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Thermal phonon scattering at singlet-triplet donor states in cubic semiconductors
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The mean phonon scattering rate at a localized electronic singlet-triplet system (e.g., the-electronic

ground state of group-V elements in germanium) is calculated using Green functions and transfor-
mation techniques. As a function of the singlet-triplet distance 4ho, the resonant scattering process
at the singlet-triplet transition is modulated by a dynamical scattering mechanism at the degenerated

triplet state itself (Jahn-Teller effect). This modulation dominates for small 4ho and, leading to a
strong temperature dependence of the scattering rate, reduces considerably the thermal conductivity.
The results will be compared with thermal conductivity measurements of weakly n-doped semicon-

ductor s.

I. INTRODUCTION

The lattice thermal conductivity of semiconductors is
strongly influenced by defects creating donor or acceptor
states. For dilute impurity concentrations in many ma-
terials these electronic defect level structures cause addi-
tional scattering processes for low-frequency phonons in
the meV range. The resulting decrease of the thermal
conductivity at low temperatures has been detected for a
large number of samples in recent years. ' The intensities
of the phonon scattering processes strongly depend upon
both the electronic level structure of the defects as well as
the character of the electron-phonon interaction between
the defects and the phonon modes of the lattice.

In this paper we shall consider defects with a very
specific electronic level structure, namely localized elec-
tronic singlet-triplet systems. Physical realizations of
these structures are found in the valley-orbit-split ground
states of the donors As, Sb, P, and Li in Ge. The struc-
ture is schematically drawn in Fig. I.

On the energy scale the donor states are located just
below the conduction band. The ground state, which is
fourfold degenerate in cubic semiconductors, is split into a
singlet and a triplet state, separated by the valley-orbit
splitting 4b, o. Characteristic values of the valley-orbit
splitting for some donors in Ge are listed in Table I.

CONDUCTION BAND

For a detailed discussion of the standard theory of shal-
low impurity states in semiconductors, the effective mass
theory, we refer to the article of Kohn. A special feature
of these defects is the large extension of the defect wave
function P, characterized by the Bohr radius a' (-40 A).
f is approximated by a hydrogentype function.

In the following we shall discuss the scattering of pho-
nons in these systems which can theoretically be described
by a relaxation rate r ', which has so far been calculated
on the basis of peturbation theory by Keyes, Griffin and
Carruthers, and Suzuki and Mikoshiba. Indeed pertur-
bation theory in second-order Born approximation consid-
ers mainly the resonant transition scattering process be-
tween the singlet and triplet states, but neglects, however,
the dynamical Jahn-Teller effect (JTE) at the degenerate
triplet state itself. As shown in a previous paper by two
of the authors the JTE leads to an additional dynamical
scattering process with a strong temperature dependence
and therefore with a strong influence on the thermal con-
ductivity. In a simplified manner this dynamical scatter-
ing mechanism can be explained in the following way.

The triply degenerate electronic level can couple to dou-
bly (e) and triply (t) degenerate lattice vibrations (JTE).
Via the electron-phonon interaction the lattice vibrations
cause a time-dependent oscillating splitting h(t) of the
electronic triplet state into a singlet and a doublet state.
Averaging over a long time period the splitting b, (t) is
zero [(h(t) ),„=0].When an incident phonon reaches the
defect ion, however, a momentary electronic level splitting
occurs and therefore the phonon can be scattered. From
this simple model we can draw two conclusions.

(1) Because all coupled phonon modes of the crystal are
involved in this dynamic level motion the results (scatter-
ing rate, etc.) are strongly temperature dependent.

(2) This dynamical process cannot be described in
second-order perturbation theory.

TABLE I. Values for the spin-orbit splitting used in our cal-

culations (Refs. 2 and 3).

FIG. 1. Energy levels of group-V elements such as Sb, P, or
As in a germanium lattice (schematically drawn). The ground
state g is split into a singlet and a triplet state ("valley-orbit
splitting" 4ho).
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In this paper we are mainly interested in the influence
of resonant scattering at the singlet-triplet system on the
dynamical scattering due to the JTE of the triplet state.
Especially when the triplet state is occupied with high
probability, i.e., 460 is small or even negative, we shall ex-
pect an important contribution from the JTE to the total
phonon scattering process.

In order to include the dynamical JTE we intend to cal-
culate the phonon relaxation rate ~ ' with the help of
higher-order Green functions, a technique which has al-
ready been successfully applied to l s acceptor states.
We finally calculate the thermal conductivity of specific
systems like Ge(Sb) and Ge(As) without using fitting pa-
rameters, and we compare our results with experimental
data.

II. MODEL HAMILTONIAN

The total Hamiltonian I describing a defect atom in an
octahedral crystal contains three parts:

H He] +Hph +He) ph (2.1)

Since we take as a basis an electronic singlet-triplet system
for the impurity atom (see Fig. I) we write for the elec-
tronic Hamiltonian (AQ =4ho)

AQ
+el 15 '

4
(2.2)

o1s is one of the quasispin operators building up the SU(4)
algebra. Their connection with the four electronic state
operators is given in Tables II and III.

The unperturbed phonon Hamiltonian reads

Hph ——g Rcopbpbp, (2.3)
P

where we sum over all phonon modes p:—qA, (q is the
phonon wave vector, A, is acoustic branch I, t„or t2). b~
and b& are Bose creation and annihilation operators and-
commute in the following way:

TABLE II. The cotnmutators [o;,oj] of the 15 SU{4) operators for j=1, . . . , 8 and (a) i, . . . , 8, {b)
i =9, . . . , 15. The result has to be multiplied by the imaginary number i.
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TABLE III. Anticommutation relations [cr;,cd]+ of the 15 SU(4) operators for j=1, . . . , 8 and (a) i =1, . . . , 8, (b) i =9, . . . , 15.
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[b~ b~ j=~~~

[bp, b~ ]j=[bp, bp j =0 .
(2.4)

The electron-phonon interaction between the defect atom
and the crystal lattice can be derived by group-theoretical
arguments:

8
A~= g +0;,

P=f(q)D, Sf for i =1,2, 3

P=f(q)D, Sf fori =4,5

P=f(q)B,Sf & fori =6,7,8.

(2.5)

(2.6)

H,

lych

——Rg A~(bp+bp),

where we make use of the abbreviations

The o.~, . . . , o.
~5 are quasispin operators representing a

SU(4) Lie algebra. Their commutation and anticommuta-
tion relations are listed in Tables II and III.

Furthermore the Sf (i=1,2,3) and Sf (i=4,5) project
the lattice phonons onto the symmetry coordinates of t2g
and eg vibrations, respectively
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sp=
' 1/2

1-(q.ei +q ei »v'3
ACOp

2Mc~

p 1- (q eip+qpei »V32Mcg

1/2
fiCOp

Spi=
2 (q «p+qpei )

2Mc ~

(2.7)

G =Gp —GpTGO, (3.2)

Gpp (co) =~(copcop ) '~2(( gp, g ~ && . (3.3)

where Go and G are the phonon Green functions of the
unperturbed and perturbed crystal, respectively.

Using the technique of double-time thermodynamic
Green functions by Zubarev' ' we can write G as a
dynamical susceptibility:

sp= p 1
(2q.ei q.—ei q,—ei.,),2Mc~ ~ 3

With this formalism we finally express the scattering rate
by Green functions of the quasispin operators o.i, . . . , os
as7, 8, 18

' I/2
p 1 =4~ " lm((A', AP && . (3.4)

Here cop denotes the frequency and ci the velocity of the
corresponding phonon. M is the mass of the crystal.
( q„,qp, q, ) signifies the unit vector along q and
( e~,eip, ei ) the polarization vector for the phonon
branch A, .

In (2.6) we discern three coupling terms which are ruled
by the deformation potential constants D„D„and 8,:
the D, and D, terms describe the coupling of longitudinal
e~ phonons and transverse t2g phonons, respectively, at
the degenerate triplet level itself, whereas the 8, term cor-
responds to the coupling of transverse t2g phonons at the
singlet-triplet transition.

Comparison with static stress experiments" leads to the
following result concerning the deformation potentials of
donors in germanium

TI

SENT

71 %CO

2 De ft(e2)ImGt(~)
g ZApM ci

(3.5)

Z~pM c&

(3.6)

where we have used the Debye approximation co=cq, pM
denotes the crystal mass density, and GI and G, are abbre-
viations for the spin Green functions

Z„ is the number of atoms in the crystal, n the defect
concentration, and V the crystal volume.

In a good approximation we can confine ourselves to
the calculation of rp

' for phonons in the z direction, as-
suming that every other direction gives approximately the
same scattering rate. In this way we can avoid the task of
averaging over all q. Thus we arrive at

B,=D, . (2.8)
Gt ——« ~4.,~4 &&, (3.7)

As a matter of fact, D, is much smaller than D, or B,.
Therefore the coupling of longitudinal es phonons at the
triplet state is very weak and can be neglected. '

Finally, the coupling function f(q) in (2.6) leads to a
cutoff for high-frequency phonons. The simplest treat-
ment of f(q) is within the effective mass approxima-
tion, ' where the donor wave functions are determined
by a hydrogenlike model. Considering only the s-type
parts of the electronic ground state one arrives at

G, = ((~2.,~2 &&+ ((~7,~7&&+ ((~2,~7&&+ ((~7,.~2 && . (3.8)

IV. THERMAL AVERAGES

We shall calculate thermal averages (A & =tr(Ap) in a
transformed space, using an exponential transformation

es of the form21~22

f(q) =[I+—.'(~*q)'] ', (2.9)

where a* is the Bohr radius of the defect, i.e., a measure
of the extent of the donor wave function. '

5 CoS=gco gPo; P +g gPo; P
COp

—Q

t g II~2 ti2( f64 14+go 13+18~12)
P

(4.1)

III. THE PHONON SCATTERING RATE

In addition to the usual phonon scattering processes in
crystals' .g., phonon-phonon interaction, boundary
scattering, and isotopic scattering —donors in semicon-
ductors give rise to scattering due to the electron-phonon
interaction.

The scattering rate (or inverse lifetime) ~ ' for a single
phonon mode p—=qX is related to the imaginary part of
the T matrix' ' as follows:

no ——[1+3exp(AQ/AT)]

ni ———,(1—no),1

(4.2)

which guarantees that the transformed Hamiltonian
H=e He no longer contains linear terms in the cou-
pling constants.

Taking as a basis Boltzmann-distributed occupation
numbers for the singlet (no) and the triple (ni) as fol-
lows,

2p
'= —cop 'lim Im[Tpp(cop+ ie)] .

e~p

The T matrix itself is defined by the relation

(3.1) we can develop the thermal averages up to linear terms in
the coupling constants using Bose statistics for the pho-
nons:
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(z,g, ) =s„,
(Q Qq. )=5ppLp, Lp ——coth

i6cop

2k' T

&~,~, &= —(g, g, &,

(4.3a)

(4.3b)

(4.3c)

P

2ni fori =1, . . . , 5 and 9, . . . , 11

(a)aj ) =5)j X np+n i for i =6,7,8, 12, 13

3(3np+ni) for i =15 .
(4.3g)

4m.
for i =1, . . . , 5

&g, ;&='—

(P~o;) = i—.

8

for i =14
2Q(mp+ni)

for i =13
COp

—Q
for i =12

r —3(np n, ) for i —= 15

0 for i =1, . . . , 14

COp

2(np+n, )
cong/' for i =6,7, 8

co —0p

0 for i =9, . . . , 15

(4.3d)

(4.3e)

V. EVALUATION OF SPIN GREEN FUNCTIONS

~((a2,~, && = g (( Q, [a2,A'];a, &&

p

and further development leads to

(5.1)

In the following we calculate the inverse lifetime of
transverse phonons as given by (3.6) and we are left with
the evaluation of the four spin Green functions denoted
by G, in (3.8). The formal procedure of the calculation
will be illustrated for the Green function ((oz', oz )) (with

j=2,7) using the equation-of-motion method as fol-
10 S.19,20

The first hierarchy reads

(~'—u,')&&Q, [a„Aj'];a, &&
= &Q, [[a2,A'], aj] &+~+ &&Qpgr [[a2,A'1 A']'aj &&

2m-

~,y ((p, g, ,[[ aZ ]j, Ai];a, ))+2~, ((Aj'[a„Aj'];a, ))
p

+~-'&&( Q, +,~,)[[,A'];If. ];,&& (5.2)

We now make use of the identity

2AB = [A,BJ + [A,B]+
and the random-phase approximation (RPA)

(& g, g', . . .;,)) =L,~„((.. .;;&&,

(&~,g', . .;,)) =~„((.. .;,&&,

to combine (5.1) and (5.2) yielding

((,;,»=g ',' ', ' +g, ', (&[[,,A],A~];, &&

(Q, [[a,,Aj'],aj])
277( co —coj) ) j) ('0 —coi)

(5.4)

(5.5)

(5.7)

COp+ g ((((622 A'&, &'&8;62, » —g, , Q, + j (b6~8+bi~6) ~))'(5.6)
CO(CO —

COj) ) j) CO —
((&j& (j&j)

The calculation of [[o2,A],A]+ will be carried out with the condition that orthogonal terms like ((II&ii'g) do not contribute
when summing over p. We can therefore write for ((o.2', az )) (see Appendix A)

0 ' ~p()—A)((822'82))) —b2 —2( ((622'62)» —g 2 2 () + j ( b +)b8668)2i8&jl) .686

The third term in Eq. (5.7) contains Green functions of
the type ((Qza;;oz )) or ((Pzo;;cd )) (i=6,7,8; j=2,7). A
direct evaluation of these terms leads to a very complicat-
ed structure of the hierarchy. In addition a consistent
treatment of these Green functions should include use of
the RPA in higher hierarchies. Thus (&Qzo;;a&)) and

((P&a;;cd )) will be omitted in future.
In a similar way we proceed with the remaining three

Green functions in Eq. (3.10) which can be expressed as a
linear combination of ((o28'oj))2 ((oip aj )) 8(('78aj)2)a8
and ((o i3,az )). We finally obtain a system of linear equa-
tions (see Appendix A)
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—b

bJ

bj

0 0

iQ —ag
N

'«a2, aj »
'

«a7, a, »
«ai3.,a, »

(5.8)

ders of the Green function hierarchy only, if one demands
the same accuracy as that for (5.9).

For the final evaluation we convert sums into integrals
(continuum approximation) and seek the solution (see Ap-
pendix B):

Im« . » [~ —4(co)]p(~)—a(co)l (cg)

[~ —~(~)] +I (~)

$2
«a2, a2» =

b 7
(5.9)

Q
1 — —A —D

CO

It must be pointed out that we are dealing with a problem
involving two different types of scattering processes. One
is related to the dynamical Jahn-Teller scattering at the
degenerate triplet state [case (a}] and the other to the
resonant scattering at the singlet-triplet transition [case
(b}]. These two processes, however, cannot be separated
physically nor in a mathematically exact way. Neverthe-
less, case (a) could be approximated by the Green function
«cr2, o2» and case (b) by «oz', o7». I.et us mention that
case (b) can be calculated in SU(2) algebra for a pure two-
level system' and case (a) in SU(3} algebra for a pure trip-
let system.

We therefore solve (5.8} approximately up to second or-
der in the deformation potentials and find

(5.12)

where we have neglected multiple-singularity terms which
turned out to be of minor importance. Figures 2 and 3
graphically demonstrate the phonon scattering rate

'(co) following from (3.6), (3.8), and (5.12). Figure 2
shows ~ (co) for different positive singlet-triplet dis-
tances 0—:4b.o/A'. The large width of the resonances is
due to the dynamical JTE. Figure 3 proves well the influ-
ence of the dynamical JTE as a function of the triplet oc-
cupation probability, which is much higher for negative
singlet-triplet distance. In case (a) the triplet state lies
above the singlet state (Q= + 7 THz=4. 6 meV) whereas
in case (b) the structure is inverted (0=—7 MHz), i.e.,
the singlet lies above the triplet. The resonant scattering
process at the singlet-triplet transition, however, is not af-
fected.

VI. THERMAL CONDUCTIVITY

These Green functions fulfill tl}e syminetry condition

(5.10)

The Green functions «o2, o7» and «a7, cr2» are neglect-
ed in our treatment, because they contribute to higher or-

Finally, we shall calculate the thermal conductivity for
the samples Ge(As) and Ge(Sb) according to the semi-
phenomenological theories of Klemens and Callaway'
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FIG. 2. Phonon scattering rate ~ ' as a function of phonon
frequency co with the following parameters: a *=30 A,
T=5 K, AD, =5.5 eV, n =10' cm . Curves a, b, e, d, and e
belong to the singlet-triplet distances 0=0.2, 0.5, 1.0, 2.0, and
5.0 THz) or AQ=0. 13, 0.33, 0.66, 1.32, and 3.29 MeV, respec-
tively.

FIG. 3. Phonon scattering rate v. ' as a function of phonon
frequency co with the same parameters as in Fig. 2. Curve a
corresponds to 0=7 THz {=4.6 meV) and curve b to Q= —7
THz. In the latter case the triplet state, lying below the singlet
state, is occupied with higher probability and leads to a stronger
dynamical scattering process.
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kgT~(T)=, pc~ 'I,dx . (6.1)6'' g
o (e —1)

r,«~ is the total inverse lifetime of all different and in-
dependent phonon scattering processes expressed by E

O8 10

—1 —1 —1 —1 —1
+tot, A. +I ++8,A, ++a ++el-ph, k, ~

where ~1 ', ~gq, and v.„' are the relaxation rates for iso-
tropic, boundary, and umklapp scattering, respect&vely. '

For simplicity in the numerical treatment for ~,~~h, as
well as for r,~~h~ we used the result derived from Eq.
(3.6). In our theory we did not make use of any fit pa-
rameter. On the contrary every physical parameter has
been separately measured and can be found, e.g., in the
paper of Bird and Pearlman. ' These authors have mea-
sured the thermal conductivity of highly Sb-, P-, and As-
doped germanium in a temperature range between 0.3 and
4.2 K. Their results (dashed lines) in comparison with our
theoretical calculations (solid lines) are shown in Figs. 4
and S. For As-doped germanium (Fig. 4) the singlet-
triplet distance (fiQ—:4b,o

——4.23 meV) is rather large.
Thus as a consequence of the low triplet occupation prob-
ability the dynamical scattering process (JTE) scarcely
contributes. Indeed the resonant scattering process be-
tween the singlet-triplet transition dominates here and we
could handle Ge(As) as a two-level system.

Figure 4 includes also the curve c for a hypothetical
system with an inverted singlet-triplet structure (0 & 0) to
demonstrate the influence of the dynamical JTE in the
case of a high triplet occupation probability. Considering

- & 10-2

0
C3

c3 1Q~

Ct
LLI 10
I—

I

0,1 0.2
I l I

0.5 'I 0 2.0 5 0 10.0
TEMPERATURE (K j

FIG. 5. Experimental (Ref. 1, dashed curves) and calculated
(solid lines) thermal conductivity curves for Sb-doped germani-
um with the following parameters: curve a, n=0 (no doping);
curve b„n =3.0&(10' cm, a =44 A, AD, =4.4 eV,
A'0 =0.32 meV.

Sb-doped germanium (Fig. 5), where the singlet-triplet
distance (fiQ=0.32 meV) is about 13 times smaller than
for Ge(As), the dynamical scattering process at the higher
occupied triplet state plays now a dominant role. As a
consequence we observe a strongly reduced thermal con-
ductivity.

Although the low-temperature thermal conductivity
can be well explained by the method of Green functions,
the mechanism for scattering of low-frequency phonons
effective below 1 K has still not been found. This may be
due to phonon scattering at a statically split triplet state
due to internal strains. In the theoretical curves shown
here this extra scattering effect is not included.

I

-1
E 10

—2~ 1Q)
C3z

1Q

LU
(z'. 10

0.1 0.2
I I

0.5 1.0 2.0 5.0 10.0
TEMPERATURE (K)

VII. CONCLUSIONS

The phonon scattering rate r ' has so far been calculat-
ed on the basis of perturbation theory. ' ' Indeed pertur-
bation theory in second-order Born approximation consid-
ers mainly the resonant transition scattering process be-
tween the singlet and triplet states, but neglects the
dynamical Jahn-Teller effect at the degenerate triplet state
itself. We performed a high-order Green-function calcu-
lation in order to include the additional dynamical scatter-
ing process due to the Jahn-Teller effect. This process is
strongly temperature dependent and therefore has a great
influence on the thermal conductivity. This influence is
greater for smaller values of 4b,o or for negative values,
i.e., when the triplet state lies below the singlet state.

FIG. 4. Experimental (Ref. 1, dashed curves) and calculated
(solid lines) thermal conductivity curves for As-doped germani-
um with the following physical parameters: curve a, n=0 {no
doping); curve b, n =2.7&10' cm, a*=37 A, AD, =5.5 eV,
RA=4.23 meV; curve c, same as curve b but fiQ= —4.23 MeV
(inverted singlet-triplet structure).
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APPENDIX A

The definitions of terms used in deriving the system of
linear equations, Eq. (5.8), are as follows:

ACOpI.p ——coth
B

I.p
2 (Willi+ RF~+PsPs+ PsPa»

p CO —
COp

Ip
2 (4 1'Yl HR+P6 Y6 Y8'Y8)

p CO —
COp

Lp
2 ('Yl Yi+ M+8'Y3+'Y6't6+2RR

p CO —
COp

+FsPs),

a)-—1-a, a, =1—D,
Q 0

a3 ——1 — —3, a4 ——1 — —D,
CO CO

&a,[[ .,A], ,»
2m(co —co~ )

CO~ &Pp[[crlo, At' ],CTI] &

2'itco( co —co& )

bJ TJ +TJ + TJ

b4 ——. T(+ . T2+ T3iQ 4) iQ

J 0TJ = (no —nl),
$67

&Q,[[~.,~'] ~, ]&

2m. (co —co& )

APPENDIX 8

The definitions of terms used for the final evaluation of
the spin Green functions [Eqs (5.11) and (5.12}]are as fol-
lows:

a(co)=2nlco D, +5 RzTi,

P(co)=mnlco D, +5 ft„(co)T"l,

I3.(co) =4trco D, g 5"R l T2,

I (co)=2' co D, coth +5 fi(co)T2,
2

Qa'(co) = (n—o —nl ),
I3.'(co}=4trco Dt g 5 R l T2,

r

1'(co)=2+co D, coth g5 fi(co)T2,

5 =
16m p~cg

—24'2

ft(~)= 1+ ~2

~o x fi(x)coth(trtx/2ktiT)
Ri ——P dx

0
CO —X

R =P
~o x fi(x)

0 2 2

where P denotes principal value, ~D denotes the Debye
frequency, and

tn ~, &Pt l[~», &'] ~, ]&

27rco(co —co& )
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