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Despite the complexity of real disordered materials, the electronic properties often have similar
features in dissimilar materials, suggesting the presence of universal features, particularly near band
edges. In the present paper, we demonstrate that under certain conditions, including weak disorder,
band-edge features are universal for fewer than two dimensions. For higher dimensions, universali-

ty remains after a nonuniversal shift of the edge of the unperturbed band. The white-noise model
proves very useful in the universality arguments.

I. INTRODUCTION

Real disordered materials can seem bewilderingly com-
plex. Multiple single-site orbitals can be required to
represent the wave functions there can be disorder in the
single-site energies (diagonal disorder); there can be disor-
der in the electron transfer-matrix elements (off-diagonal
disorder); the probability distributions of these matrix
elements can be continuous and unbounded, continuous
and bounded, or discrete; and structural disorder can
manifest itself both quantitatively and topologically in a
variety of ways. Yet the experimental data on the optical
properties, for example, often show similar features in
quite dissimilar material, e.g., tetrahedral amorphous
semiconductors, amorphous pnictides, or amorphous
chalcogenides. One is tempted to speculate that there
may be universal features in the electronic structures of
disordered materials. '

In the present paper, we carry out a restricted search
for such universal features. It seems clear that features
which are sensitive to the full range of energies of an ener-

gy band or to distances on an atomic scale cannot be
universal. The search should therefore be limited to rela-
tively weak disorder and to energies relatively near band
edges. - Fortunately, disordered semiconductors are ma-
terials in which quantitative measures of the disorder are
of order 10%%uo of the valence or conduction band widths
and the band edges are of great significance, so our in-
quiry is not merely of academic interest.

We begin in Sec. II with a detailed discussion of the
white-noise model (WNM), a generalization to disordered
materials of the effective-mass model of crystals. We dis-
cuss briefly the conditions for applicability of the white-
noise model and show that universality results if these
conditions are met. We then show in Sec. III that the
conditions can be met only for dimensions d &2. For
higher dimensions, ultraviolet catastrophes occur in the
WNM. Nevertheless, it is shown in Sec. IV that the con-
tinuum limit of the tight-binding model accurately retains
its band-edge features for 2&d &4, whereas that limit
cannot be taken at all for d ~4. Thus two marginal di-
mensions di ——2 and d„=4 emerge in the problem. It is
then shown in Sec. V that the universal features of the

II. THE WHITE-NOISE MODEL AND UNIVERSALITY

States in the neighborhood of a band edge of a crystal-
line material can be accurately represented by use of a
simple effective-mass model with effective Hamiltonian

jeff =
2&i

(2.1)

under certain conditions. " First, the band edge must be
nondegenerate (apart from spin). Second, attention is con-
fined to energies in the immediate vicinity of the band
edge, (hE) «8, EG, the bandwidth and band gap, respec-
tively, and to lengths much larger than the lattice con-
stant a. Perturbations added to (2.1) should not mix in
energies or cause variations of the wave function on
length scales which violate these conditions if effective
mass theory is to be applicable.

A similarly simple continuum model can be used to
represent the states near a band edge of a disordered ma-
terial,

H,fr = + V(r),2' (2.2)

where V(r) is a random potential, under a larger but re-
lated set of conditions. First, there must exist a suitable
reference model for the material from which the disorder
can be measured. Second, this model must possess a non-
degenerate normal band edge. ' At a normal band edge,
the states are extended even in the presence of disorder,
and the density of states (DOS) depends on energy as

r

adE ', E&0
0, E(0, (2.3)

white-noise model persist after a nonuniversal shift of the
continuum edge is made. In Sec. VI, explicit results are
given for the universal and, indeed, the nonuniversal
features as well for all dimensions. We conclude in Sec.
VII with a brief summary of our principal results and a
listing of the extensions needed before the theory can be
applied to real materials.
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C( r, r')—:( V(r) V(r') ) —( V(r) ) ( V(r') ) . (2.4)

Shift the underlying continuum edge to ( V) and set the
corresponding energy to zero. Reexpress C(r, r') in terms
of the reduced correlation function c (r, r'), which has unit
spatial integral,

where d is the dimension of the material. Equation (2.3)
can readily be extended to fractal materials through the
introduction of the spectral and fractal dimensions, but
we shall leave such cases implicit here. Examples of nor-
mal band edges are provided by the bonding and anti-
bonding bounds of the tight-binding, nearest-neighbor s-
band model with fixed matrix element V in any bi-
chromatic net, disordered or not. A bichromatic net is
one that can be decomposed to two interpenetrating sub-
nets, each point of which has all its nearest neighbors be-
longing to the other. Such a system can serve as a refer-
ence relative to which diagonal disorder, quantitative dis-
order in V (off-diagonal disorder), and further topological
disorder caused by the introduction of odd rings can be
measured. The first two are of comparable importance
for both bounds; the last has a far greater effect on the an-
tibonding bound, turning it from a normal band edge into
a Lifshitz limit' while leaving the bonding bound a nor-
mal band edge. Third, a suitable measure w of the disor-
der must be much less than a suitable measure of the
bandwidth -B. Fourth, we are concerned with energy
separations from the underlying band edge much smaller
than B. Fifth, any characteristic lengths in the problem
must be much larger than the interatomic spacing a,
which in the present work we consider to be equal to the
correlation length L of the random potential. If the
correlation length L is larger than a, the conditions for
the applicability of the WNM are violated in general. The
degree of violation depends on many factors; the most im-
portant one is whether or not atoinic scale potential fluc-
tuations exist within the correlation length L. For exam-
ple, if we have a binary random alloy A„Bi „with corre-
lation favoring ABAB configurations, then both a and L
retain their physical relevance and thus the problem can-
not be reduced to the single length WNM. On the other
hand, for correlation favoring segregation of the coin-
ponents, the lattice spacing a loses its physical importance
and I. becomes the smaller relevant length; in this case the
reduction to the WNM is possible. In any case, the ques-
tion of the applicability of our conclusions for the case
L, )a is a complicated one and will be discussed in a
separate paper. The last condition for the applicability of
the WNM is that the continuum model itself should con-
tain no ultraviolet catastrophe, which implies no sensitivi-
ty to L„a, or B.

These conditions will be discussed in more detail in
Secs. III—V, but let us now suppose that they hold and ex-
amine their consequences. Consider the autocorrelation
function of the potential C(r, r'), defined as

bility of the central limit theorem for the probability dis-
tribution of V(r), which can therefore be taken as a
delta-correlated Gaussian, with

( V(r) V(r') ) =y5(r r—'), (2.6)

i.e., with c(
~

r —r'
~

) replaced by a delta function. Given
that L is the actual correlation length of the potential as
expressed in c (

~

r —r'
~

), y can be interpreted as

r=m L~, (2.7)

where w is the appropriate measure of the strength of the
disorder referred to above. Equations (2.2) and (2.6) and
the Gaussian probability distribution constitute the
white-noise model, or WNM, the simplest generalization
to disordered materials of the effective-mass model of
crystals.

The WNM contains only two parameters, i' /2m' and
y. These can be used to define natural units of energy eoq
and length L~, which can be introduced for all d except
four through

~Od~Od ~ (2.8a)

A' /2m*=eoaL~

The explicit solutions for L~ and eM are
' d/4 —d

2&i 2/4
~oa =

$2

2/4 —d
—( 1/4 —d)

2' r

(2.8b)

(2.9a)

(2.9b)

which become

'3
2m

$2

g2

2&1
r

2m
f2

1/3
2m 2/3r

—1/2
2

2&2
r
2/3

2ppl
r

& «) =L~"&M'f~««oa) . (2.10)

for integral dimension (4.
When length and energy are expressed in units of Fog

and L,~, the Schrodinger equation and the correlation
function of the potential, (2.6), become dimensionless and
universal. All characteristic lengths L ~ and energies E ~
associated with specific features of the spectrum become
universal pure numbers l~~, e~~. Scaling relations can be
written for such quantities of physical interest as the den-
sity of states, etc. :

C(r, r') =yc(
~

r —r
~

), (2.5) Under the conditions posited at the beginning, the func-
tion f~(x) must have the limiting behaviors

where we are supposing translational invariance and iso-
tropy after the ensemble average indicated by the angular
brackets in (2.4). The above conditions imply the applica-

f(x)~a x ' ' ') as x~+00
f(x)—+0 as x —+ —oo .

(2.11)

(2.12)
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Upon substitution of (2.11) and (2.9) into (2.10), y cancels
and a~ can be related to the known quantities Ad by com-
parison with (2.3). At the underlying continuum edge
(shifted to ( V)), E =0 and

tially identical scaling arguments from an entirely dif-
ferent point of view, although he did not exploit them in
the manner done here and in what follows. '

n(0)=Lod epd'fd(0) . (2.13)
III. ULTRAVIOLET CATASTROPHES

IN THE WHITE-NOISE MODEL
Because fd(0) is simply a number, Eq. (2.13) gives the ex-
plicit dependence of the density of states at the continuum
edge upon disorder,

' d/(4 —d)

n (0)=fd(0) (d -&)/(4-d)
Q2

(2.14)

It is clear from the above djmensional analysis that the
universality of the WNM is a significant characteristic of
the model and a powerful tool for the analysis of physical
phenomena. It is therefore important to examine the
transition from the explicit microscopic description of the
material to the WNM in order to establish the cir-
cumstances under which the conditions stated above for
its validity are met. Before doing so, we shall catalogue
the catastrophes inherent in the WNM in the next section.
We should also point out that Freed has arrived at essen-

I

The final condition imposed in the last section for the
applicability of the WNM and therefore of universality
and scaling in the energy and length dependences of phys-
ical quantities was that the WNM should not contain ul-
traviolet catastrophes. ' Such catastrophes arise at
lengths shorter than the lattice constant a or correlation
length L and energies larger than the bandwidth 8.
When the catastrophes are removed by the introduction of
discrete atomic structure, equivalent to the imposition of
a length cutoff a or L and an energy cutoff 8 or
A' /2m L, physical quantities become sensitive to the
cutoffs and universality is destroyed or reduced.

Divergences such as ultraviolet catastrophes can be
probed through study of the self-energy X(x —y) and the
vertex part I.' The former is defined via the average
Green's function (G(x,y)), viz. ,

~ 6(x y) }=Go(x —y)+ J du du Go(x —u)X(& —u) ~ G(u y) }
the latter is defined via the average of the product of two Green's functions (6 (x,y)6(x',y') },viz. ,

( 6 (x,y)6 (x',y') ) = (6 (x,y) ) (6(x',y') }
+ Jdududu'du'I (u, uu' u)(6( xw))(G(x', u')}(6(uy)}(6(u',y')} .

(3.1)

(3.2)

The average in (3.1) and (3.2) is over the probability distri-
bution of the potential, and Go is the Green's function of
the unperturbed continuum for which Ho p /2m-—

One can construct the usual diagrammatic expansion'
for X, which, for the WNM, has the structure shown in
Fig. l. Each dashed line in Fig. 1 connects two identical
points because of (2.6) and contributes a factor y to the
term it enters. Each solid line between, e.g., the points z
and x, contributes a factor Go(z —x). All disconnected
parts of the diagrams can be summed, improving the con-
vergence and replacing Gp(z —x) by (G(z,x)), which
inust then be determined self-consistently.

Three divergences can appear in the above expansion:
(1) For d &2, Go is singular at E =0 in both its real

and imaginary parts. For d =2, the singularity occurs
only in the real part. This infrared singularity' disap-
pears from (6) and does not present any problem in the
final result for X or I". It simply requires the explicit use
of the partial summation effected by replacing Go with
(6). It is not necessary to introduce a cutoff for its re-
moval. This removable singularity originates from the
singularity of the continuum density of states (DOS) at
the unperturbed band edge, a consequence of the phase
space available to states of given energy:
ii (E) kd —ldk/dE ~ kd —2 E(d —2)/2

(2) The second type of divergence arises from the fact
that Gp(x —y) behaves as

~

x —y ~

'" ' as

~
x —y ~

~0. This behavior is related to the structure of
the differential equation obeyed by Go.

E+ V Gp(x,y) =5(x,y) .2

2' (3.3)

As x~y, the energy E can be ignored in (3.3), which
reduces to the Poisson equation for a point source, the
solution of which has the above singularity. The same
singularity is present in the perturbed Green's function
6 (x,y) in those neighborhoods in which V(x) is finite be-
cause its differential equation

E —V(x)+ V„G(x,y) =5(x,y)2' (3.4)

x
/
I i i

X P X

/
I+ x X g i

/r

FIG. 1. Diagrammatic expansion for the self-energy X.

also reduces to the Poisson equation. It remains true for
the averaged Green's function (6(x,y)} as long as the
points at which V(x) is singular have suitably small mea-
sures.

Thus we encounter here a nonremovable divergence in
(6(x,y) ) for d )2 which leads to contributions to X(x,y)
which blow up in a nonintegrable way as x~y. The re-
sulting nonremovable divergence in X(x,y) is already
present in the second-order term, the first term in the ex-
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pansion of Fig. 1. The latter has the form
I

X' '(x,x) =y f dE' (3.5)

The correlation function C,J has a range L, the correla-
tion length, and can be written in terms of a normalized
correlation function c,j as

IV. APPLICABILITY OF THE CONTINUUM MODEL

The presence of ultraviolet catastrophes in the WNM
forces the explicit consideration of specific microscopic
models for the one-electron Hamiltonian. We shall illus-
trate the removal of the divergences and the consequent
breakdown of universality for the simplest model Hamil-
tonian, that of the tight-binding s band, which has matrix
elements

Hgj ——e;g,~+ Vgq (4.1)

between sites i and j on a crystal lattice. We take the V~
to be fixed and the e; to be random (diagonal disorder),
with moments

(e;ej. ) =C;, .

(4.2)

(4.3)

where n (E) is the averaged density of states, as expected
from second-order perturbation theory. The DOS n(E')
does not vanish as E'~ oo for d & 2, behaving asE'" '~ . The integral (3.5) therefore diverges for d & 2.
This ultraviolet divergence can be removed only by intro-
ducing the lattice constant a or the correlation length L
as a distance cutoff or retaining a finite band with
B

ccrc

jm az in those diagrams in which the divergence
appears.

(3) The third type of divergence appears for d &4 from
integrals of the type f dz ( G (x —z) ) which appear both
in the self-energy (of the third diagram in Fig. 1) and in
the vertex part shown in Fig. 2. This integral has an in-
tegrand of the form

~

z —x
~

as z~x and therefore
diverges for d & 4. Once again, this ultraviolet divergence
can be removed only through the introduction of length or
energy cutoffs associated with the actual atomic structure
of the material.

At this point, we have discovered that the WNM has a
lower marginal dimension di=2 and an upper marginal
dimension d„=4. We note that d =4 has already ap-
peared as a special dimension in the dimensional analysis
of Sec. II. Below the lower marginal dimension di ——2,
the WNM has no singularities and should accurately
describe those systems obeying the remaining conditions
of Sec. II. Thus, band-edge features are universal in the
sense of Sec. II for d & 2. In a later section, we give accu-
rate numerical values for the universal function f(x)
entering the DOS and the corresponding function for the
localization length for d =1. We examine in the next sec-
tion the extent to which the WNM remains physically
meaningful and retains universality above di.

2
Cgj —N Cgj, Xg CIJ —1 (4 4)

In the present work we assume L =a so that c;1=5,&.
The first diagram for X(x,y) illustrated in Fig. 1 for the
WNM goes over to

(1) 2 0
XIJ. =N Cg~ G)J (4.5)

in the present case. Provided the unperturbed wavelength
corresponding to the energy E for which X'" is bein~
evaluated is much larger than a, the lattice constant, X,'J',
can be treated as a continuous function of position in any
equation involving it. That is, the limit a~0 can be tak-
en without risk. In the particular case that V~J ——V for i
and j nearest neighbors and zero otherwise,
m *=xiii/2Va . Thus to pass from the tight-binding
model to the continuum model of Sec. II so that
e;~V(x), it is necessary to take the limits

a~O, V—+ao, 8 ~oo,
such that

m a"=y Va =A /2m*

(4.6)

(4.7)

remain finite, where a is defined so that a" is the atomic
volume. The bandwidth B is given by

8 =2ZV, (4 8)

where Z is the coordination number. We see from Eqs.
(4.6)—(4.8) that in the limit a ~0, we have

—~0, d &4
W

B
N ~00~ d )4 .
B (4.9b)

Thus for d &4, the continuum model corresponds to the
case of weak disorder in which both w and

~

E
~

(with E
measured from the unperturbed band edge) are much
smaller than'the bandwidth. On the other hand, for d & 4
passing to the continuum limit cannot be done in an inter-
nally consistent way. We see from (4.9b) that the continu-
um limit implies that u &~B. In that case, all states will
be strongly localized to individual sites as long as c;J has
any appreciable variation from site to site, and the DOS is
given simply by the probability distribution of the single-
site energies e; enormously broadened relative to the origi-
nal band. There is no universality whatsoever. The upper
marginal dimension 1„=4marks the limit of applicabili-
ty of any continuum model, let alone the white-noise
model. It is only between the two marginal dimensions,
2& d &4, that one has mobility edges in the continuum
limit.

/
l Z I

x ~ y
I

I

FIG. 2. Structure of the vertex part I .

V. THE NONUNIVERSAL CORRECTIONS
TO THE WHITE-NOISE MODEL, 2&d &4

Returning to Eq. (4.5), which reduces to

X~(&"
wGg~j (E)5,q, —— (5 1)
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and taking the Fourier transform of (5.1) shows that XIJ"
corresponds to a k-independent shift of the entire energy
band by w G;;(E). Because the energy dependence of
G;;(E) occurs on the scale of V and we are limiting our-
selves to band-edge features so that

~

E
~

&& V, we can set
E =0 in G;;(E). Thus the contribution (5.1) to the self-
energy simply corresponds to a rigid shift of the band in
the energy range of interest.

G;;(E =0) has the form —Ad/V, where A3 ——0.253 for
a simple cubic lattice. There is another nonsingular but
nonzero contribution to the energy shift which is not
present in the WNM; it comes from the second diagram
in Fig. 1. After Fourier transforming it adds

(2w —p4)[G—;;(E=0)]
to the energy shift, where p4 is the fourth moment of e;.
All other extra contributions disappear in the limit a —+0.

Putting all this together, we obtain that when the condi-
tions of Sec. II are met the WNM can be used for
2 & d & 4 provided that the divergences are ignored and
the unperturbed energy band is rigidly shifted by

lP'

IO—

-a
f)(x) I0—

~ 0.5
I.p

o l,P
~ l.P

2.0

Probability

Rectangular
Gaussian
Rectangular
Bin ar y

Gaussian

w 2(2W —I 4)
Eg ———Ad y3

(5.2)
Ip

for d =3 with A~=0.253.
The shift Es is nonuniversal because of its dependence

on crystal structure through its dependence on Ad, its
dependence on w/V after being divided by cod, and its
dependence on the probability distribution of the disorder
through the presence of the fourth moment p4. With re-
gard to the latter point, 2w —p4 ———,w for a rectangular
distribution and —w for a Gaussian. For d =2, Thou-
less and Elzain have shown that

FIG. 3. Plot of the one-dimensional universal density of
states (DOS) fi(x) versus the universal energy x =E/eoi The.
solid line is the exact result [Eqs. (6.2) and (6.3)] for the white-
noise limit. Numerical data for the DOS are also plotted for
different amounts of disorder and different probability distribu-
tions. Note that the standard deviation ic = W/V 12, where W
is shown in the figure {in units of V).

Ez ———(w /4rrV)[1+in(128m. V /w )] . (5.3)
~=Loigi

~oi
(6.4)

VI. RESULTS FOR THE BAND-EDGE FEATURES

A. d &2

We have learned that the WNM is well behaved and
needs no corrections for d &2. The simple results of the
dimensional analysis of Sec. II stand without any qualifi-
cations. By specializing to the well studied 10 case, we
obtain the DOS per unit length as

n(E)= f i
1 E

cpiL pi Gpl
(6.1)

where f&(X) is a universal function. There is a closed an-
alytic form' for f,

1/2
X+(x)fi(x) =
N (x)

(6.2)

where

X+(x)= f, dh r-+'/'exp( r'/6 2xr) . (6—.3)—
In Fig. 3, we plot fi vs x, and in Table I, we tabulate its
values. The localization length I, is given according to
our simple dimensional arguments by

where gi(x) is again a universal function. Sophisticated
considerations' have led to a closed expression for gi (x)

1 X+(x)
2 X (x)

(6.5)

In Fig. 4, we plot gi(x) vs x, and in Table I, we tabulate
its values.

It is simply amazing, given the enormous amount of
numerical work done on 1D systems, that this universality
has not previously been recognized. In Figs. 3 and 4, we
compare accurate numerical calculations of n(E) and
A,(E) with the universal forms (6.1)—(6.5) for various
probability distributions and various values of w/V.
Within the numerical errors from Fig. 3, we see that
universality holds for the density of states in the tail, and
in the band up to a value of x which decreases with in-
creasing disorder w/B, where B is the bandwidth. For
example, for w /B =0.14, i.e., W/V =2, significant
departures from universality occur at x = 1 (i.e., at
E =0.48V above the unperturbed band edge), whereas no
detectable departure from universality occurs up to x =4
(i.e., at E =0.76V above the unperturbed band edge) for
w/B =0.072. From Fig. 4 we see that universality holds
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TABLE I. Density of states f~(x) and localization length g&(x) for different values of energy x =E/@0~ .For a plot of these func-
tions versus x see Figs. 3 and 4.

—4.500
—4.400
—4.300
—4.200
—4.100
—4.000
—3.900
—3.800
—3.700
—3.600
—3.500
—3.400
—3.300
—3.200
—3.100
—3.000
—2.900
—2.800
—2.700
—2.600
—2.500
—2.400
—2.300
—2.200
—2.100
—2.000
—1.900
—1.800
—1.700
—1.600
—1.500
—1.400
—1.300
—1.200
—1.100
—1.000
—0.900
—0.800
—0.700
—0.600
—0.500
—0.400
—0.300
—0.200
—0.100

0.000
0.100
0.200

f)(x)
0.491 95 X 10
0.11174X 10
0.251 27 X 10
O.S59 25 X 10
0.123 19X 10
0.268 49 X 10
O.S78 96X 10
0.123 50X10-'
0.26053 X 10
0.543 47 X 10-'
0.11208X 10
0.228 47 X 10
0.46024X 10-'
0.91597 X 10-'
0.18006X 10
0.349 51 X 10
0.669 74X10-'
0.126 65 X 10-'
0.236 28 X 10
0.434 69 X 10-'
0.788 34 X 10-'
0.140 87 X 10-'
0.247 90X 10
0.429 37X 10-'
0.731 49 X 10
0.12248X10 '
0.201 41 X 10
0.324 90X 10—'
0.51360X10 '
0.794 53 X 10-'
0.120 10X10-'
0.177 12X 10
0.254 34X 10
0.355 01 X 10
0-480 80X 10
0.630 84 X 10
0.80098X10-'
0.983 70X 10
0.11641
0.134 50
0.15021
0.162 69
0.172 64
0.17977
0.18346
0.184 58
0.183 63
0.181 12

g)(x)

0.477 89
0.483 52
0.489 37
0.495 43
0.501 73
0.508 29
0.515 11
0.522 22
0.529 64
0.537 39
0.545 51
0.55401
0.562 93
0.572 32
0.582 20
0.592 64
0.603 67
0.615 38
0.627 82
0.641 10
0.655 30
0.670 56
0.687 00
0.704 83
0.724 25
0.745 55
0.769 05
0.795 20
0.824 53
0.857 76
0.895 75
0.939 59
0.99070
1.050 7
1.121 8
1.206 2
1.306 8
1.426 6
1.572 3
1.737 7
1.935 6
2.169 5
2.434 9
2.734 5
3.0760
3.456 5
3.875 8
4.332 7

0.300
0.400
0.500
0.600
0.700
0.800
1.900
1.000
1.100
1.200
1.300
1.400
1.500
1.600
1.700
1.800
1.900
2.000
2.100
2.200
2.300
2.400
2.500
2.600
2.700
2.800
2.900
3.000
3.100
3.200
3.300-
3.400
3.500
3.600
3.700
3.800
3.900
4.000
4.100
4.200
4.300
4.400
4.500
4.600
4.700
4.800
4.900
5.000

f)(x)

0.177 31
0.173 00
0.168 24
0.163 28
0.158 29
0.153 37
0.11272
0.14403
0.13968
0.135 56
0.13167
0.128 02
0.124 58
0.121 35
0.11826
0.11541
0.11272
0.11020
0.107 83
0.105 56
0.10343
0.101 41
0.994 94X 10
0.976 98 X 10
0.959 52 X 10-'
0.943 07 X 10-'
0.92741 X 10-'
0.91242 X 10
0.898 34X 10
0.88449 X 10
0.871 43 X 10
0.858 90X 10-'
0.846 86X10-'
0.835 50X 10-'
0.82421 X 10
0.813 52 X 10
0.803 24X 10
0.793 31 X 10
0.783 92 X 10
0.774 51 X 10
0.765 57 X 10
0.756 96X 10-'
0.748 60X 10-'
0.740 69 X 10-'
0.732 69 X 10
0.725 09X 10-'
0 71774X 10
0.710 58 X 10

g~(x)

4.827 9
5.354 2
5.911 8
6.497 8
7.109 7
7.744 6
0.15646X 10'
9.072 9
9.761 8
0.10465 X 10
0.11180 X 102

0.11904X10
0.126 38 X 102

0.13380X 10'
0.141 32 X 10
0.148 87 X 10'
0.15646 X 10
0.164 10X 10
0.171 76 X 102

0.17949 X 10'
0.18723 X 10~

0.195OOX 10'
0.202 79X 10
0.210 S8 X 10
0.218 43 X 10
0.22628 X 10
0.234 13&& 10
0.242 01 X 10'
0.249 87 X 10'
0.257 79 X 10'
0.265 68 X 10
0.273 S9X 102

0.281 50X 10'
0.289 39 X 10'
0.297 35 X 10'
0.305 29 X 10'
0.31322 X 10~

0.321 17X 10
0.329 08 X 102

0.33706X 10
0.345 02X 10'
0.352 97X 10~

0.36093X 10~

0.368 85 X 10
0.376 86 X 10'
0.384 83 X 10~

0.392 79 X 102

0.40077 X 10'

for the localization length g&(x) for —3 &x &4 with dis-
order up to w/8=0. 072 For strong enough disorder,
tU/8 =0.29, we see from Fig. 4 that universality breaks
down for x &0.5 but still holds for negative x, up to
x = —3. Note that for this strong disorder, x = 1.5 corre-
sponds to the center of the unperturbed band, where in
d =1, we know that localization length has its maximum
value.

B. 2&d&4

For 2&d &4, the situation is as follows. There is a
shift of the unperturbed band which depends on the disor-
der in a way which violates the universality given by the
simple dimensional analysis. If the energy is measured
from this new band edge Ez, the WNM behaves well, and
the dimensional analysis based on it becomes valid. Thus
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lo' (Ref. 20) and Cqs ——0.0095].' Numerical and analytical
work done by Thouless and Elzain for 2D show these
features explicitly; they did not, however, test for univer-
sality.

All relevant lengths such as the localization length A, ,
the mean-free-path I, and the correlation length g of the
extended states have the universal form

lO'

~=L odgd
E —E

(6.10a)

g,(x) l =LodPd
E —E

(6.10b)

lo
&Od

(6.10c)

0.5
l.o
I.O

4.0
4.0

~ (.0

Probability

Gaussian

Gaussian

Binary

Rectangular
Gaussian

Rectangular

IO
-3 -2 -l 0 I

X

FIG. 4. Plot of the one-dimensional universal localization
length g~(x) versus the universal energy x =E/eo&. The solid
line is the exact result [Eqs. (6.5) and (6.3)] for the white-noise
limit. Numerical data for the localization length are also plot-
ted for different amounts of disorder and different probab'l t
distributions. Note that the standard deviation w =8'/
where 8' is shown in the figure (in units of V).

we can reach the following conclusions. We have for the
mobility edge

Ec EB C1d~od ~ (6.6)

n(E)=, f„1

&odLod

E —E
(6.7)

where fd(x) is a universal function. Somewhat above E~,
it is quite accurately given by the coherent potential ap-
proximation (CPA). '

. Somewhat below Ez, it is accurate-
ly given by a function in which the dominant variation is
an exponential of the form'

n (E) cc exp(E/Eod)

1Q WhiCh

(6.8)

Eod ——C2de (6.9)

must hold with C2d a universal number [C22 ——0.0855

where C~d is a universal number. In three dimensions, '

C&3 is 4.5)& 10 . The apparent continuum band edge E~
has as its leading term a contribution of order m, but the
separation of E~ and Ec increases only as w in d =3.
Thus the mobility edge remains very close to the band
edge for small disorders, even as the band edge itself
shifts.

The DOS is given by

where gd, pd, and q~ are universal functions of their argu-
ment. Finally, the conductivity cr has the form

2

o(E)= d 2'~d —2

E —Eg
(6.11)

Sd(x) ~ (x —x, )', (6.13)

where s is unity in various mean-field theories and to
fifth order in the e expansion of renormalization group
theory. The ratio of the two slopes in (6.12) and (6.13) is
6.

Use of the CPA, ' the potential well analogy, and nu-
merical transfer matrix methods allows us approximate
determination of all of these universal functions for all
relevant values of x in 2D and 3D. Some of these results
have been quoted above. Further details and more results
will be published separately.

The universality we have discussed in such detail breaks
down as the energy moves up into the band because of the
presence of critical points in the unperturbed band struc-
ture. ' It also breaks down as the energy moves more
deeply into the tail. ' The details of the breakdown are
different for unbounded probability distributions such as
the Gaussian on the one hand, and bounded such as the
rectangular or the binary alloy on the other. In the form-
er case, potential fluctuations on a single site can be
strong enough to localize a state. In the latter case, one
finds, in addition, nonuniversal behavior as the Lifshitz
limit is approached. The Lifshitz limit is displaced from
the unperturbed continuum edge by an amount propor-
tional to w. Thus, we have identified nonuniversal
behaviors which scale individually as to, m /B, and
w /B

C. d &4

We have shown that we cannot pass to the white-noise
limit for d)4. Nevertheless, we shall show here that

where S& is a universal function. The limiting forms of
these functions can easily be obtained from perturbation
theory for large and positive argument. In particular, one
finds for the conductivity that

Sd(x) ~x, x ~&1 (6.12)

for all dimensions d. Sd(x) goes to zero as E~E,
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X= w2Go(E —X), (6.14)

where Go(E) is the diagonal element of the unperturbed
Green's function. For d &4, the unperturbed Green's
function has the energy dependence'

G()(E)=G()(0)+AE+B( E)'— (6.15)

for E «8. In (6.15), A and 8 are constants except that
when at is even, 8 includes a factor proportional to
ln( E). C—ombining the above equations, it follows tha't

universal features remain after the nonuniversal features
are extracted at finite a, just as for the 2 & d & 4 case. For
weak disorder and a+0, the leading contribution to the
self-energy X is the first diagram of Fig. 1 in its partially
resummed form. Moreover, we shall simply state without
giving the details that X is local in coordinate space and
constant in k space for the relevant energy region. Thus,
the first diagram becomes

while

—4/(d —4)

w. —+0

(6.22)

Because n (E) must have a finite, nonzero limit as w~O,
the exponent u must be such that

4(1+u)
d —4

28 rl —2
d —4 2

(6.23)

L, ~ w2"d-4' ~ O
m~0

Because sod~ 00 in the weak-disorder limit, only the im-
mediate neighborhood of the point E =El) matters. In
that neighborhood, all three functions fq, lz, and Sz have
power-law behavior with the critical exponents u, U, and
$, respectively. Thus we obtain

(6.16) which lead to

where 5X satisfies the equation

5X=w A(E Err 5X)+—w—8(Er) E+5X)—'

Eq. (6.17) gives to leading order

w A(E Er))—X= =w A(E Er)), —
1+w A

and Ez is given by the leading term in Eq. (5.2),

Er) =w Go(0) .

(6.17)

(6.18)

(6.19)

(E) (E E )(z —2)n
7r

(6.24)

l = „(E Err )" . —
~Od

(6.25)

In the limit that w ~0, l can be determined from pertur-
bation theory which yields the requirements that l ~ w
or l cc velocity divided by density of states or
~E' /E'" ' =E' "' . Both requirements lead to
the result

the unperturbed result simply shifted by Err. For the
mean-free-path we have

1 —w A
Err E+5X= (Er)—E)—

1+w A
(6.20)

Equation (6.18) implies that there is no further shift of the
band edge beyond E~ as E~E~.

To find the imaginary part of 5X to leading order, we
notice that

u =(3—d)/2

and

(E E )(3—d)/2

w

Finally, the conductivity is

(6.26)

(6.27)

plus terms of higher order. Thus we have

Im5X=ImX=w 8(Er) E)'"—(6.21a)
(6.28)

and

ImGo(E E~ —5X)=8 (E Er)—)'"—(6.21b)

Once again, perturbation theory can be used in the limit
w~O and o must be ~w . Imposing this on (6.28)
yields the results

The physical meaning of these results is the following.
For d &4 there is a rigid shift of the band by Ez. This
effect is not properly described by the WNM; it is herald-
ed by the divergence of the second-order diagram for X.
All other effects such as a further shift of energy in the
DOS or in the conductivity, etc., vanish linearly with
E —E~. Consequently, the mobility edge coincides with
the band edge, and the results of mean-field theory be-
come exact in the limit E—+Ez. This is indeed what one
obtains by applying the dimensional analysis of the %'NM
using the variable E —E~. More explicitly, the dimen-
sional analysis gives results identical in form to (6.7),
(6.10), and (6.11).

However, for d &4,

$ =1 (6.29)

a &x (E E~)/w— (6.30)

Equation (6.30) shows that the mobility edge E, coincides
with the apparent band edge E~, and that the scaling ar-
guments yield the mean-field value of the critical ex-
ponent, (6.29).

The arguments given thus far are incomplete. They
yield correct answers only above the mobility edge
E, =Err. Just as for the case 2 & 8 &4, E~ is only an ap-
parent band edge. For a terminating probability distribu-
tion, there is a I.ifshitz limit EJ ~w down to which the
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density of states remains finite, whereas the apparent band
edge Ett ~ w . n (E Et—t) retains the universal form (6.7),
but fd is only given by (6.22) above a crossover region
around Ez. Below that crossover region, it is given by
(6.8) or (6.9). The universal form holds until states bound
to single or few sites occur or the Lifshiftz limit is ap-
proached. Similar considerations hold for nonterminating
probability distributions. The most significant result of
the present analysis for d & 4 is that (6.6) still holds but
with

CId ——0, d &4. (6.31)

VII. CONCLUSIONS

The white-noise model of a disordered, nondegenerate
band edge has been shown to apply to systems of dimen-
sion d &2, when the conditions of Sec. II are met. As a
consequence, all physical properties of such systems can
be expressed in terms of disorder-dependent units of
length Lcd and energy End and universal functions of re-
duced energy. The power of this seemingly simple con-
clusion is displayed in Figs. 3 and 4 in which the density
of states and localization length are shown for different
disorders and different probability distributions to col-
lapse into the universal form for d = 1.

The white-noise model loses its universality for
2 &d &4 because cutoffs in length and/or energy must be
introduced through explicit reference to the atomic struc-
ture to avoid divergences. %'hen this is done correctly, it
is found that the band shifts rigidly to a new apparent
edge of the continuum. When energy is measured relative

to this new, nonuniversal edge, the universal features are
restored and the method regains its power. The energy
range within which universality occurs is bounded on the
one side by the effect of internal critical points or other
finite bandwidth effects in the continuum and on the oth-
er side by the presence of states localized to one or a few
sites or through the effect of a Lifshitz limit. The latter
occurs at an energy ~ m below the unperturbed band edge.

Above d =4, the white-noise model cannot be used to
represent the band edge of a disordered system because in
it all states are infinitely localized. On the other hand, the
dimensional analysis which emerges from the WNM
remains valid after energies are measured relative to the
shifted, nonuniversal continuum edge. The difference be-
tween d )4 and 2 & d & 4 is that the mobility edge
remains at the shifted band edge and, as is usual at and
above an upper marginal dimension, the mean-field ex-
ponents become exact, e.g., the conductivity exponent is
$ =1.

Before these results can be used with confidence for real
materials, it will be necessary to generalize the arguments
to include such effects as off-diagonal disorder, more than
one orbital per site, and topological disorder. %'hile these
extensions are not difficult in any essential way, they are
sufficiently intricate and complex as not to warrant
developing them here. For example, we have found that
the presence of off-diagonal disorder violates in principle
the universality; however, the degree of violation under
certain rather common circumstances is small so that our
conclusions remain approximately valid. Finally,
electron-phonon interactions play a fundamentally impor-
tant role in the vicinity of the band edge of disordered
materials and must be included as well.
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