavelength limit
for the screening. For y << 1 one expects and finds
7,/7s~ 1 because the scattering is nearly isotropic when the
screening is strong (the ratio is slightly less than 1 if the full
wave-vector-dependent screening, corresponding to the solid
curve in Fig. 1, is used because the screening decreases with
increasing wave vector, favoring backward scattering over
forward scattering). On the other hand, 7,/7, diverges for
large y. Expressions relating kr and g¢rp to the density for
both two- and three-dimensional free-carrier systems are
given in Table I. For metals y is between 0.5 and 1.0, im-
plying that 7,=7; for charged impurity scattering at low
temperatures. A wider range of values is possible in degen-
erate semiconductors.

For two-dimensional electron systems—even in the ideal-
ized case in which the electrons are confined to a plane and
the scatterers lie in a plane parallel to that of the
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FIG. 1. Calculated ratio of the scattering time 7, to the single- . | . |
particle relaxation time 7 in a three-dimensional electron gas at ab- 0.0 05 1.0 15 20

solute zero in the presence of Coulomb scattering vs the ratio of the
Fermi wave vector kp to the Thomas-Fermi screening parameter
gtr- The solid curve and the dashed curve are obtained using the
full Lindhard screening and the long-wavelength Thomas-Fermi
screening, respectively.

electrons—there is an additional parameter characterizing
the scattering, namely, the distance z; between the scatterers
and the electron plane. This leads to an additional factor of
expl — 4krzsin(6/2)] inside the integral in the two-
dimensional analog of Eq. (3).!! Figure 2 shows 7,/75 Vs
kr/qrg for six values of z. All the values converge to
t/7s=1 for kg/qrr— 0 because for two-dimensional sys-
tems the screening is independent of wave vector for the
entire accessible range of scattering wave vectors
(0=<<g=<12kp) in an electron gas with isotropic effective
mass at absolute zero. For large values of y, on the other
hand, the scattering becomes increasingly peaked in the for-
ward direction, especially for large values of z, and 7, in-
creases rapidly while 7 is affected much less.

Figure 3 shows calculated values of 7, and 74 for
Alg3Gag7As-GaAs heterojunctions with two different accep-
tor doping levels in the GaAs as a function of spacer thick-
ness dg,, which determines the channel electron density.!?
The calculation proceeds along standard lines,!! using the

TABLE 1. Expressions for the Fermi wave vector kr and the
Thomas-Fermi screening parameter g in terms of the electron
density n (in three dimensions) or N, (in two dimensions). Param-
eters that enter are Planck’s constant 277, the electronic charge e
and effective mass m, the background dielectric constant x, and the
valley degeneracy g,, which equals 1 for simple metals and for elec-
trons in GaAs and equals 2 for electrons in Si(001) inversion layers.
All values are in cgs units.
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FIG. 2. Same as Fig. 1, but for an ideal two-dimensional electron
gas with six different values of the separation z; between the elec-
tron layer and the impurity layer. Note that the random phase ap-
proximation and the long-wavelength limit give the same results
here. The value of grg for two-dimensional electrons in GaAs is
2.0x10% cm~! and the corresponding value for a Si(001) inversion
layer is 1.9%107 cm™! if the average dielectric constant of Si and
SiO, is used.

Fang-Howard variational function to approximate the spatial
distribution of electrons in the GaAs.

It is clear from Fig. 3 that for high mobility GaAs hetero-
junctions 7, is substantially larger than 7, and that the
single-particle relaxation time cannot be estimated from the
mobility. In lower-mobility samples, for which the scatter-
ing may arise from impurities closer to the channel, the
difference between the two characteristic times becomes
smaller.

On the other hand, in a Si(001) inversion layer with
N,=102 cm~2, ky/grr==0.1, making 7,=~7,. This con-
clusion is not changed when interface roughness scattering
is included. Thus it is a reasonable approximation to extract
the single-particle relaxation time from the mobility for a
Si(001) inversion layer.

Support for these conclusions comes from comparison of
the scattering time deduced from the mobility with the time
deduced from the magnitude of Shubnikov-de Haas oscilla-
tions in both GaAs-based heterojunctions and silicon inver-
sion layers. Paalanen, Tsui, and Hwang!® find large differ-
ences in the two times for electrons in heterojunctions and
point out the importance of long-range scattering in this sys-
tem. Harrang et al.'* find the two times to be very close for
the silicon case, as had been shown by Fang, Fowler, and
Hartstein,!® but substantially different for the GaAs case.
Terwilliger and Higgins!® have shown that the integration
over scattering angle in Eq. (3) has a lower cutoff when the
relaxation time for the Landau levels is calculated. They ar-
gue that scattering that has little or no effect on a cyclotron
orbit will not contribute to the level broadening. Thus, the
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FIG. 3. (a) Calculated values of 7, and 7, vs spacer thickness for
electrons in Aly3Gag;As-GaAs heterojunctions with GaAs acceptor
doping levels N, of 10 cm~3 (full curves) and 10'° cm~3
(dashed curves) and a donor doping level of 10'® cm™3 in the
Aly3Gag;As. Note that the electron mobility is w(in cm?/Vs)
=25%10%, (in ps) and that the level broadening is I' (in
meV) =0.33/7, (in ps). (b) Corresponding values of the channel
electron density N;. The difference between the conduction band
offset, ¥V}, and the donor binding energy in the barrier, Ep,, is tak-
en to be 0.15 eV. All values are for absolute zero.
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effective relaxation time they determine will be intermediate
between our 7, and 7. In strong magnetic fields where the
carrier motion and the screening are strongly perturbed, the
simple considerations that lead to Eq. (3) are no longer
valid. More generally, the imaginary part of the self-energy
is a frequency- and wave-vector-dependent quantity? and
our calculated 7, refers to the so-called ‘‘mass shell’”’ ap-
proximation in which the electron is assumed to be on the
Fermi surface. Characterizing the imaginary part of the
self-energy by a constant, independent of frequency and
wave vector, as done in our present work, is an oversimpli-
fication and can only suggest some qualitative trends that
require much more careful treatment.

In summary, we have obtained the relative magnitude of
the single-particle relaxation time and the scattering time
that enters in conductivity of two- and three-dimensional
electron gases with Coulomb scattering by a random distri-
bution of static, point-charged impurity centers. We find
that 7,/7, can be very large in high-mobility GaAs hetero-
junctions. Our conclusions may be relevant to a number of

, calculations for two-dimensional systems in which the level

broadening that enters in the single-particle Green’s func-
tion plays a role, including calculations involving cyclotron
resonance!” '8 and magnetoresistance.!® The relevance of
these considerations to plasmon effects??! is less clear, but
it appears that the time that enters there is closer to the
scattering time. Our results may also be relevant to the
broadening of Landau levels seen in recent measurements

_ of magnetic susceptibility?? and specific heat,?* although for

large magnetic fields the simple considerations used here
must be replaced by more detailed calculations.?*
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