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Optimally smooth norm-conserving pseudopotentials
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Modern norm-conserving pseudopotentials are constructed to satisfy a set of criteria for the
matching of pseudo- and all-electron eigenvalues and wave functions. In practice, it is also desirable
that they be as smooth as possible, so that their reciprocal-space representation decays as quickly as
possible. To this end, a simple modification of a standard pseudopotential generation scheme is
developed. The new, smoother potentials are shown to decay significantly faster in reciprocal space,
with no loss of transferability.

The availability of first-principles norm-conserving
pseudopotentials' has greatly contributed to the practi-
cality of realistic ab initio total-energy calculations within
the local-density theory. These pseudopotentials are gen-
erated in such a way that for a reference configuration of
the free atom, the pseudoeigen values match the all-
electron eigenvalues for the valence states, and the corre-
sponding wave functions match exactly (not just to within
a multiplicative constant) outside some core radius (norm
conservation'). These criteria ensure the transferability of
the pseudopotential to other chemical configurations.

While there are many ways to construct such poten-
tials, ' I concentrate on those which meet an additional
criterion, that of being optimally, smooth. That is, the
pseudopotential should have as few high Fourier com-
ponents as possible. The widespread use of the
momentum-space representation for total-energy calcula-
tions provides an immediate motivation for this criterion.
In this approach, the potentials and wave functions are al-
ways truncated, in practice, outside some reciprocal-space
sphere. The q-space cutoffs have to be extended until
convergence is obtained, at the expense of rapidly increas-
ing computer time. While the wave-function cutoff is
most crucial (it determines the size of the matrix to be di-
agonalized), the inclusion of high Fourier components in
the wave functions is expected to be less critical if the po-
tential is smoother. Even if the plane-wave approach is
not used, smooth potentials may be desirable for a variety
of reasons. For example, in localized-orbital approaches it
is common to fit the potential to a sum of Gaussians with
adjustable decay constants. This is much easier to do ac-
curately with few decays if the potentials are smooth.

Many of the previously proposed norm-conserving
pseudopotentials are of the "hard-core" type having a
repulsive r divergence at the origin. These do not meet
the criterion of smoothness; the corresponding decay in
reciprocal space is as q ', which is much too slow.
Among the most frequently used norm-conserving pseu-
dopotentials of the soft-core type are those of Hamann,
Schluter and Chiang' (HSC) and Kerker. The latter are
generated from a pseudo-wave-function having a discon-
tinuity in its third derivative at the origin and at the cut-
off radius; this in turn gives rise to slope discontinuities in
the potential at the same locations, and a still-slow q

Second, the constant c~ is chosen so that the nodeless solu-
tion wt' '(r) of the potential

Vi '(r)=Vt'"(r)+ctf2(rlr, , )

has the correct energy eI. Third, the constants y~ and 5~
are chosen so that the pseudo-wave-function

w,~'(r)=yt[wt' '(r)+5tr'+'f3(r/r,
, )] (3)

is normalized to unity and wing'(r) ~ ut(r) for r & r,
(norm conservation). Finally, the Schrodinger equation is
inverted to obtain Vt"'(r). After this has been done for
each l, the pseudo-charge-density is formed from the w&~'

wave functions, and the bare potentials Vt""'~'(r) are ob-
tained by subtracting the corresponding screening poten-
tial from the Vt '(r)

In the HSC method, the functions f&, f2, and f3 are
chosen to be identical and of the form

f(x) =g, (x) =exp( —x') (4)

and a=4 [Ref. 1(a)] or 3.5 [Ref. 1(b)]. As will be seen,
these three functions need not be identical; in fact, each is
constrained in a different way. By optimizing each step
of the process (1)—(3) separately, using a different value of
.a or a different functional form entirely, the potentials
can be tailored to have the desired smoothness properties.

decay of the potential in reciprocal space. I prefer instead
to use the HSC scheme as a starting point, as the poten-
tials generated in this scheme are free of such kinks.

The HSC method begins with a reference self-consistent
full-core atomic calculation, using a local exchange-
correlation energy functional scheme. The screened all-
electron potential V(r), valence eigenvalues et, and
valence wave functions ut(r)=rgt(r) are obtained. For
each l, a cutoff radius r, is chosen beyond which the

screened pseudopotential Vf'(r) is required to converge to
V(r). The generation of the pseudopotential proceeds as
follows. First, the full potential V(r) is subjected to a cut-
off in the core region:

Vt'"(r) = [1 f~(r Ir, , )]V—(r)
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Even within the standard HSC procedure, the smooth-
ness can be improved somewhat by the proper choice of
r, and a. First, a larger r, gives a smoother potential, al-

cI gg

though at the expense of reduced transferability if r, , be-

comes too large. Some gains can be made in this way; the
pseudopotentials of Ref. 1(b), for example, appear to have
an unnecessarily small r, for certain portions of the

S

Periodic Table. Second, the choice a = 3.5 [Ref. 1(b)] ap-
pears to give the smoothest potentials, for reasons which
will emerge shortly.

Consider now each of the three steps of the HSC pro-
cedure separately, starting with Eq. (1). The leading term
in the r ~0 expansion of the cutoff function is
1 f~(r/—r,,)=(r jr,,

)' in the HSC scheme. Since V(r)
diverges as r ' at small r, a & 2 is needed to avoid a slope
discontinuity in VI'" at r =0; a =3 is a practical
minimum. Even a=3 is unacceptably small for all but
the lightest atoms, however, because of the core shell
structure. For example, for a =3, VI (r) has an unneces-(I)

sarily large second derivative —4Z at r =0 (Z is the full
atomic number). The effects of this shell structure can be
clearly seen in the Fourier transform VI(q) for heavy
atoms at a =3, but are greatly reduced at a =3.5.

An alternative cutoff procedure is simply to replace
V(r) by a polynomial inside a cutoff radius r, . I use

(this is analytic at the origin) and choose the parameters
to match the value and first two derivatives at r,, A scal-

ing r, = 1.5r, has been used so that for a given r, the po-el cl C)

tentials generated using Eqs. (1) and (4) or Eq. (5) look
similar in their convergence beyond r, and have similar

transferability. The choice (5) completely removes the
core shell structure from V~", at the expense of introduc-
ing a third-derivative discontinuity in VI "(r) and conse-
quently a q tail in V& "(q). In a series of tests, this tail
has been found to be negligible, and Eq. (5) is found to
provide a slight improvement over Eqs. (1) and (4) with
a =3.5. Equation (5) has thus been adopted here.

In the second step, Eq. (2), the choice of the function f2

has no particular constraints. It should approach unity at
least quadratically at r =0 (a finite slope at r =0 is to be
avoided); fq(x) =g2 0(x) is thus acceptable. It should also
decay to zero beyond r, "fast enough. " To systematize

this latter consideration, the somewhat arbitrary con-
straint

f(1.5)= 10

is imposed upon all functions to be tested. This ensures
that they will all have roughly the same transferability, in-
sofar as this depends on the rapidity of the cutoff. To
satisfy Eq. (6), Eq. (4) is replaced by

V("(r)=bo+bzr +b4r (5) g (x)—= 100 (4')
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FIG. 1. Silicon ionic pseudopotentials in real space for (a) HSC method and (b) present method; Fourier transforms are given for
(c) HSC method and (d) present method. Solid curve, s potential; dotted curve, p potential; dashed curve, d potential.
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At b=O, hb(x) is just a Gaussian; the larger is b, the
sharper is the cutoff. For very large b, the function ap-
proaches a step function, again introducing high Fourier
components. The parameter value b =1.0 has been found
to be a good compromise; while g3 5 and h ~ 0 have very
similar real-space decays beyond the cutoff, the Fourier
transform of hi 0 drops off much faster. The choice
f2(x) =h i o(x) has been adopted here.

In the third step, the pseudo-wave-function is augment-
ed as

w,"(r)=yi[wI'"(r)+5iyI(r)1j,

where

yI(r)=r'+'f3(r/r, , ) .

(8)

In the HSC scheme, f3 ——g3 5 or gq0. The change in the
potential from the inversion of the Schrodinger equation
1s

ps (2) I 3 lyI (2) I (l + 1) yI
l ~pS „2 yl

V" =Vl + el —Vl +
l

(10)

The second derivative in the last term increases the sensi-

henceforth. This is really just an a-dependent redefinition
of the cutoff radius; Eqs. (4) and (4') are almost identical
for 3.5&a &4.

If f2(x)=g, (x) with a =3.5 or 4 as in the standard
HSC scheme, the function f2 decays rapidly beyond r, ,

but has an unnecessary plateaulike behavior g, (x)=1 for
x &0.5, and consequently the transition from g=1 to
g=O is rather sharp in the vicinity of the cutoff radius.
This introduces high Fourier components. If instead
f2(x) =g, (x) with a =2 is used (a Gaussian), the plateau
is avoided, but the decay is rather slow. Equations (6) and
(4') force the decay to be rapid at the expense of reducing
the effective cutoff radius and making the function un-
necessarily narrowly peaked near the origin. Again this
introduces high Fourier components. A compromise
functional form can be used which avoids both of these
problems. Consider the family of functions

hb(x) —=exp[ —sinh (bx)/sinh (b)]

again parametrized by a constant b. A Taylor-series ex-
pansion of the exponent shows that for small x this func-
tion follows a Gaussian (no plateau), but for x ) 1 the ex-
ponent picks up quartic and higher even powers of x, and
the function therefore decays faster than a Gaussian in
real space. To satisfy Eq. (6), hb(x) is redefined as

100—sinh2(bx/1. 5)/sinh~(b)X

8 q{a.u. ')

FIG. 2. Fourier transform of s and p pseudo-wave-functions
for Si. Dashed line, HSC method; solid line, present method.

yI(r) =wI (r)f3(r/r, ) (9')

The use of Eq. (9') has been adopted here, with f3 ——hi 0
as in step (2). The Schrodinger equation is inverted as be-
fore '

Here, the new pseudopotential generation scheme is
compared with the standard HSC scheme (a =3.5) for the

tivity of the potential to kinks in f3. For example, a
third-derivative discontinuity in f3 gives rise to a first-
derivative discontinuity in VI . Thus the choice f3 ——g,
with a =3 introduces a finite slope in VI

' as r ~0, which
is undesirable. A Gaussian g2 0 is free of these problems,
but has the slow-decay problem discussed for step (2).
The choices g3 5 and g4 0 are also possible, but again the
plateau behavior is unnecessary. Once more the choice

f3(x)=h i o(x) is found to be a good compromise.
Actually, the use of Eqs. (8) and (9) is sometimes prob-

lematic for cases in which the pseudopotential is repulsive
in the core region. For example, the s potentia1 for Si is
repulsive, so that the wave function (tI,'2)(r)=w, ' '(r)/r is
depressed near the origin. If it happens that the norm-
conservation condition requires 5I &0 in Eq. (8), the sub-
traction of the piece 5Iyi(r) may shift

f, '(r)=@I[/,' '(r)+5If3(r/r, , )J so that p, '(0) «g,' '(0).
Upon inverting the Schrodinger equation, the potential
V, acquires a large repulsive peak at the origin, which in-
troduces high Fourier components. A convenient way to
avoid this problem is to multiply )(t by 1+5If3, instead of
adding 5If3 to g. That is, take

TABLE I. Values (w ) and positions (r, ) of the radial wave-function maxima for two sets of
pseudopotentials, compared with the corresponding all-electron results, for Si. Atomic units are used.

All electron
HSC'
Present

'Reference 1.

r,„(s)

1.730
1.740
1.741

w (s)

0.7670
0.7656
0.7650

«,.(p)

1.995
1.997
2.000

wmax(p)

0.6815
0.6813
0.6809

r,„(d)

3.199
3.199
3.199

w, „(d)

0.4872
0.4872
0.4872
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TABLE II. Excitation energies hE for excited configurations of the Si atom. For each case, the en-

ergies are referenced to the total energy of the atom in its ground state, s p . All energies in Ry.

All electron
HSC'
Present

'Reference 1.

hE (sip3)

0.4927
0.4932
0.4933

AE (s2p i )

0.5789
0.5799
0.5799

~E (s2po. sd0. 5 )

0.8764
0.8777
0.8777

AE (slpl)

2.3460
2.3458
2.3457

case of Si, a typical semiconductor. Similar results have
been obtained for other atoms.

Figures 1(a) and 1(b) show the pseudopotentials of the
HSC and new schemes, respectively, in real space. In
both cases the same configuration s p d and cutoffs
r, =1.17, r, =1.3S, and r, =1.17, were used. The HSC
potentials appear "softer" in that the potentials are weak-
er at the origin. However, "softer" is not necessarily
"smoother, " as can be seen in Figs. 1(c) and 1(d). The de-
cay in reciprocal space is significantly faster in the new
scheme, especially for the s and d components. The
"softness" of the HSC potential is gained at the expense
of extra oscillations; note, for example, that Vd(r) is non-
monotonic. It is these real-space oscillations which are
largely responsible for the higher Fourier components in
the HSC potentials.

In Fig. 2 the Fourier transforms of the silicon neutral-
atom pseudo-wave-functions are shown for the standard
HSC and new methods. A slight improvement is evident.
The form of the wave function appears to be strongly con-
strained by the conditions of matching beyond r, and

Ct

norm conservation, so that significant improvement in the
reciprocal-space decay is difficult to achieve.

Several tests have been carried out on the transferability
of the new potentials. In Table I, the positions and values
of the wave-function maxima are compared with the all-
electron results, for both the HSC and new schemes. The

shifts of the maxima are not significantly greater in the
new method. Table II shows a comparison of the excita-
tion energies to a variety of neutral and ionic configura-
tions, for both schemes. Both give almost identical re-
sults, and are in excellent agreement with the all-electron
case. Finally, the logarithmic derivatives of the wave
functions have also been compared with the correspond-
ing all-electron results, for both schemes, and the energy
dependence was found to be in equally good agreement
with the all-electron calculation. Collectively, these re-
sults show that the gains in smoothness are not accom-
panied by a loss of transferability.

In summary, I have presented a simple modification of
the Hamann-Schluter-Chiang pseudopotential generation
scheme which is optimized to generate smooth potentials.
This is accomplished by choosing the functional form
used in each step of the pseudopotential generation
scheme separately. The new, smoother potentials are
shown to decay significantly faster in reciprocal space,
with no loss of transferability. It is hoped that these po-
tentials will contribute to the tractability and accuracy of
pseudopotential calculations of electronic structure and
total energy.
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