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Spikes in the orbital magnetic susceptibility of a two-dimensional electron gas
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It is shown that the height of the spikes predicted to appear in the orbital magnetic susceptibility of a
two-dimensional electron gas at low temperatures depends exponentially on inverse temperature. The
spikes are significant only within exponentially narrow regions of the magnetic induction where the chemi-
cal potential moves rapidly between adjacent Landau levels. It is pointed out that in systems where the
chemical potential is pinned within a magnetic gap (quantum Hall-effect systems) these spikes are expected
to disappear.

It is well known' that in a pure infinite two-dimensional
(2D) electron gas the orbital magnetic susceptibility (OMS)
at zero temperature exhibits spikes as a function of the
magnetic induction 8. These spikes are the manifestation of
the de Hass-van Alphen effect in 20 conductors. Although
the appearance of such spikes was predicted a long time ago,
the experimental observation of this phenomenon was re-
ported only very recently in silicon inversion layer and
in stage-2 Br2-graphite intercalated compound. ' The de
Haas-van Alphen effect has been also investigated in a
modulation-doped GaAs/Ga„A12 „As heterostructure. 6

These systems~'6 exhibit dips in their magnetoresistance and
plateaus in their Hall conductance known as the quantum
Hall effect (QHE). ' The QHE is known to be associated
with a pinning of the chemica1 potential within a magnetic
gap 9, 10

In this paper we investigate the spikes in the OMS of a
2D electron gas at low temperatures and show that in a pure
infinite system the height of the spikes depends exponen-
tially on inverse temperature. These spikes are significant
only within exponentially narrow regions of 8, ~here the
chemical potential moves rapidly between adjacent Landau
levels. In these regions the spikes in the OMS are a direct
measure of the chemical potential derivative with respect to
the magnetic induction 8. In the presence of localized
states within the magnetic energy gap the "motion" of the
chemical potential between adjacent Landau levels is slowed
down and the spikes are smeared out. We estimate the
value of the density of localized states within the magnetic
gap for which the spikes in the OMS disappear and the ex-
ponentially narrow plateaus in the Hall conductivity start to
appear.

At zero temperature the energy E(8) of a pure 2D elec-
tron gas is a piecewise quadratic function of 8. At discrete
values of 8 =8„",corresponding to the situations where the
first nF Landau levels are completely filled while a11 the oth-
er levels are completely empty, the energy E(8, T=0) ex-
hibits downward cusps. The OMS is therefore constant
between any adjacent values 8„', where the value of this
constant decreases with increasing nF. At 8„ the OMS is"F
undefined. At finite temperatures the cusps in the free en-
ergy are rounded so that the OMS is well defined there.

To find the analytical form of the OMS in these regions

we use the definition of the magnetization M(8) in terms
of thc Gibbs thermodynamical potential 0:

~here

n(8)= —k, Tg(8) X ln(l —f„) .
n=o

(2)

Differentiating M with respect to 8 and using the well-
known relation

where E(B) is the Helmholtz free energy and no is the
electron density per unit area, we obtain

= [no (Bp/68) —(ciE/88) ]/8

The chemical potential p, (8) is defined by the condition

g(8) X f„=no,
n=o

which can be readily solved to yield'

(6)

r t

k T A coshn + (1 +A 2 sinh2o ) '~2

(7)
l —3

where A = nF n/g. Eq—uation (7) shows that around the
value 8=8', where ~A ~expcr & 1, the chemical potential is

Here, f„=[1+exp[(E„—p, )/ksT] I is the Fermi distri-
bution, E„=leo,(n+ ~) is the energy of the nth Landau
level, and g(8) = eB/he is the degeneracy of the Landau
levels pcr unit area.

It can be shown that for this form of A the differential
relationship (1) between M(8) and 0 becomes an algebraic
one; that is,

M(B) = —0 (8)/8 —E(B)/8
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approximately

p, ——p' —ksTAe /2, (7a)

the system is now determined by the following equation:

N= g(nF 1)—+g/(1=exp[(E„ t p)—/ksT] )

where p. '—-kcu,'nF', namely, the chemical potential is located
around the middle of a magnetic energy gap (a situation
which resembles an intrinsic semiconductor). The derivative
of p, with respect to 8 in this region is, therefore, exponen-
tially large:

(|Ip/98 ) ~ = —( ka Tno@0/28'2) expn

The large exponential value of the chemical potential
derivative exhibited in Eq. (8) can be understood by the fol-
lowing consideration. Around B =B' the number of elec-
trons N,' in the level just ab'ove p, and the number of
"holes" XI,

' in the level just below are exponentially small:
N,'= NP =g'exp( —n). Reducing the magnetic induction8' by a small amount 58, the degeneracy g (8) of each lev-
el is reduced by the amount Sg =g'58/8'. As a result, the
number of electrons in the upper level increases by this
amount. The number of holes in the lower level, however,
remains unchanged. Now the location of the chemical po-
tential is determined by the ratio between the number of
electrons in the upper level and the number of holes in the
lower level:

exp(6p/k&T) ~= N/Nj, ——I +Bg/N&

Therefore, for infinitesimally small 68 one gets

(6a)

(8p/'d 8)s s = —ks Tg'/8'Nz = —(ka Tn

ohio/28"')

expa,

which is our Eq. (8).
The region AB, where (t)p, /BB) is exponentially large, is

determined by the condition (A
~
e & I, which yields

b, B/8'= e /nF (9)

The second term in Eq. (5) involves the derivative of the
energy E(8) with respect to 8. Unlike the first term, this
one does not diverge in the zero temperature limit, since
E(8) is a continuous function of 8 at T=0. Therefore,
the dominant contribution to the spikes in the OMS ori-
ginates in the chemical potential derivative with respect
to B.

Thus, within this narrow region the OMS is a direct mea-
sure of the derivative of the chemical potential p, with
respect to 8, so that by measuring experimentally the mag-
netic susceptibility one can readily obtain the value of
(8p,/88).

This result has been derived under ideal conditions. In
real systems, however, the presence of localized' ' elec-
tronic states within the magnetic energy gap such as, for ex-
ample, impurity states or edge states, ' may lead to a signifi-
cant slowing down in the variation of the chemical potential
with respect to 8, or even to the pinning9'o of p, (a QHE
situation), thus substantially reducing the height of the
spikes in OMS. Since the intrinsic width of the spikes, Eq.
(9), is exponentially small, the effect of such localized states
may be important even for very small concentrations of the
extrinsic states.

To study the effect of localized states we assume, for the
sake of simplicity, a given localized state density D„,(E)
within the magnetic energy gap. The chemical potential of

+ g/(1+ exp[(E„—p, )/kg T] )

+ D)„(E)dE/( I+exp[(E —p, )/k&T] ) (10)

Differentiating Eq. (10) with respect to 8 and assuming
the D~„(E) to be a slowly varying function of E around the
middle of the magnetic energy gap, one gets

(Bp/68) [2g e /kgT+Dh, (E = p, ')] = (nF —1)Bg/t)8 ~

(11)
which yields

( |Ip / t)8 )s
= (&p/&8)""" ./(1+ [D (p')/4DP-](e /~) )

(»a)
where (dp, /88)""' is defined by Eq. (8) and Dpp —= m/2m&

is the density of states of a 2D electron gas.
The condition under which (dp/f)B) retains its intrinsic

behavior (i.e., ~ e /n) is that the density of localized states
within the magnetic energy gap should be exponentially
small with respect to the density of states of the 2D free-
electron gas:

D„,(E) & 4ne Dh' (12)

To estimate the height of the spikes in the OMS, Eq. (5),
consider a model 2D electron gas with n & = 10' cm
m, =01mo, E~=10 ' erg, B =3 10 g, d =10 6 cm,
AT= I K. Those parameters are typical (by an order of
magnitude) to those observed in real 2D conductors such as
the inversion layers in Si metal-oxide-semiconductor field-
effect transistors4 (MOSFET's) and the modulation-doped
GaAs/Ga„Alt „As heterostructures. 6 In that case, Eqs. (5)
and (9) yield X' = 10 2/cm2 and b, B = 1 g.

If the density of localized states within the magnetic ener-
gy gap is sufficiently large such that condition (12) is no
longer satisfied, the chemical potential becomes a smooth
function of B and the spikes disappear. Under these cir-
cumstances, one expects that the magnetoresistance would
show pronounced dips around B', where the Hall conduc-
tance exhibits plateaus of finite width (QHE).

In systems exhibiting strong magnetic interactions' '3

(MI) where diamagnetic domains are formed, the spikes are
also expected to disappear due to the pinning of the chemi-
cal potential within a magnetic gap. ' ' Markiewicz,
Meskoob, and Zahopoulos reported recently the first direct
observation of such giant MI in a stage-2 Br2 graphite inter-
calation compound. Measuring the magnetic suscepibility x
as a function of the magnetic field, they observed a smooth
field dependence below a threshold value at about 4 T and a
structure of giant spikes above. This seems to agree with
our estimated threshold magnetic field for diamagnetic
domain formation in graphite intercalation compounds. '

However, one should notice that their measurement of X

has been performed by field-modulation technique, which
may not be interpreted in a straightforward manner by our
static theory. Furthermore, inhomogeneity in the magnetic
field or in the electron density also leads to a significant
smearing of the spikes.
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