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Charge-transfer optical absorption in linear magnetic insulators in a strong electric field
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The effect of a strong electric field on the charge-transfer optical absorption is studied in linear
narrow-band Mott-Hubbard insulators (or semiconductors) such as alkali-TCNQ's (tetracyanoquino-
dimethanes) and antiferromagnetic Heisenberg chains, using the half-filled-band Hubbard model
with strong on-site Coulomb repulsion. It is shown that, for an antiferromagnetic ground state, the
main effect of the field is to severely (i.e., nonlinearly with the applied field) squeeze the unperturbed
continuum absorption band into a narrower band of unevenly spaced discrete rungs of a Stark
ladder. The intensity of the absorption into the Stark-ladder states has exponential tails both above
and below the main band, showing a discrete version of the Franz-Keldysh effect. For random and
ferromagnetic spin configurations, the absorption profile narrows and the discrete absorption reso-
nances smear into sharp continuum structures.

I. INTRODUCTION

A number of years ago Wannier' proposed that elec-
tronic states in crystalline solids form Stark ladders in a
strong electric field. Since then a large number of authors
have studied this subject. ' Theoretical works, ' which
include optical-absorption studies, have been limited to
non-interacting-electron systems so far. Experimentally,
despite the numerous efforts such as optical absorption,
as well as other electronic-transport studies in ordinary
semiconductors aimed at discovering Stark ladders in the
past, there has been no conclusive evidence of their ex-
istence. In this paper we propose the possibility of observ-
ing Stark ladders and the Franz-Keldysh effect in the
charge-transfer optical-absorption spectrum of a new class
of systems, namely one-dimensional narrow-band Mott-
Hubbard magnetic insulators (or semiconductors). For
this purpose we study the optical-absorption line shape,
using a half-filled-band Hubbard model with a large on-
site Coulomb repulsion. The advantage of these systems
over the ordinary semiconductors studied previously ex-
perimentally lies in the facts that the transverse degree of
freedom of electrons which masks the Stark structures are
absent and that the narrow band makes the effect of the
field more pronounced. The systems suitable for such
studies are, for example, linear charge-transfer organic
salts such as alkali-TCNQ's (tetracyanoquinodimethane)
(Refs. 8—11) and possibly spin- —,

' linear-chain antifer-
romagnetic Heisenberg systems such as a-CuNSal
[a-bis (N-methylsalicylaldiminato)copper(II)] (Ref. 12).
From a practical point of view, such studies are expected
to give additional information on charge-transfer absorp-
tion in organic conductors, which has been an important
tool for looking into electronic structures and Coulomb in-
teractions. " Also, the optical absorption depends sensi-
tively on the spin configuration of the electronic ground-
state manifold and is expected to yield valuable informa-
tion on the spin states of linear antiferromagnetic Heisen-
berg systems.

II. MODEL

The system is described by the model Hamiltonian

H=Hp+ V,
with

Ho Ugn, n——~,+egmn

(la)

(lb)

and
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m, o
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Here, a (a ) creates (destroys) a state of spin a at site
m, n (=a~~a ) is the number operator, and
n~ =n, +n, The q. uantities t and e (&0) denote the
transfer integral and the rise of the electronic potential en-
ergy over a unit lattice constant "a" due to a uniform
electric field along the chain direction, respectively.

In the limit t /U « 1 and at low temperatures
T« U /k' (kz is Boltzmann's constant), the absorption
arises from exciting an electron from the lower Hubbard
band with one electron per site into the upper band, gen-
erated by moving a hole and an adjacent doubly occupied
site (to be referred to as a particle) by applying V succes-
sively without recombination. Such an approximation is
relevant, for example, to K-TCNQ, where U && 1.4
eV »4t X0.3 eV." The absorption spectrum is given by
the real part of the conductivity o~(co), which is evaluat-
ed by Kubo's formula.

In previous papers' ' we have studied optical absorp-
tion for the Hamiltonian in (1) in the absence of an exter-
nal field (i.e., e=O). In an external field corresponding to
e, the hole and particle have effective interaction +me at
a separation of ma depending on whether the particle is
on the right side (+ ) or on the left side ( —) of the hole.
The absorption is found in this case by extending the
method of Ref. 14 in a straightforward way, yielding
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o~(m) = —,poo Q(x,p)[p+(co,x)+p (co,x)]dx,

where

122' Xm ta
Qco

In (2), Q(x,p) is a normalized distribution function

(2a)

(2b)

III. ANTIFERROMAGNETIC GROUND STATE

The quantity p+ in (4) is the particle-hole local density
of states at a separation of a unit lattice constant: Namely
it is the probability that the particle and the hole are at a
distance a averaged over all particle-hole eigenstates. The
problem is then equivalent to that of a semi-infinite
tight-binding chain extending from m = 1 to m = ao.

uc~ = 2t(c—~ i+c~+i)+mec~ (m &0),
Q(x,p) = 2(1—p )

n(l —x )'~ [(1+p) —4@x ]

and p+(co, x) is the normalized particle-hole density of
states

p+(cu, x)= —Im 0,+1,0, +1) .1 1
(4)

Here, co contains an infinitesimally small negative imagi-
nary part and Im means the imaginary part. The quanti-
ties q, N, and 0 in (2} represent the electronic charge, the
total number of lattice sites, and the sample
volume, respectively. The intensity satisfies a sum rule
Joz(co)dco=oo. In (4),

~
0, +1) designates an antifer-

romagnetic state vector with a hole at m =0 and a parti-
cle at m =+1.' Only these state vectors have nonvanish-
ing transition dipole matrix elements. The operator H' is
of the same form as V, except that it transfers only the
particle between adjacent sites with a matrix element
t'=2tx, while the particle and the hole are forbidden to
occupy a same site. The factor 2 in the expression of the
effective transfer integral t' amounts to doubling of the
absorption bandwidth due to the additional hole degree of
freedom. This is analogous to the fact that in an ordinary
semiconductor the optical bandwidth equals the sum of
the valence- and conduction-band widths. The factor x in
the expression of t' indicates that the effective transfer in-
tegral t' has a distribution between zero and 2t according
to the function Q(x,p). This function is determined by
the spin-configuration factor p. ' ' The latter is defined
in such a way that the probability of having k consecutive
spins to the right (or left) of the hole in an antiferromag-
netic arrangement equals p . We have p = 1, —,', and 0 for
antiferromagnetic, random, and ferromagnetic spin con-
figurations, respectively.

For an antiferromagnetic ground state we have
Q(x,p}=5(x —1+0) (0 is a positive infinitesimal) and the
the variable x is replaced by unity in (2a). The role of
Q(x,p) is then to transform the absorption of a system
with an arbitrary spin configuration p into a sum of con-
tributions from an infinite number of antiferromagnetic
spin states with a continuous distribution of effective
transfer integrals; while the wave functions for the excited
upper Hubbard-band manifold depend on the spin config-
uration in a complicated way, a simple coherent single-
particle picture is available for the antiferromagnetic con-
figuration for this many-body problem. ' ' We discuss
this simple and important situation first in the following,
postponing the more complex cases of random and fer-
romagnetic spin configurations until Sec. V.

with u =fico —U and with a vanishing amplitude at m =0
(i.e., cii ——0}. The subscript m denotes the separation be-
tween the particle and the hole. The upper (lower) sign in
(5) corresponds to p+ (p ) and to the situation where the
particle is created at the high- (low-} energy side of the
hole. It is sufficient to consider only the upper sign, be-
cause there is a simple relationship between p+ and p, as
will be shown later. The solution of (5) that converges for
large m is c~-J~ «,(4t/e), where J„(z) is the Bessel
function of order v. The eigenvalues are determined by
the condition cia

——0 (Ref. 2):

J „),(4t/e) =0 .

An alternative approach is to express p+ in (4) in con-
tinued fractions. This is achieved by rewriting the
Green's function in (4) in terms of forward-going self-
energies

1

u —(+e)—Xi
(7a)

with

X
(2t)'

u —(+)(m +1)e—X +i
The continued fraction in (7) is rewritten as'

J, „),(4t/E)

(7b)

The poles of the expression in (8) are then determined by
(6). The properties of p are related to those of p+ by

p(u, —e)=p( —u, e) . (9)

Namely, the eigenvalues of p have opposite signs of
those of p+. In the following we discuss only p+ for con-
venience and measure the energy in units of the band-
width (i.e., 4t = 1).

In the absence of the field, the self-energy X in (7)
does not depend on the site index m, yielding'

p(u, 0)= . (2/m. )(1—u )' for —1 &u &1,
0 otherwise . (10)

The absorption width equals twice the bandwidth and the
intensity is maximum at the center.

Practically, the energy e is much smaller than the band-
width (i.e., e«1), even for a strong field. For a field of
100 kV/cm and a =4 A, for example, we have @=0.02
for a bandwidth 0.2 eV. One might expect a small linear
positive (negative) shift -e ( —e) for p+ (p ) for the exci-
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tation threshold from the unperturbed position u = —1

(+ 1) in (10). Interestingly, we find a nonlinearly large
shift -e ~ . For example, for a field corresponding to
@=0.05, we find a shift as large as 0.25. This shift is
clearly seen in the position (at —0.75) of the. first spike
(corresponding to the first rung of the Stark ladder) in
Fig. 1, where a histogram representation of p(u, @=0.05)
is displayed as a function of u. The absorption is ob-
tained numerically by iteration from the continued-
fraction representation in (7). A more detailed description
of the numerical method will be given later. The spikes
correspond to a series of delta functions spread out over
an energy-bin width Au =0.01: The total area (i.e., inten-
sity) of the spikes equals unity.

In a strong field, an electron (i.e., the particle) as well as
a hole with a maximum kinetic energy —1 is expected to
be localized within a range -a/e. The eigenvalues for
p(u, e) become discrete, forming a Stark ladder: The spac-
ing between rungs become gradually narrow, reaching an
asymptotic value e approximately for u —1 &e ~ . For
the eigenvalues corresponding to these evenly spaced
rungs (Fig. 1), the eigenfunctions are localized far away
from the chain end. Only those eigenfunctions with ener-
gies in the unperturbed absorption band —1 ~u ~1 have
significant amplitudes at m =1 and transition dipole ma-
trix elements. Nevertheless, Stark states immediately out-
side this. band have small but non-negligible amplitudes
giving rise to visible absorption tails. In Fig. 2 we display
the total absorption

orat (u)/crp —,
'

[p(u, e)+—p( —u, e)]
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FIG. 2. Histogram representation (left scale) of the normal-
ized total absorption cr R (u ) /era= [p(u, e)+p( u,—E) ]/2 T.he
quantity p(u, e) is given by the histogram in Fig. 1. The solid
curve indicates the unperturbed absorption in the absence of an
external dc field.

discrete absorption tails both above and below the unper-
turbed band (i.e.,

~

u
~

&1).
In the following we evaluate analytically the excitation

energies and the normalized optical density p(u, e) in the
asymptotic limit v=

~

u
~

/e~ co, using asymptotic forms
of J (av) and

J „(av)=J„(av)cos(m.v) —F„(av)sin(mv),

where a =
~

u
~

'. In the region u && —e, the zeros of (6)
are given by

(1—u )' +u cos '( —u)=~@(m+ —,), (1 la)
as a function of u for @=0.05 and compare it with the ab-
sorption in the absence of the field (solid curve) given by
(10). It is seen that the effect of the field is to squeeze the
unperturbed continuum absorption band into a narrower
band of discrete excitations with exponentially decaying

where m is any integer in the range 0&m & I/n. e
For @=0.05, for example, the allowed quantum numbers
are m =0, 1, . . . , 5. Equation (lla) is solved approxi-
mately, yielding

2/3

I I I
I

I I I
I

I I I I
I

I I I

3''6'
u~ = —1+

2 2
(m+ —,

'
)

~ (1 lb)

10.0—
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v 5.0—

X
)'.

These solutions are very accurate when the second term
on the ri ht-hand side of (1 lb) is small. The latter equals
(9m@/8 2) ~ for m =0. This quantity is the field-
induced shift of the excitation threshold for p+ discussed
earlier. The absorption intensity is obtained from (8) and
is approximately equal, in the region 2e« —u(l —u )
(i.e., away from u =0 and —1), to

0 I I I I I I I I I I I II I
~ '4I

-1.0 -0.5 0 0.5 1.0
I i I

'
I I, I I

2E.(1—u 2)1/2
p(u, e)=, 5(u —u ) .

cos ( —u)
(11c)

FICi. 1. Histogram representation of the normalized optical
density p(u, e) [defined in (7a)] for a potential-energy rise over a
unit lattice constant @=0.05 and for an antiferromagnetic spin
configuration as a function of the excitation energy u =%co—U.
The bandwidth (4t) is defined as unity. The width of the bins
(spikes) equals 0.01. The crosses represent analytical results
[Eqs. (11)—(13)] for the excitation energies and the intensities
spread over the same bin size for comparison with the histo-
gram.

The six excitation energies (m =0, 1, . . . , 5) determined
from (1 la) for @=0.05 are marked as crosses in Fig. 1 in
the negative-energy (u &0) region. The heights indicate
the strengths of the delta functions of (1 lc) spread out to
the same width b.u=0.01 for comparison with the nu-
merical histogram. The approximate expression in (1 lb)
gives a similar result. The agreement is excellent.

In the region e «u & 1, the roots of (6) are determined
by
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u +—[(1—u ) —u cos u ]=e(m ——,),1 2 1/2 —1 (12a)

where m are integers in the range I /m e+ —,
' & m

&1/e+ ~. For e=0.05, the allowed quantum numbers
are m =7,8, . . . , 20. In the neighborhood of u~ —1, the
second term on the left-hand side of (12a) is small and the
eigenvalues u =e(m ——,')=em begin to form a Stark
ladder. The absorption intensity is approximately given,
in the region 2e « u (1—u ) (i.e., away from u =0 and 1),
by

2e(1 —u )'
p(u, e)=

&
5(u —u ) .

K—cos Q
(12b)

The 14 excitation energies (m =7,8, . . . , 20) and intensi-
ties for e=0.05 determined from (12) are marked as
crosses in the region 0&Q &1. The agreement with the
histogram is very good, except very near u =1.

In the region u =1+u' with u'»e, the excitation
energies form a Stark ladder:

Qm =fPl6, (13'a)

where m is an integer. The absorption has an exponential
tail:

p( u, e) =— + —[2(u —I )]'/z
Q —1 3

)&exp — [2(u —1)] 5(u —me) .
3E

(13b)

This result corresponds to the Franz-Keldysh effect.
However, in contrast to a wide-band semiconductor,
where the relevant continuum tail is inside the band gap,
we expect that discrete tails should be observed both
above (p+) and below (p ) the absorption band in the
present one-dimensional narrow-band systems. The pre-
dictions of (13) are marked as crosses in Fig. 1 for e=0.05
and for u & 1, again yielding excellent agreement with the
numerical results.

For eigenfunctions with u »1 the particle and hole are
very much separated and the absorption is negligibly
small:

the intensity in bins of size 10 (Fig. 1). The total inten-
sity in each spike is obtained by multiplying its height by
the bin size 10 . The same result is obtained if we dou-
ble M and reduce 5 and b,u by half, indicating that the
numerical error is small. Furthermore, the total calculat-
ed intensity is unity, as required by the sum rule, indicat-
ing that every excitation is accounted for in the numerical
analysis.

A more efficient method of obtaining p(u, e) is to evalu-
ate the poles and residues of the expression in (8) by using
a library routine. This method leads to the same result as
that displayed in Fig. 1.

V. RANDOM AND FERROMAGNETIC
SPIN CONFIGURATIONS

The spin state of the lower Hubbard band (with one
electron per site) has a random spin configuration at high
temperatures and a ferromagnetic spin arrangement in a
high magnetic field. The spin state can readily be con-
trolled because the exchange energy -t /U is small. The
optical absorption for these spin configurations is ob-
tained from (2) and (7)—(9) by replacing t in (8) by xt and
integrating over x between 0 and 1 with the weighting
function Q(x,p). As a result, the effective absorption
width becomes narrower for smaller p. The discrete ab-
sorption energies smear into sharp continuum peaks.
Also, the intensity cro decreases linearly with p. This ef-
fect is clearly seen in Figs. 3 and 4, where the normalized
absorption cr~ /oo (solid curves) is plotted as a function of
u for the lower half of the absorption band (i.e., u &0) for
random spin configuration (p = —,) and the ferromagnetic

2.0

1.5

p(u, e)=-
2Q

2u /e

5(u —me) . (14)

ba

1.0

b

In (14), e is the natural number.

IV. NUMERICAL ANALYSIS
0.5

The optical density p(u, e) in (7a) can be easily evaluat-
ed numerically by iteration as was mentioned earlier: For
large m we approximate X~ =X~+ &

in (7a), obtaining

X~ = —,
' [z —sgn(z)(z —1)' ], (15)

. t I(~.I] iiIJ
-1.0 -0.5

with z=u+(m +1)e. Starting from a large number
m =M for the self-energy in (15), we apply (7b) repeated-
ly to find Xo, which is related to p by p(u, e)=Xo/4n. For
an actual numerical evaluation we use M =200 and assign
a small negative imaginary part 5=5&&10 to Q. We
evaluate p(u, e) at energy intervals of Au =10 and sum

FIG. 3. Lower half (u &0) of the normalized absorption in-
tensity oz(u}/cro [defined in Eq. (2}] for a potential-energy rise
over a unit lattice constant @=0.05 and for a random spin con-
figuration as a function of the excitation energy u =%co—U in
units of the bandwidth (4t). The dotted curve indicates the ab-
sorption in the absence of an external field.
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2.0—

brary subroutine. The accuracy of the results was
checked by ensuring that the sum rule is satisfied.

VI. CONCLUSIONS

1.5

1.0

0.5

"1.0
I

-0.5

FIG. 4. Lower half (u &0) of the normalized absorption in-

tensity crR(u)/cro [defined in Eq. (2)] for a potential-energy rise
over a unit lattice constant @=0.05 and for a ferromagnetic spin
configuration as a function of the excitation energy u =%co—U
in units of the bandwidth (4t). The dotted curve indicates the
absorption in the absence of an external field.

We have examined the charge-transfer optical absorp-
tion in a strongly correlated half-filled Hubbard band in
a strong electric field. For an antiferromagnetic ground
state the unperturbed (i.e., field-free) continuum absorp
tion band narrows into a band of intense sharp discrete
absorption resonances in a strong field. Franz-
Keldysh —type discrete tail absorption into Stark-ladder
states is obtained both above and below the unperturbed
band. For random and ferromagnetic spin configurations
the absorption intensity diminishes. The line shape nar-
rows and the discrete absorption resonances smear into
sharp continuum structures. The result is applicable to
charge-transfer organic conductors such as alkali-TCNQ's
with a Mott-Hubbard insulating ground state " and
possibly to spin- —, linear antiferromagnetic Heisenberg
chain systems such as a-CuNSal. '

In this paper long-range Coulomb interaction is ig-
nored. As a result, the absorption line shape is sym-
metric. Inferring from a previous result of the author, '

even a weak long-range Coulomb interaction is expected
to deform the absorption profile significantly by transfer-
ring the intensity from the high-energy region to the low-
energy region and to new exciton absorptions in the gap.

configuration (p =0), respectively. Also, absorptions in
the absence of an external field are displayed by dotted
curves for comparison. The upper half of the band not
shown is the mirror image of the lower half with respect
to u =0 [i.e., oui( —u)=oui(u)j. The results (solid curves)
in Figs. 3 and 4 are obtained numerically by evaluating
the poles and residues of the expression in (8) through a li-
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