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Sine-Cxordon solitons under weak stochastic perturbations
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We study the behavior of a Sine-Gordon soliton in the presence of certain weak stochastic pertur-
bations. A perturbation analysis based on the modulation of the speed and position of the soliton is

considered, and fairly good agreement with the numerical computations is obtained.

I. INTRODUCTION

The effect of external fields on the motion of solitary
waves is important in the dynamics analysis of systems
characterized by non-linear-wave equations. On the other
hand, the interactions of solitons with spatial inhomo-
geneities in long Josephson junctions, as well as in other
systems, are of considerable interest for applications. ' In
this framework we study the behavior of a sine-Gordon
soliton under weak stochastic perturbations which can
simulate a thermal noise and a random medium, as well as
a fluctuating external field. ' In this case, the system is
governed by the perturbed sine-Gordon (SG) equation

+Sing+a/, + V(x, t)p+F(x, t) =0,

where V and F are functions localized in space and vary-

ing randomly in time, while aP, represents a loss term.
In this work we study numerically the behavior of a sol-

iton under the effect of either an additive noise F or a
multiplicative noise V. And in both cases the effect of the
dissipation is analyzed. In addition, a perturbation ap-
proach is considered by assuming modulations of the
speed and position for the soliton under the stochastic
perturbations, and we get a qualitative and quantitative
agreement between the perturbation analysis and the nu-

II. COMPUTER SIMULATION DETAILS

The numerical integration of Eq. (1) is carried out
through the finite-difference scheme
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The properties of this discretization are the following:
(1) For the SG equation (a =0, V =0, F=0) there is a

discrete energy which is constant:

merical results.
The organization of the paper is as follows. In Sec. II

we consider the features of the discretization which is
used in our computations with the perturbed sine-Gordon
equation. While in Sec. III the perturbation analysis for a
single soliton is established. In Sec. IV we present the

.computational results. Finally, a summary of the results
and their significance is presented in Sec. V.
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The stability and convergence of the scheme, in this case,
is studied by Guo Ben-Yu et a/. The scheme is a gen-
eralization of the Strauss-Vazquez technique.

(2) When V =0 and F=0, we get
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Thus, in our discretization the sign of the energy variation
is. the same as in the nondiscretized SG equation with dis-
sipation.

(3) In our computations we use the discrete momentum
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2h
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cos l —cos
n+1 n —1 (01+1—41"-1) .

However, this discretization effect is very small, being

This is constant when we particularize our scheme for the
linear wave equation P« —P» ——0, while for the nonper-
turbed SG equation, the variation is
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around 10 times the momentum value. The great accu-
racy of (5) also was verified in the case of the soliton with
dissipation, for which an exponential decay of the
momentum occurs.

(4) The velocity and the center of the soliton are com-
puted as follows:

~n
En (7)

n+1 n
n+1 n
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These expressions were checked in the case of a free soli-
ton. When this is centered at the origin, x, =10 ', while
the variation of the velocity value is of order 10 times
its value.

(5) At each time step the scheme (2) requires solving a
simple functional equation for the unknown PI" +'. To ac-
complish this we use Newton's method. The mesh sizes
hx =2 At =0.05 were chosen.

In all our computations we study the effects of a noise
acting on a soliton initially near the origin. The space in-
terval of our simulations is limited to [—30,30], while V
and F are localized in the interval [—10,10]; in this way
the extent of the soliton is small compared to the width of
the impurity potential. The time of the simulation is until
t = 12.5, thus we chose fixed boundary conditions because
in this case the computations are reliable until t.=20.

For the stochastic perturbations we chose

S(t), x H [—10, 10],
V(x, t),F(x,t)= '0 6[ 10 10] (9)

where S(t) is a Gaussian white noise with vanishing aver-

age

III. PERTURBATION ANALYSIS
FOR A SINGLE SOLITON

Let us consider the perturbed SG equation

+sing=f(P, P„x,t) .

When f=0 we have the following soliton-antisoliton
solutions:

P+ =4 tan 'I exp[+y(x —X)]I, (12)

where y=(1 —U ) '~. U is the velocity and X locates
the center of the soliton, being X =Xp+ Ut.

Since we are considering weak perturbations we assume
that the predominant effect of these on a single soliton is
to modulate its center X and velocity U. Thus we reduce
the problem to solve a set of ordinary differential equa-
tions. The general analysis of this perturbation method
was made by McLaughlin and Scott. However, a simple
deduction of the general dynamical equations which
govern the response of a single soliton to a generic pertur-
bation, partially reported in Ref. 8, is presented here.
From Eq. (11) we get

= f f(h, dx,

where E= f edx and

e = —,
'
P, + —,

' P„+(1—cosP) .

(13)

(14)

For the momentum we have

(15)

with

P= —f P„P,dx .

On the other hand, the center of the soliton can be de-
fined as follows:

random numbers). And the average of the relevant quan-
tities was considered.

& s(t) & =o, &s(o)s(t) & =2D s(t) . (10)

If we interpret Eq. (1) in the Stratonovitch sense, the
driving white noise, with correlation given by Eq. (9), can
be inserted into our algorithm at the first order in b t (Ref.
7) through a generator of random numbers S" with
Gaussian distribution, zero mean value and variance
cr =2D/bt being

(n+1)htS"= S t dt .

nest

f" xedx—em

E
its equation of motion being

dX 1 M= U+ —f (x X)fg,dx . —
dt E

(17)

As a consequence of the time discretization, S" can
simulate a white noise S(t) only in the region of the fre-
quency spectrum below (b.t) ' which is, however, large
with respect to the inverse of the time scales introduced in
Eq. (1).

What we did in the computations was to simulate 30
particular time evolutions ("trajectories" ) consistent with
the stochastic equation, which correspond to particular
realizations of the stochastic term (a certain sequence of

For other definitions of X see Bergmann et al.
By inserting the ansatz

—1 x X(t)—
4 tan exp

[1 U2(t)]1/2
(19)—2U(t) x X(t)—

sech
[1 U (t)] ~ [1 U (t)] ~
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in Eqs. (13) and (18), we get the following system for the
two parameters of the soliton:

= ——,(1—U ) f f(P,P, ;x, t)sech8dx, (20)

=U ——,U(1 —U )' ' f f(P,P, ;x,t)8sechedx,
(21)

where

8=x —X(t)/[1 —U'(t)]'~' .

Also with the ansatz (19) we get for the momentum,

3 2= —U + D [U(1—U')'W]
at

= aX+ 16 aU
2 82

D [(1—U) W].
BU

(29)

(U)=(U)o, (U )=(U )o+ Dt,
8

In spite of the difficulty of this equation, if we have a
soliton initially at rest it is possible to consider the nonre-
lativistic limit

~

U
~

&&1, getting the following mean
values:

= —2[1—U (t)] ' f f (P,P, ;x,t)sech6dx,

(22)
being in this equation equivalent to (20). With this ap-
proach we reduce our problem in solving a set of stochas-
tic nonlinear ordinary differential equations.

In the cases in which we are interested the perturbationsf are localized in space and vary randomly in time,
presenting also for studies the effect of a dissipation term.
Thus the dynamical equations (20) and (22) are stochastic
and the corresponding Fokker-Planck equation must be
considered in order to compare the average values with
those computed numerically, as was indicated in Sec. II.

For the studied perturbations the spatial extent of the
soliton is small compared to the length of the region in
which the stochastic perturbation is localized. In this
way, to evaluate the integral of Eqs. (20) and (22), we can
assume that the perturbative term f is defined in the
whole space ( —ao, ao ). The following cases were studied.

A. Additive noise without dissipation

In this case,

(x)=(x)o+(U)ot,

(X ) = (X )p+2(XU)0+ ( U )Ot + Dt
24

Assuming the initial conditions

(x),=o, (U),=o,

(x'),=o, (U'), =o, (xU), =o,
we get for small velocities

( U) =o, (x)=o,
2 2

( U') = Dt, (X') = Dt'
8

'
24

B. Multiplicative noise without dissipation

The perturbation is

f= —V(t)P

with ( V(t) ) =0 and ( V(0) V(t) ) =2D 5(t)

The stochastic equations are

(30)

(31)

(32)

(33)

f= F(t), — (23)
P =2~'V(t), (34)

such that (F(t)) =0 and (F(0)F(t))=2D5(t). The sto-
chastic equations for the momentum, velocity, and center
of the soliton are

2

U= (1—U ) V(t), (35)

P=2'�(t),
U =—(1—U')'~'F (t),4

(24)

(25)

X=U+HU(1 —U') V(t),
where

H= f z sechz tan 'e'dz=2. 1 .

(36)

X=U. (26)

Equation (24) corresponds to the elementary random-
walk problem, being the associated Fokker-Planck equa-
tion'

BW
4 2DB 8'

Qp2

from which we get the mean values

( P ) =Pa, ((P (P ) ) )= 8m Dt, —

(27)

(28)

supporting the fact that no steady motion in momentum
space exists.

For the equations of the velocity and center (25) and
(26) the Fokker-Planck equation is

As before we get for the momentum

(P ) =P,, ((P—(P ) )') =8~'Dt .

And for the nonrelativistic limit
~

U
~

&&1 of Eqs. (35)
and (36),

(U)=o, (x)= HDt,
4

(38)

( U') = Dt, (X') = mH'D't'+ Dt'.m4 =3 m.4

8
' 16 24

where we assume the initial conditions (31).
By comparing the multiplicative and additive noise of
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the same variance and without dissipation, some remarks
must be made.

(1) For the multiplicative case a dependence on t ap-
pears in the mean value (X ); however, this is not
relevant for small noises due to the term D .

(2) The effect of the multiplicative noise is stronger, as
we can see by comparing the mean square of the center
and the velocity in both cases.

(3) There is a linear dependence in t for (X) in the
multiplicative noise that is due to the asymmetry of the
noise in the equations. Its effect is stronger in the region
where /=2'. than in the other one where /=0. For the
antisolitons, the effect is the opposite because for them
H &0.

C. Additive noise with dissipation

The perturbation becomes

(P)=(P)oe ",
4

((P—(P)) ) = D(1—e ') . (49)

( U) =0, (X)= aDt,
4

~4
D(1—e ' ')

16'

2 ~ 34 4(X)= 2D 2t ——+—e ——e
—at 1 —at

a a a

(50)

~4H2D 2 ~4
+ (e ' '+2at 1)+— H'D't'.

16m 16

While in the limit of
~

U
~

&& 1, we have with the ini-
tial conditions (31)

f= —aPt F(t), —
and the dynamical equations are

P= aP+2n.F—(t),

(39)

(40)

In comparing these equations with those of the additive
noise with dissipation, we have the same remarks regard-
ing those considered in the case without dissipation.

IV. NUMERICAL RESULTS
which is the Langevin equation for the Brownian motion,
and

U= —(1—U ) F(t) aU(1 —U—),4
(41)

X=U.
In the same way as before we get

(42)

((P (P) ) )= D—(1—e ')
(43)

2

( U2) D(1 —2at)
16&x

(44)

(X)= D 2t +—e————e2 tr 3 4 at 1 2at- —
v

D. Multiplicative noise with dissipation

The perturbation is

And for the limit of small velocities, we obtain with the
initial conditions (31)

&U&=0, &X&=0,

In a previous work" it was observed that if the variance
of the noise is cr &0.1, the solitonic structure is preserved.
In this way our perturbation analysis has been considered
below this critical value for the variance. In particular,
the results we report here correspond to the value o.=0.01
(D =1.25&&10 ). On the other hand, we have con-
sidered for the dissipation coefficient the value a=0. 1.
%'e can summarize our results by distinguishing two
kinds of initial conditions.

A. Soliton initially at rest at the origin

This simulates the initial conditions (31) used in the
nonrelativistic approximation, which provides a simple
analytic tractable case of the stochastic differential equa-
tions for U and X. The mean-square values of the veloci-
ty ( U ) and the center (X ) of the soliton are represent-
ed in Figs. 1, 2, 3, and 4 for the additive and multiplica-
tive noise, either with dissipation or not. As we can see,
the agreement between the analytic and numerical cornpu-
tations is fairly good. The dashed curves are those ob-
tained by considering the Fokker-Planck equation in the
nonrelativistic limit, while the continuous lines represent
the average over 30 particular time evolutions consistent
with the stochastic equations.

f= —aP, —V(t)P,

and we get the stochastic equations

P= aP+2n V(t)—,
2

U= —aU(1 —U )+ (1—U ) V(t),

X= U+aU(1 —U') V(t) .

For the momentum we get the following mean values:

(45)

(46)

(47)

(48)

B. Soliton with initial velocity

In this case it is possible to obtain mean values directly
from the associated Fokker-Planck equation for the
momentum without any approximation relative to the
velocity. In Figs. 5, 6, 7, and 8, the average of the
momentum (P) and the mean square of the fluctuation
are represented for the initial conditions Xo = —0.5,
Uo ——0. 1. As before, we have a quahtative and quantita-
tive agreement between the values obtained from the per-
turbation analysis (dashed curves) and those obtained nu-

merically (solid curves).
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FIG. 1. Mean-square values of the center (X } and velocity
(U ) of the soliton for the additive noise without dissipation:
the dashed lines are obtained from the perturbation approach,

while the solid ones corresponds to the numerical computation.
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FIG. 3. Same as in Fig. 1, but for the additive noise with dis-
sipation.
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FIG. 2. Same as in Fig. 1, but for the multiplicative noise
without dissipation.

FIG. 4. Same as in Fig. 1, but for the multiplicative noise
upwith dissipation.
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sipation.
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without dissipation.

FIG. 8. Same as in Fig. 5, but for the multiplicative noise
with dissipation.
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V. SUMMARY

We have studied the effect on a SG soliton of a weak
localized noise, either additive or multiplicative; also the
effect of a dissipation is analyzed. It is very surprising
that the numerical results fit very well in the analytical
approach. That must be justified later in a very general
mathematical framework.

On the other hand, we plan to extend our numerical
computations in order to fit them into the general prob-

lem of the Josephson transmission lines, with impurities
and under thermal effects, ' by considering more general
noises.
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