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Orthogonalized linear combinations of atomic orbitals.
III. Extension to f-electron systems
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The previously developed direct-space orthogonalized linear combination of atomic orbitals method is ex-
tended to include f-electron orbitals. All the matrix elements of overlap, kinetic energy, and one-electron
potential between Gaussian-type orbitals are derived. A test calculation on the band structure of y-Ce
agrees well with other calculations.

The direct-space orthogonalized linear combination of
atomic orbitals (OLCAO) method is an efficient first-
principles method suitable for electronic structure calcula-
tions of low-symmetry systems. ' In this method, an all-
electron basis is used for the calculation of interaction ma-
trix elements, but the valence orbitals are orthogonalized to
all the core orbitals so that the latter can be eliminated from
the final secular equation. It was shown that the eigen-
values and the eigenvectors obtained from such a calcula-
tion were as accurate as when the full basis was used
meanwhile the computational effort was greatly reduced.
Naturally, the method will be very useful to study the elec-
tronic structures of disordered solids or crystals of low sym-
metry as well as systems involving heavy metal elements
which contain large cores. While the method has been ex-
tensively used for the electronic structure calculations of
amorphous solids and complex crystals, its application to
heavy metals involving f electrons has not been realized.
Since nearly half of the elements in the periodic table have
f electrons, it is desirable to extend the method to include f
electrons in the calculation. Generally speaking, occupied
f-electron orbitals in an atom are very localized, and a
tight-binding type of approach is quite natural for such sys-
tems. Furthermore, the ability of the LCAO method to
resolve the wave functions into various orbital components
certainly facilitates the interpretation of many phenomena
unique to f-electron systems.

We have further developed the OLCAO method to in-
clude the f orbitals in addition to the s,p, d orbitals. Previ-
ously, f orbitals had been used in the LCAO-type of calcu-
lation only for the augmentation of the basis set to achieve
greater variational flexibility of the Bloch functions, 5 and
was generally limited to one f-type of orbital only. Exten-
sion to include all types of f orbitals in our version of the
direct-space OLCAO method is straightforward, but requires
derivation of analytical formulas involving two-center and
three-center integrals. In the OLCAO method, the atomic
or the atomiclike orbitals are expanded in terms of
Gaussian-type orbitals (GTO). These are s type (e
denoted by g), p types (xg, yg, and zg), d types (x2g, y2g,
z2g, xyg, yzg, and zxg), and f types (xyzg, x2yg, x2zg, y2xg,

y zg, z xg, z'yg, x'g, y'g, and z3g). The last ten GTO listed
above are used to form the seven radial f orbitals with the
corresponding angular functions listed in Table I. The one-
electron potential of the solid is written as a superposition of
atomiclike potential functions V"(r) centered at each site
constructed according to the local density functional theory

and are numerically cast into the analytic form

-p r2V"(r)= ——e ' +XCe
r I

We let phd, hatt be the two GTO centered at site A and site
B, respectively. There are three types of integrals that need
to be evaluated:
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TABLE I. Angular functions of seven f orbitals.
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where (2) is the two-center kinetic energy integral, and (3)
and (4) are the three-center potential-energy integrals asso-
ciated with the potential (1) centered at site C. The special
case of n=0 in (4) gives overlap integrals. The extension
of the method boils down to the evaluation of the above
types of integrals between s f, p-f, d-f, -and f fGTO. -

This can be done systematically by successive differentiation
of the existing analytic formulas derived for s-d, p-d, d-d,
and f dintegrals. This -procedure has been discussed in
some detail in Ref. 6. Considerable efforts are saved by
taking advantage of appropriate symmetry relations. In the
Appendix, we list the above three types of integrals derived
for xyze ' -type of f orbitals as illustrative examples. Once
all the necessary analytic formulas are derived, the rest of
the calculation follows the conventional OLCAO method. '
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Because the f-electron wave functions are quite localized,
interactions involving f orbitals beyond second- or third-
nearest neighbors are usually negligible and need not be cal-
culated.

We have tested our newly constructed computer codes by
calculating the band structure of y-Ce. Recently, there has
been an upsurge of experimental and theoretical interest
about the electronic structure of Ce metal, especially on the
subject of o. -y phase transition ~ and the mechanism of hy-
bridization of f electrons and Coulomb interactions. 9'0 Our
major interest in this paper, however, is to establish the reli-
ability of our method, which has been extended to include
the f orbitals, rather than to obtain a most accurate band
structure and to study its consequences. We constructed
the atomiclike potentials using an overlapping atomic
charge-density model with the atomic wave functions
of Ce (Ref. 11) in the ground-state configuration of
[Xe] 6s24f Sd . The atomiclike basis functions are obtained
by the method of single-Gaussian contraction from the
atomiclikc potential. The number of GTO used in the con-
traction are 13 for s- and p-wave functions and 10 and 9 for
d- and f-wave functions. The use of the same set of GTO
(with exponentials ranging from 0.12 to 74000) for all types
of wave functions has greatly reduced the computational
complexity. The noncore portion of the basis in our calcula-
tion consists of 6s, 7s, Sd, 4f, and 6p contracted atomiclike
orbitals. After orthogonalization to the core, the size of the
secular equation to be solved is only 17&17. The calculated
band structure of Ce along the symmetry lines of the Bril-
louin zone of the fcc lattice is presented in Fig. 1 and the
corresponding density of states in Fig. 2. These bands are
in good agreement with those of Pickett, Freeman, and
Koelling using the relativistic self-consistent augmented-
plane-wave (APW) method. This indicates that the exten-
sion of the OLCAO method to f-electron systems is suc-
cessful. Using Mulliken's scheme of population analysis, '2

we obtained distribution of the four valence electrons in Ce
as 0.63 in the 6s state, 1.84 in the Sd state, 1.05 in the 4f
state, and 0.49 in the 6p state, which indicates that substan-
tial orbital hybridization is reflected in our calculation. The
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FIG. 2. Density of states of y-Ce.

small difference between our result and that of Ref. 6 may
be attributed to relativistic effects which we have neglected.
A semirelativistic test calculation indicated that the relativis-
tic effect on the band structure is quite small. With further
development, refinement, and application, we expect the
OLCAO method to become fully competitive with other ex-

U
IK
UJ 0

UJ

-3-
I' x w L p Kx

WAV E VECTOR

FIG. 1. Band structures of y-Ce.
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FIG. 3. Vector relationship for the reduction of multicenter in-
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isting first-principles methods for the electronic structure
calculation for f-electron systems.
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APPENDIX

Following the same notation as in Ref. 6, we depict the
vector relationship of various direct-space points relevant
for the reduction of multicenter integrals in Fig. 3. The fol-

I

(A) First type of integral:

lowing relations can be defined:
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obtained as follows:
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where S„=f t"e r' dt is evaluated in terms of error functions and
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(C) Third type of integral:
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