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The dielectric theory of electron-energy-loss spectroscopy (EELS) in the reflection geometry is re-
formulated so as to allow for an arbitrary compositional variation of the target material in the direc-
tion perpendicular to its surface. A new, general expression for the energy-loss spectrum is obtained
in terms of an exact “effective dielectric function.” It is shown that the effective dielectric function,
valid at long wavelength, can be obtained by solving a Riccati differential equation, the only infor-
mation required being the otherwise arbitrary profile, in the normal direction z, of the dielectric con-
stant €(w,z) for the frequency region of interest. Attention is then paid to an idealized multilayered
material, made of an arbitrary succession of homogeneous layers separated by sharp interfaces
parallel to the free surface. If €(w,z) is assumed to take constant values within each layer, an origi-
nal solution is obtained for the Riccati equation, giving the effective dielectric function of the ma-
terial in the form of a continued fraction. For the thick periodic multilayers or superlattices of
current interest, the continued fraction can be evaluated analytically. Applications will be presented
for the phonon EELS spectrum of polar-semiconductor superlattices for which a Lorentzian model
for the @ dependence of the infrared dielectric constant can be used. Two kinds of vibrational exci-
tations are theoretically predicted in such superlattices: (i) Bloch-like, Fuchs-Kliewer interface
modes, propagating throughout the layers; and (ii) evanescent, Fuchs-Kliewer surface or interface
modes. It is shown that the Bloch modes are responsible for weak EELS continua, while the local-
ized modes give rise to strong peaks in the spectrum. Furthermore, it is predicted that the main
features of the EELS spectrum sensitively depend on the relative thicknesses of the two alternating
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layers of the superlattice.

I. INTRODUCTION

During the past 15 years, electron-energy-loss spectros-
copy (EELS) in the reflection geometry has emerged as a
reliable technique for studying clean or contaminated sur-
faces. In this technique, monochromatized electrons
backscattered from the surface of a target material are
analyzed in energy to detect losses and gains characteristic
of surface plasma or vibrational excitations. First re-
stricted to conducting targets, high resolution EELS ex-
periments have recently been successfully performed with
insulators and poorly conducting materials,! so that this
technique is now generally applicable as a powerful spec-

* troscopic tool for the study of any material surface.

In the meantime, the theoretical framework for inter-
preting the EELS spectra has been developed.>® An ade-
quate theoretical approach to EELS is provided by the
so-called dielectric theory,”* where the electrons are con-
sidered as classical particles, while the multiple absorption
or emission of phonons or plasmons are quantum
mechanically described. In addition to its intrinsic simpli-
city, this “semiquantum” theory has been shown to be in
remarkable agreement with the recent experimental spec-
tra obtained on selected isotropic or anisotropic thick in-
sulators.>®

In the infrared range, the EELS spectrum of a poorly
conducting, partly ionic crystal shows narrow multiple-
loss (and -gain) peaks due to emission (and absorption) of
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macroscopic, Fuchs-Kliewer surface phonons, and the
strengths of the multiple-loss peaks follow a Poisson dis-
tribution. These phonons at a thick isotropic insulator
surface have frequencies @ such that e(w)= —1, where
€(w) denotes the bulk dielectric constant of the material.
In the dielectric theory of EELS, these frequencies gen-
erate 8-like peaks in the so-called surface loss function’
Im{ —1/[e(w)+1]}.

It turns out that the dielectric theory can still be ap-
plied to anisotropic crystals, provided e(w) in the loss
function be replaced by an appropriate effective dielectric
function £(k,w), where k denotes the wave vector of the
surface phonons.® It is remarkable that the same result
holds equally true when the dielectric constant (or tensor)
of the target material is an arbitrary function of the coor-
dinate z below the surface.! In this paper, we indeed
prove that the relevant effective dielectric function is
equal to the surface value of the ratio of the displacement
vector perpendicular to the surface, and the projection of
the electric polarization field onto the direction of the sur-
face wave vector k. Furthermore, it is shown here for the
first time that £(k,w) can be obtained by solving a Riccati
differential equation, where €(w,z) enters as the only in-
put. For illustrative purpose, emphasis will be put here on
a target material made of an arbitrary succession of paral-
lel layers, with the (nonessential) simplifying assumption
that e(w,z) takes constant values €;(w) within the succes-
sive layers i =1,2,3,... . Such a histogramlike model for
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€(w,z) leads to a continued-fraction expansion of the ef-
fective dielectric function of the material.

The continued-fraction solution of the Riccati equation
is a new, powerful result as it provides us with a simple
formulation of the effective susceptibility of any stratified
material or multilayered heterostructure. Moreover, it is
very convenient for algebraic analyses and also for numer-
ical computations. Besides, the continued-fraction formu-
lation can easily be generalized to include retardation ef-
fects,” although these effects are irrelevant to the present
EELS context. For illustration, attention will be paid
here to synthesized semiconductor superlattices, which
have attracted a growing interest during the past several
years.!® Detailed applications will be considered for
semi-infinite superlattices as well as for superlattices with
a finite number of periods.

Our analysis is complementary of a recent theoretical
work devoted to collective plasmon excitations in superlat-
tices.!! The authors of this latter work have computed
the EELS spectrum of a semi-infinite superlattice formed
from metallic layers intercalated with slabs made of a
nondispersive medium. By solving Poisson’s equation in
the layers, and by applying the usual boundary conditions
at the interfaces, Camley and Mills!! were able to deduce
the nonretarded electromagnetic eigenmodes of the super-
lattice. Besides continuum eigenmodes which are a conse-
quence of Bloch’s theorem, Camley and Mills found local-
ized branches of surface and interface modes. By contrast
with the Bloch solutions of Poisson’s equation,'? the local-
ized modes correspond to evanescent solutions which are a
consequence of the loss of periodicity near the terminating
layer of the superlattice,!">!> and these new modes influ-
ence the EELS spectrum of the structure.

In the new formalism of the effective dielectric func-
tion that is presented in this paper, the localized, Fuchs-
Kliewer modes correspond to wave vectors k such that
&(k,w)= —1, while the continua are related to complex
values of £. Although the validity of the general formal-
ism we have developed does not rest upon any particular
o dependence for the dielectric constants €;(w), we will
deal particularly with the infrared optical vibrational
properties of superlattices made of cubic binary com-
pounds. The vibrational Fuchs-Kliewer modes of the su-
perlattice will be described from the expression obtained
for the loss function Im{ —1/[&(k,®)+ 1]}, which embo-
dies the general linear response of the EELS probe. We
will study the EELS spectrum of selected semiconductor
superlattices and will show that the continuously distri-
buted Fuchs-Kliewer states give rise to weak features in
the EELS spectrum, while the localized vibrational modes
are responsible for strong peaks in the spectrum. As an
important result, it will be shown that the detailed shape
of the spectrum depends rather sensitively on the ratio of
the layer thicknesses in the superlattice. This feature
amounts to a proof of the capability of the EELS tech-
nique to probe the dielectric properties of the material
several hundred angstroms deep under the surface.

II. THEORY OF EELS SPECTRUM

Electron-energy-loss spectra obtained in the reflection
geometry at the surface of a semi-infinite medium can be

theoretically treated within the framework of the so-called
dielectric theory.* In this theory, the electron is con-
sidered as a classical particle, while the collective excita-

tions of the medium (such as optical phonons or

plasmons) are described quantum mechanically. The
dielectric theory proceeds in two steps. The first step con-
sists in evaluating the work done by the polarization field
of the sample on the electron (responsible for the polariza-
tion) along its classical trajectory.>® In this classical step,
the work

+
W=—c [ ve(t)Blr.(1),t)dt 2.1)

is written as the first moment of a classical energy-loss
probability P (w):

W= fo‘” #iwPy(w)dw , 2.2)

where 7w denotes the energy loss. In Eq. (2.1), r.(2) is the
trajectory of the electron (charge e), v,(¢) is the electron
velocity, and E(r,t) denotes the polarization field of the
material under consideration.

This first, classical step is complemented by a suitable
quantum-mechanical description of the multiple excita-
tions emitted or absorbed by the electron. The essential
result of the second step of the EELS theory is the follow-
ing expression of the full energy-loss probability for a tar-
get material at temperature 7 :>°

1 + o0 .
P(&,T)==—Po(T) [~ exp[Pu(t,D]e'*'dr , (2.3)
2T —

where
© , i ﬁa)'
P,y(t,T)=+ fo Py(w') | it COth2k3T+l]
+ia't | coth : —1 '
+e co 2k, T dw
2.4

In Eq. (2.4) the prefactor Py(7T), given by

’

Py(T)=exp —fochl(w’)COth 2—1637

do' ] , (2.5)

ensures the normalization of the loss spectrum at all tem-
peratures. )
From a numerical point of view, it is worth noticing
that the transformations from the classical energy-loss
probability P, (w) to the full EELS spectrum P(w,T)
proceeds by way of two Fourier transforms which can be
efficiently carried out (fast Fourier-transform technique).
Also, the theoretical EELS spectrum of Eq. (2.3) can be
further broadened to include instrumental resolution by
convoluting P(w,T) with the spectrometer response func-
tion, the width of which being adjusted so as to reproduce
the experimental width of the elastic peak [which is
represented as a Dirac 8 function located at ®=0 in the
theoretical spectrum of Eq. (2.3)]. Finally, we note that
the full EELS spectrum given by Egs. (2.3) and (2.4) has
multiple-loss peaks which follow a Poisson distribution.
We now turn our attention to the classical work. For
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fast electrons it is sufficient, in general, to consider the
unperturbed classical trajectory, as if the dynamics of the
electron were unaffected by the force of the polarization
field which acts on it. Furthermore, neglecting the image
force as well,* r,(¢) is assumed to obey the following sim-
ple law:

r.(t)=tv + |, |n, (2.6)

where v, is the electron velocity component parallel to the
surface of the material, v, is the normal component of the
velocity, and n denotes the unit outward normal at the
surface (Fig. 1). Throughout this paper the coordinate z
is oriented parallel to the outward normal n, the surface
coinciding with the plane z=O0 and negative z corre-
sponding to the material region. When writing Eq. (2.6),
it has been assumed that the specular reflection of the
electron occurs at time ¢ =0 at the origin of the coordi-
nates, the effects of the collision change the sign of the
electron velocity along the normal direction n. In addi-
tion, the penetration of the electron below the assumed
abrupt surface is not taken into account, this simplifying
assumption being fully justified for phonon excitations by
a low energy electron (a few eV).*

Retardation effects in the electric field being ignored
(retardation effects are actually negligible in present reso-
lution EELS), the polarization field E(r,?) is Fourier
transformed with respect to the coordinates x and y paral-
lel to the surface and with respect to the time ¢ :

E(r,0= [ d% [ 7 doBko,ze T

2.7)
where k=(ky,k,) is a two-dimensional wave vector. Tak-
ing into account Eq. (2.6) and the nonretarded limit
[V X E(r,t)=0], it is straightforward to calculate the ex-
pression of the classical work W [Eq. (2.1)], and then the
following expression of P (w):

Pylw)= [ dzk—;—g—e— ” sin(Qz /v, )ImE, (k,0,2)dz ,

0
(2.8)

where Q=w—k-v|. Integration by part, complemented
by the condition V-E(r,#)=0 (z > 0) finally yields the fol-
lowing result:

€ (w,z]

FIG. 1. Definition of the geometrical parameters relevant to
the theory of EELS in the reflection geometry. Throughout this
paper the coordinate z is measured in the direction perpendicu-
lar to the free surface of the sample, which extends from z =0
(surface) to z = — .
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— E,(k,w,+0)
4eU1f 1Ko, 4+

d* | .
# Q4 (kv )?

Py(w)=Im 2.9)

This expression relates the classical loss spectrum to the
Fourier transform of the normal component of the polari-
zation field at the surface z =0, computed from above the
surface.

The electric field above the surface (region z > 0) is the
sum of the polarization field E(r,?) and the (nonretarded)
Coulomb field E,(r,?) of the electron, given by

e

E (r,t)=—VV, (1,t)=—V——"—— .
| r—r.(2)|

(2.10)

Below the surface, the electric field E(r,z) satisfies
VXE=0 and V-€E=0. In terms of the Fourier
transform of E(r,?) [Eq. (2.7)], we now introduce the fol-
lowing quantity:'*

D(k,w,z)'n

Ek,0,2)k/k ’ 2.11)

£(k,w,z)=i

with D(k,,z)=€(w,z)E(Kk,0,z), where €(w,z) is the long-
wavelength dielectric constant (tensor) of the material,
which may be a function of the coordinate z. Even in the
presence of sharp interfaces parallel to the x,y directions
below the surface (such as in the multilayered materials
considered below), £(k,w,z) is a continuous function of z,
owing to the usual boundary conditions at such interfaces
(continuity of the normal component of D and of the
parallel component of E). The specific properties of the
quantity &(k,w,z) are analyzed in the next section, but it is
worth mentioning here that for a semi-infinite isotropic
medium £(k,w,z) reduces to the dielectric constant e(w) of
the medium.

It now becomes straightforward to establish the follow-
ing expressions, taking account of the definition of
£(k,w,z) and the boundary conditions at the surface:

E,(k,0,+0)=D, (k,w, —0)—E,, (k,,0)
= —ifok B, (k,0, —0)/k —E,, (k,0,0)

= —i&k[By(k,0,40)+E, (k,0,0)] /k

—E, (k,0,0) (2.12)

where &, is a short writing for £(k,w,—0) computed at
the surface. As in vacuum (z > O region)

ik-E\(k,0,z)/k =E, (k,0,z) ,
the above relation can be rewritten as
(14+80)E, (k,0, +0) = —i§k-E, | (k,0,0)/k — E,, (K,0,0)
= —k&oV.(k,0,0)

+ (2.13)

3
_“V (k,co,z) ’
3z °¢ ]z=0

where V,(k,w,z) denotes the Fourier transform of the
Coulomb potential of the electron [refer to Eq. (2.10)].
The above formulation shows that, in the absence of
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external excitation (V,=0), the polarization field
E(k,0,z) in vacuum (z > 0) vanishes, unless

Eo=E(K,w,0)=—1.

The regions of k and w, where that condition is fulfilled,
correspond to the nonretarded electromagnetic eigen-
modes of the material. Equation (2.14) is a generalization
of the well-known condition e(w)= —1 giving the nonre-
tarded eigenmodes of a semi-infinite isotropic medium
with dielectric constant €(w).!> For that reason, &, can be
regarded as the effective dielectric function of the materi-
al.

We now return to expression (2.9) of the classical loss
probability. Having computed the Fourier transform
V,.(k,0,z) of the electron Coulomb potential, using the
simple law (2.6) for the electron trajectory, and replacing
E | (k,w,+0) by its expression deduced from Eq. (2.13),
we end up with the following result:

(2.14)

_4 e 5L (kv, )
7 Ay YD k2 [(w0—k-vy) (kv )]

Pcl(a))

—1

Im—— .
XM o) +1

(2.15)

In Eq. (2.15), the integration is performed over a domain
D including all surface wave vectors k which, through en-
ergy and momentum conservations, scatter the reflected
electron towards the detector aperture. In polar coordi-
nates, the polar angle ¢ of k being measured with respect
to v, D is the domain bounded by a closed curve k.(¢)
which can be approximated by the ellipse of equation

cos¥(¢)
[kmax COS(!/J,- )]2 ’

1 _ sin’(4) (2.16)

kc2 krznax
where ; is the incidence angle of the electron with
respect to the surface normal n and ki, =k.¥,, ¥, being
half the angular aperture of the detector and k, denotes

the de Broglie wave vector of the incident electron. Typi-
cally, kpa =0.04 A™1,

III. PROPERTIES OF THE EFFECTIVE
DIELECTRIC FUNCTION

The effective dielectric function of the medium has
been defined in the preceding section as the value taken at
the surface (z =0) by the quantity £(k,w,z) introduced in
Eq. (2.11). In this section, some properties of this crucial
quantity are presented, with the simplifying assumption
that the material is isotropic (anisotropic materials have
been considered in previous publications™®). In addition
to the simplification of &, resulting from the assumption
of an isotropic target material, the two-dimensional k in-
tegration in Eq. (2.15) can further be simplified, as we
show in the Appendix. In this section, the frequency w is
considered as a parameter to which the long-wavelength
dielectric constant € is related. For a given value of w, €
is assumed to be a function of the coordinate z.

~such that &(k,w,2)

A. Effective dielectric function of an isotropic material

For isotropic media, £ does not depend on the polar an-
gle of the two-dimensional wave vector k. As a result,
Eq. (2.11) can be rewritten as

€(w,z) 3

Ek,0,2)= P

V(k,o,2) / Vikoz), (3.1

where V(k,w,z) is the Fourier transform of the polariza-
tion potential. For obvious typographical simplifications,
we will omit the (k,w) dependence of € and V and regard
these quantities as functions of z. Due to Poisson’s equa-
tion, the polarization potential in the medium satisfies the
second-order differential equation

d | dV

— |le——

—ek?V =0, 2
il G € 0 (3.2)

where € is allowed to be a function of z. The boundary
condition associated with Eq. (3.2) is V(z) finite as z ap-
proaches — . Let V(z) and V,(z) be two independent
solutions of the above equation. If one of these solutions,
say V, satisfies that condition, while the other diverges at
Z = — o0, then the divergent solution ¥, must be discard-
ed when writing the solution of Eq. (3.2). In these condi-
tions £(z), as deduced from Eq. (3.1), is

_ez) 1 dVy(2)
$O=""V 0

(3.3)

Consequently, &(z) [and £,=£(0) as well] is uniquely de-
fined in that case; it is given by Eq. (3.3) where V(z) is
the regular solution of Poisson’s equation. For instance,
suppose that e(z) takes an asymptotic constant value €
far away from the surface (€; could be the dielectric con-
stant of the substrate on which a film has been deposited).
Hence, the Poisson equation possesses a set of indepen-
dent solutions behaving as V(z)~exp(kz) and
V,(z)~exp(—kz) at z=— 0. Elimination of the dom-
inant solution ¥V, then ensures the uniqueness of £(z). In
addition, £(z) converges towards € as z approaches — .
Furthermore, in the region z>0 (see Fig. 1) where
€(z)=1, the acceptable solution of the Poisson equation is
proportional to V(z)=exp(—kz). From Eq. (3.3), &(z) is
then equal to — 1 throughout the vacuum region. Hence,
Eq. (2.14) appears as a matching condition of £(z) at the
surface: The nonretarded eigenmodes of the system are
is a continuous function of z
throughout space.

Consider now a periodic z dependence of €(z) as an
idealized model of a periodically compositionally modu-
lated structure. According to Floquet theorem,'® the
Poisson equation (3.2) then has a pseudoperiodic solution
of the form

Vi(z)=exp(u2)-y,(2) ,

where y,(z) has the period of e(z), u,; being a complex
number. In addition, when pu, is different from O or
tiwm/L, L denoting the period, a second independent
pseudoperiodic solution exists,

V,(z)=exp(u,z)y,(z) ,
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¥, being a periodic function of z, and p+u,=0 (or equal
to any integer multiple of 2iw/L). Assuming Reu;>0,
V, is the minimal solution of Poisson’s equation and &,
according to Eq. (3.3), is a periodic function of z, with
period L, given by

dy,(2)
dz

&(z2)= (3.4)

e(z) 1
k yi(2) !

When Reu;=0 (hence, Reu,=0), &(z) is no longer
uniquely defined since the potential V(z), as linear com-
bination of V| and V,, depends on two arbitrary con-
stants. Consequently, and in absence of any external exci-
tation, it is always possible to satisfy the boundary condi-
tions at the surface [namely, by matching ¥V (z) and its
derivative at the surface with the exponential solution of
the Laplace equation in vacuum]. The linear combina-
tions of the two independent Bloch solutions ¥, and ¥V,
which satisfy these boundary conditions correspond to
nonretarded eigenmodes of the periodic system. The ex-
istence of such undamped eigenmodes requires € to be real
and periodic. In addition, the Poisson equation in that
case has two independent Bloch solutions only in some in-
tervals of the wave number k. These intervals will be
called the Bloch continua of the polarization potential.
They give rise to continua of nonretarded eigenmodes, by
opposition with the localized, Fuch-Kliewer modes given
by Eq. (2.14).

Returning to the EELS classical spectrum [Eq. (2.15)],
we now show how the difficulty arising from the apparent
nonuniqueness of the effective dielectric constant &, can
be removed in the Bloch continua. By contrast with the
hypothesis considered in the above discussion, the materi-
als used in practice are characterized by complex dielec-
tric constants. Hence, assuming a positive imaginary part
in e(z), Bloch solutions corresponding to Rep;=Reu,;=0
do not exist, from a strict mathematical point of view. &
is then uniquely defined, since V, is a divergent solution
at z2=— oo for any value of k, and £(z) is the (complex)
periodic function given by Eq. (3.4). This remains true
even for vanishingly small dampings in €(z). Hence, tak-
ing the limit Ime—0, so as to reproduce a real periodic
function €(z),£(z), as the limit of Eq. (3.4), will still be a
periodic function of z. One can argue that, after the limit
process has been performed, two periodic expressions for
£ could be obtained in the Bloch continua, depending on
which Bloch solution V; or ¥V, is considered. In fact the
two periodic expressions for £(z) are complex conjugate of
each other, and one must select the solution so as to ob-
tain Im§,>0. This choice ensures the positive definite-
ness of the classical loss distribution P (w). (Notice that
arguments are presented in the next section to show that
Im[—1/(£,+1)] >0 when Ime(z) >0, even for a vanish-
ingly small imaginary part in €(z).) In conclusion, £(z) is
periodic and uniquely defined (so is £,) when €(z) is a
periodic function of z, even in the Bloch continua which
may arise when Ime(z)=0, provided one regards this
idealized situation as a limiting process by considering
vanishingly small dampings in the dielectric constant.

8207

B. Riccati equation for &

Taking the derivative of both members of Eq. (3.1) with
respect to z, and due to the Poisson equation, the follow-
ing Riccati equation is obtained for &:

2
1 dé(z) 4 &4z) —el2) .
k dz €(z)

By integrating this differential equation, it is thus possible
to deduce the effective dielectric function £,=£(0) of the
medium without recourse to the Poisson equation. When
solving Eq. (3.5), we have to impose a suitable boundary
condition, according to the above discussion. For, if €(z)
assumes a constant asymptotic value €, when z ap-
proaches — «o, we impose that lim§(z) =g, so as to obtain
the solution (3.3). (In addition, this method is well condi-
tioned from the numerical point of view: It is very simi-
lar to the Miller backward algorithm used to solve differ-
ence equations.!’) When &(z) is a periodic function of z,
one looks for a periodic solution of Eq. (3.5). Hence, the
boundary condition to impose in such a case is
£(0)=&(—L), L being the period. If, in addition, €(z) is
real, Eq. (3.5) does not have a real periodic solution in the
Bloch continua, if any, as explained above. One, thus, has
to allow €(z) to be complex, and look for the solution with
a positive imaginary part at z=0. Outside the Bloch con-
tinua, however, a real periodic solution exists [the condi-
tions of existence of periodic solution(s) for Riccati equa-
tions have been considered in specialized literature!®].

Suppose the solution of the Riccati equation has been
computed.” Then, a straightforward integration of Eqg.
(3.1) yields the following expression for the potential:

(3.5)

— £z)
In[V(2)]=C+k [ 2oy (3.6)
where C is an arbitrary integration constant. As a partic-
ular application of this result, consider the case of the
periodic solution of the Riccati equation obtained when
€(z) is periodic. Owing to Eq. (3.6), the potential has the
pseudoperiodic form V(z —L)=o0V (z), where the periodi-
city factor o is given by

~L £(z)
K [T g,

pre . (3.7

o=exp

We return to this result in Sec. V.

C. Asymptotic solutions

Asymptotic solutions of the Riccati equation for small
or large values of k are easy to obtain by standard pertur-
bation methods. Let us restrict attention to periodic €(z)
and look for the asymptotic solution of the Riccati equa-
tion (3.5) when k—0. As a result of such an analysis,
conditions for existence of Bloch continua at k =0 will be
deduced. To this end, let us develop £ in Taylor series in
a neighborhood of k =0:

E=EQ L VL L EDR2/2 4. .. .

Inserting this development in the Riccati equation yields
the following results:

(3.8
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£9=c,, (3.9)
EV=C,+ [ exidx —C3 [[1/ex)ldx,  (3.10)
1™ Jo 0Jo ’ :

where C, and C,; are arbitrary integration constants. As
£(z) is a periodic function of z for any value of k, the
coefficients £ of the development (3.8) must be a period-
ic function of z, with the period L of the superlattice.
Imposing the periodicity of £!) allows us to determine
Co, next C; is obtained by requiring that £? is periodic,
and so on. The following result is obtained for Cy, which
corresponds to the limit of & for vanishingly small k:

—L 172
[, €2z

Co=t |Fob——
R N R S VAP 2~

(3.11)

The sign in the above expression must be chosen so as to
lead to a physical value for the periodicity factor o [Eq.
(3.7)], i.e., | 0| <1, and thus avoid exponentially increas-
ing polarization potential for small k. When €(z) is real,
Eq. (3.11) immediately shows that Bloch solutions exist at
k =0 only for €(z) functions such that nonreal values are
obtained for Cy. A necessary condition for this to occur
is that €(z) changes sign in the period.

The k =0 limit Cy of & can be interpreted as the effec-
tive dielectric function of a uniaxial crystal with its ¢ axis
perpendicular to the surface, the (macroscopic) anisotropy
of the superlattice being due to the succession of periods
in the z direction. For such a semi-infinite anisotropic
material, indeed, it has been shown’® that £ equals
(e”el)l/ 2, where € and €, are the dielectric tensor com-
ponents in the crystal principal axes. As k approaches O,
the effective dielectric components €, and €, of the super-
lattice reduce to 1/{e~!),, and (€),,, where the symbols
( )ay denotes the average over the period L of the sys-
tem.!® Equation (3.11) then follows from these results,
which can easily be retrieved by expressing the equivalent
capacitance of series and parallel combinations of capaci-
tors.

Consider now the case of large k. Although this
asymptotic situation is irrelevant as far as EELS is con-
cerned (due to the aperture cutoff k,,,,), it gives some in-
sight into the short-wavelength behavior of the effective
dielectric function &, Ignoring the obvious limitations of
the present macroscopic theory as 1/k becomes compar-
able with the interatomic distances, and assuming that
€(z) is differentiable with respect to z, one obtains the fol-
lowing asymptotic development:

2
26"1—5 —
dz

de 1
&(z)=¢€(z)— 4z ok +

2
de 1
] ]/68k2 +.o. .

(3.12)

This equation indicates that the effective dielectric func-
tion &, for large k is intimately related to the behavior of
the dielectric constant in the immediate neighborhood of
the surface (z =0). It also shows that, for real periodic
and differentiable e(z) functions, Bloch continua do not
exist at k = oo, since the limit for large k of e(z) would
identify with €(z) and would be real in that case.

IV. MULTILAYERED MATERIALS

In this section we will be concerned with heterogeneous
materials made of a succession of layers with parallel in-
terfaces. The simplest example of such planar stratified
material is a single film deposited on a substrate. The
synthesized superlattices considered in the next section
also belong to this class of materials. Basically, we have
to solve the Riccati equation (3.5) so as to determine the
effective dielectric function &, of the system, from which
the energy-loss spectrum can be deduced. To do this, a
model of the dielectric constant profile €(w,z) in multilay-
ered materials is required.

As far as EELS is concerned, rapid spatial variations of
€(z) are irrelevant because the k integration in Eq. (2.15)
is restricted to small values of the wave vector k. Indeed,
spatial variations of €(z) occuring over regions of z much
smaller than 1/k,,, are actually smoothed out when solv-
ing the Riccati equation (refer to the power expansion
[Egs. (3.8)—(3.11)] of &(z)). Hence, the knowledge of the
exact variations of €(z) near the interfaces is irrelevant in
the present macroscopic theory, provided these variations
take place over widths much smaller than 1/k,,. Con-
sequently, it is not too crude an approximation to consider
abrupt variations of e(z) at the interfaces, especially in the
multilayered materials with sharp interfaces. By contrast,
slow spatial variations of €(z) are relevant in EELS and
could effectively be taken into account by solving numeri-
cally Eq. (3.5). As a simplifying assumption, however, we
will assume that e(z) takes constant values in each layer.
In so doing, an analytical expression for the effective
dielectric constant &y(k,») will be obtained, as we now
show:

This section is, thus, aimed at solving the Riccati equa-
tion for a histogramlike profile of €(w,z). In the follow-
ing, the thicknesses of the layers i =1,2,3,..., will be
denoted by d; which, together with the dielectric con-
stants €;—and their @ dependence—characterizing the
materials which the layers are made of, constitute the in-
put of the Riccati equation. The general solution of that
equation for a constant € is

C + e tanh(kz)

§lz)=e¢ €+ Ctanh(kz) ’

4.1)

where C is an arbitrary integration constant; the solution
of the Riccati equation in layer i can obviously be written
as

& +¢€; tanh[k (z —2z;)]
€; +§, tanh[k (z —Z; )]

é‘(z)=e,- y 2;<Z2<L2z;_1. 4.2)

In this equation, &; denotes the value of £(z;) at the lower
end z; of the layer. By setting z =z; _; in Eq. (4.2), we ob-
tain the following expression for &;_; at the upper end
Z; 1t

[€; /sinh(kd;)]?

& 1=E(z;_)=¢; coth(kd,-)—m :

(4.3
Repeating this treatment in each layer, and since £(z) is a
continuous function of z, by construction (in other words,
&; takes the same value when computed from above and
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from below the interface i), we obtain the following
continued-fraction expansion of &, i.., the effective
dielectric function of the stratified material:

bi

Eo=a,— S , (4.4)
+ &
a;+a,—
1t+a; N b2
a,+a3— ————
2 as+az— -

where we have used the notations
a; =¢; coth(kd;) , 4.5)
b;=e¢; /sinh(kd;) . (4.6)

The analysis of the continued fraction (4.4) yields the
following results. When the €; assume positive imaginary
parts, 1/(£,+1) is a so-called positive-definite continued

So=¢€;, n=0
€ tanh(kdl )+€s

_—_ =1
€1 €; tanh(kd )+ ¢, "

0=
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fraction.’® Among the consequences of this property, we
note that £, has a positive imaginary part. Hence, the loss
function Im[ —1/(£,+ 1)] [refer to Eq. (2.15)] is positive.
Let us remark that the continued-fraction expansion (4.4)
can still be used for any z dependence of €(w,z) by ap-
proximating the actual profile by a histogram. As it is al-
ways possible to approximate, to any degree of accuracy,
any bounded function by such a histogram, we conclude
that the positive definiteness of Imé&;, as solution of the
Riccati equation, is quite general.

When the number n of layers is finite, and when such a
heterogeneous film has been deposited onto a semi-infinite
substrate (the “substrate” could be the vacuum in the case
of self-supporting films), the continued fraction (4.4) ter-
minates. Indeed, by allowing the thickness d,,; of the
substrate to be infinity (in practice, large with respect to
1/k), Eq. (4.6) yields b, ,;=0. Explicit expressions for
&o can then be obtained for small values of n, for instance

4.7)

(4.8)

€;tanh(kd)[e;,+€; tanh(kd, )] +€;[ €, + €, tanh(kd, )]

= ’ =2
0= €1, tanh(kd (e, + €, tanh(kd,)] + €[ €, 1 €, tanh(kd,)]®

Such analytical formulas rapidly become cumbersome as
n increases. Thus, it is preferable to use the continued-
fraction-expansion (4.4), an object which is easy to deal
with on a (micro)computer.

V. SUPERLATTICES

Superlattices built with two different materials are con-
sidered here as semi-infinite multilayers where the se-
quence formed from two layers 1 and 2 is repeated period-
ically. By definition, the layer in contact with the vacu-
um is made of material 1.

In this idealized situation, the continued fraction (4.4)
itself becomes periodic, and its limit can be evaluated
analytically.’’ The theory of periodic continued fractions

leads to the following quadratic equation:
(a1+a,)E8—(E—€3)eg—(are2+a €3)=0 . (5.1

When writing the two solutions of this equation,

 a-a
o= 2(a,+aj)
€6 —6& ar€i+a,& 2 (5.2)
- 2(a1+a2) ai+a; ’ ’

the physically acceptable &, is the solution closest to the
first approximant a, —b? /(a; +a,) of the continued frac-
tion.

Once &, has been computed, the periodicity factor o of

(4.9)

I

the polarization potential can be deduced (refer to Sec.
IIIB). Indeed, it is easy to perform analytically the z in-
tegration in Eq. (3.7), to obtain

(a;—8&o0) /by

S b Ucka Ny 5.3
= ay+E0) /by (5-3)

From this result, it is not difficult to prove that the
correct sign for &; in Eq. (5.2), as determined according to
the criterion mentioned above, ensures that the modulus
of o is smaller than unity and hence that we have chosen
the physical solution of the Poisson equation, namely, that
solution which decreases exponentially when one proceeds
into the superlattice.

The calculations of the EELS spectra presented below
have been performed using realistic dampings in the €;(w).
However, the analysis of the results can be made more
transparent if the dielectric constants are regarded as real,
the dampings actually being small quantities. Hence, we
now regard Eq. (5.1) as a quadratic equation with real
coefficients. As a solution of that equation, &, can as-
sume real as well as complex values. From Eq. (5.3), one
concludes that real values of &, are related to an exponen-
tially decaying potential. For instance the Fuchs-Kliewer
surface modes of the superlattice correspond to &= —1.
These modes play an important role in the theory of
EELS, as explained in Sec. II, since they give rise to a
macroscopic  polarization field outside the material and
are thus responsible for strong energy losses of the elec-
tron. In the (€,€;) plane, Eq. (5.1) has a root equal to — 1
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along the curve of the equation
[1+e€ coth(kd;)](1—€3)

—[1—¢,coth(kd,)](1—€})=0. (5.4)

However, a further discussion is needed to select the
pieces of the above cubical hyperbola which actually cor-
respond to the Fuchs-Kliewer modes of the system, not-
withstanding the choice of the correct sign for &, in Eq.
(5.2). The results are illustrated in Fig. 2 for two ratios of
the layer thicknesses d, and d, of the superlattice. No-
tice that the existence of Fuchs-Kliewer modes requires €;
or €, to be negative.

For values of the parameters such that Eq. (5.1)
presents two complex conjugate solutions, the continued
fraction (4.4) (with assumed real coefficients) does not
converge.. This phenomenon, already discussed in Sec. III,
is intimately connected with the existence of two indepen-
dent Bloch solutions for the polarization potential corre-
sponding to the two solutions of the quadratic equation
(5.1). In fact, these two solutions are equally distant from
the first approximant of the continued fraction so that the
proper sign in Eq. (5.2) can no longer be determined.
However, we are still allowed to make use of Eq. (5.2) in
the Bloch regions, provided one considers the idealized
situation of real €; as the limit already discussed of van-
ishingly small dampings in the dielectric constants. In
these conditions, the solution which has a positive imagi-
nary part must be retained for &,,.

The regions of the parameters where Bloch modes exist

rT 1T T T T TTT

d, <d;

| 1 Y O O T N I |

~~.
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have been represented by shaded areas in Fig. 2. These re-
gions are bounded by the straight lines of the equation
€1+ae;=0, €;+ae;=0, €;+be;=0, and €,+be;=0,
where

a =tanh(kd, /2)tanh(kd, /2) (5.5)

and

b =tanh(kd, /2)/tanh(kd,/2) . (5.6)

Note that the gaps which separate the Bloch continua (see
Fig. 2) disappear when the thicknesses d; and d, of the
alternating layers coincide, since b =1 [Eq. (5.6)] in that
limiting case.

The above discussion was quite general in the sense that
it did not rely on any specific @ dependence of the dielec-
tric constants. We now turn our attention to superlattices
made of polar semiconductors and explicitly make use of
a Lorentzian model for the infrared dielectric constant of
such materials, namely,

,
(60—600 )CL)TO
€o)=€,+—5—F " —

wTo— W

- . (5.7
—ivw

As for the parameters involved in this expression, we have
primarily made use of data tabulated by Frederikse.?! It
now becomes easy to evaluate the loss function

Im{ —1/[&o(k,@)+1]}

“using Eq. (5.2). The results are shown in Fig. 3, where

, "//

\

\

FT T T T T TTT

d, >d,

| N T I U T TN T T T T |

T T T T I B |
-5

| O O O |

FIG. 2. Algebraic analysis of Eq. (5.1) is summarized in this figure in the (e,€,) plane for a selected value of k. The (assumed
real) dielectric constants of the two layers which the superlattice is made of are considered as independent parameters. The shaded
areas correspond to regions where £, takes complex values, and are related to Bloch modes of the polarization potential. The curves
(solid lines) represent the localized Fuchs-Kliewer modes (§,= —1). For convenience, the dashed lines have been represented so as to
illustrate the complete cubical hyperbola [Eq. (5.4)]. Remark that the localized branches split off the continua at the points S—V
where the cubical hyperbola is tangent to the boundaries of the continua. The coordinates of these points are given in the figure.
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FIG. 3. Contour plots of the loss function Im{ —1/[&,(k,w)+1]} related to three GaSb-AlSb superlattices with various layer
thicknesses. The contour curves range from Im[ —1/(£,+ 1)]=0 (heavy lines, representing the borders of the Bloch continua) to 0.2,
by equidistant steps equal to 0.02. The absence of contour curves in some continua indicates that the loss function assumes very small_
values in these continua. Real Lorentzian shapes have been assumed for the two dielectric constants €;() [Eq. (5.7)]. In units of
cm™!, the related TO and LO frequencies are w1o=230.5, o o=240.3 for the first layer (GaSb), and wro=319.0, wro=340.6 for the
second layer (AlSb). In the figure, the dot-dashed curves represent the localized Fuchs-Kliewer modes of the system, which corre-
spond to isolated poles of the loss function. When present, the arrows indicate where the localized branches enter the continua. The
gap mode in region A (see the text) for d;/d, =2 is shown in the detailed portion of the figure where the shaded area corresponds to

the high-frequency Bloch continuum of region A.

contour plots of the loss function have been represented
for models of GaSb-AlSb superlattice, a recently built het-
erostructure.”? Assuming again real dielectric constants
as deduced from Eq. (5.7) by setting the dampings ¥;
equal to zero, Bloch modes exist only at frequencies w
such that the dielectric constants €;(w) and €,(w) have op-
posite signs (refer to Fig. 2). In the following, we denote
by A the w domain where €;(®w) <0 and €,(@) > 0, while B
corresponds to €(®w) <0 and €;(@) > 0.

The loss function vanishes outside the Bloch continua,
except along the localized Fuchs-Kliewer branches where
it has isolated poles. In region A (the low-frequency por-
tion of Fig. 3—although the position of region A with
respect to B is irrelevant for our discussion), a localized
mode exists for any ratio of the thicknesses d; and d,.
This mode splits off the A Bloch continuum at a nonzero
value of k. As k increases, this mode converges towards
the frequency of the surface phonons of the first layer,
i.e., to the frequency such that €;(w)= —1.

When the first layer is thinner than the second
(d, <d,), Fuchs-Kliewer localized modes also exist in the
gaps which separate the Bloch continua in regions A and
B. In region B, the gap mode exists at k =0; by contrast,
the gap mode in region A enters a Bloch continuum at a
nonzero value of k. As k increases, the gap modes con-
verge toward the frequencies of the interfacial phonons,
such that €,(®)+€,(w)=0. This result is intimately con-
nected with our assumption of a histogramlike z depen-
dence for €(w,z). Indeed, Eq. (3.12) shows that the limit
of £o(k,w) as k approaches infinity should coincide with

_the value of e(w,0) at the surface z =0. In our case, how-

ever, €(w,z) is not differentiable with respect to z. In fact,
the large-k limit of £y(k,w) is undetermined at the fre-
quencies such that €;(w)+é€,(w)=0. This explains why
the gap modes, and the Bloch continua as well, converge
towards these frequencies. These behaviors should not be
extrapolated to arbitrarily large values of k, as the theory
of large-k phonons in superlattice requires detailed micro-
scopic treatments.?> Finally, Fig. 3 indicates that the gap
mode in the region B disappears when d; >d,. The mode
in the other gap (refer to the detailed portion of the fig-
ure) is somewhat complementary to what was observed in
region A when d; <d,: In the former case, the gap mode
exists for small k values and enters into the Bloch region
at a finite value of k.

Figure 4 shows the polarization potential which has
been computed for the GaSb-AlSb superlattice with
d,/dy==+, at the frequencies corresponding to the three
localized eigenmodes of Fig. 3 for a wave number k equal
to 2.3/(d;+d;,). For the three modes, the envelope of
the potential decreases exponentially away from the sur-
face of the superlattice. Figure 4 clearly indicates a
strong distinction between the two gap modes, on the one
hand, and the mode located above the continua of region
A, on the other hand. While the potential related to the
latter mode rapidly vanishes as one proceeds into the ma-
terial, the extent of the potential corresponding to the two
gap modes is several periods.

While the localized Fuchs-Kliewer modes correspond to
isolated poles of the loss function, the Bloch continua ap-
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FIG. 4. Polarization potential corresponding to the three lo-
calized eigenmodes of the GaSb-AlSb superlattice considered in
Fig. 3 for d,/d,=+. The wave number used for these calcula-
tions is k =2.3/L, where L =d; +d, is the period of the super-
lattice. The related frequencies w of the three eigenmodes are
(a) 239.9 cm~, (b) 233.8 cm™, and (c) 332.5 cm™!. Part (a) of
the figure is for the localized mode located above the continua
of region A (Fig. 3). The periodicity factor of this potential
[Egs. (3.7) and (5.3)] has been found equal to —0.018 (the poten-
tial changes its sign in each period). The curves (b) and (c) cor-
respond to the gap modes of regions A and B, respectively; the
related periodicity factors are 0.55 and 0.52. By contrast, the
potential in the vacuum region (left-hand side of the figure) de-
creases by a factor 10 (e ~%3) as the distance from the surface
increases by steps equal to the period L of the superlattice.

pear as regions where the frequencies of interacting
Fuchs-Kliewer interface modes accumulate as the number
of periods progressively increases. This is clearly evi-

denced in Fig. 5 which displays the Fuchs-Kliewer modes ~

for a system formed from n periods made of GaSb and
AISb layers, and deposited onto a semi-infinite GaSb sub-
strate. This system presents 4n + 1 modes resulting from
2n GaSb/AlSb interfaces and the GaSb/vacuum inter-
face. In semi-infinite superlattices (n— o), instead of
isolated poles of the loss function, we actually observe a
continuous series of poles in the Bloch regions [i.e., a cut
of —1/(£p+1) as a function of k at a given frequency w].
A continuous series of modes exist in these regions with a
nonvanishing polarization field outside the superlattice, as
explained above. Note that bulk modes also exist in mul-
tilayered materials (at frequencies such that the dielectric
constant of one layer or the other vanishes). However,
these bulk modes do not generate a polarization field out-
side the material and, for that reason, cannot be detected
by EELS in the reflection geometry.

VI. THEORETICAL EELS SPECTRA
AT THE SURFACE OF A SUPERLATTICE

We now consider the computation of EELS spectra of a
superlattice. The results presented in this section have

"€;’s have only

w (ecm-) =>

240 - - —
\
\ \
\.
235L \\—‘——-—:r.:.—;—-- — Dt
% %—
-
230— -1 —

o 1 2 :li 4 5 8 O 1 2 3 4 5 -]
k (d,+d;) =>

FIG. 5. Most of the Fuchs-Kliewer interface modes of a su-
perlattice with a finite number n of period accumulate in some
regions of the (k,w) plane as n increases (solid curves). At the
limit of infinite n, these regions give rise to Bloch continua. For
these calculations, we have considered two GaSb-AlSb/GaSb
superlattices formed from n periods deposited onto a semi-
infinite GaSb substrate. The parameters for the dielectric con-
stants €; and €, are those used for Fig. 3, and the thickness ratio
d,/d, equals % The dashed curves correspond to modes that
we attribute to the interface with the semi-infinite substrate; the
weight of these modes vanishes for large values of n. The dot-
dashed curves clearly converge towards the localized Fuchs-
Kliewer modes of the semi-infinite superlattice as n approaches
infinity (refer to Fig. 3).

been obtained using the Lorentzian expression (5.7) for the
dielectric constants where realistic dampings have been in-
troduced (y/wto~0.01). Small imaginary parts in the
small effects: The loss function
Im[ —1/(£y+ 1)] assumes nonzero values inside the Bloch
continua, as before, but the boundaries of the continua are
now diffuse rather than sharp; the loss function is very
small outside these regions except in the immediate neigh-
borhood of the localized branches, where it takes large
values. Hence, the structures of the EELS classical spec-
tra shown in Fig. 6 are easy to understand. These spectra
correspond to the GaSb-AlSb superlattices considered in
Fig. 3. The low-frequency, strong &-like peak in both
panels of Fig. 6 has its origin in the localized Fuchs-
Kliewer mode above the Bloch continua in the region A
(refer to Fig. 3). Furthermore, the modes localized in the
gaps of both regions A and B when d; <d, are respon-
sible for two other peaks (w=233 and 333 cm™!), some-
what less intense than the former. When d;>d,, the
high-frequency part of the spectrum is attributed to the
Bloch modes only, as there is no gap mode in the region B
for such a superlattice. As for region A, the localized gap
mode, and the upper Bloch continuum as well, are respon-
sible for the structure observed in the low-frequency wing
of the main EELS peak.
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FIG. 6. Classical EELS spectrum P (@) for the GaSb-AlISb superlattices already considered in Fig. 3. The period d,+d, of the
three superlattices is equal to 300 A. Calculations were carried out for a 5-eV specularly reflected electron under an incidence

1; =70°. The half-acceptance angle of the detector is 1.8°.

As an illustrative example, Fig. 7 shows the full EELS
spectra of the GaSb-AlSb superlattice with d;=100 A
and d, =200 A. This spectrum has been computed as ex-
plained in Sec. II [Egs. (2.3)—(2.5)] for a temperature
T =300 K. The spectrum has further been broadened by
convolution with a Lorentzian response function, the
width of which is 30 cm™, so as to simulate a finite ex-
perimental resolution. The two small peaks in the interval
200—400 cm~! corresponds to the classical loss distribu-
tion. Of course, the structure of the A peak (see Fig. 6)
has been washed out due to the simulated poor resolution
of the spectrum. The two-peak structure in the o <0 re-
gion of Fig. 7 is the gain replica of the classical spectrum
P c](a)).

The classical loss distributions of Fig. 8 have been com-
puted first, for a GaSb(first layer)-AlSb superlattice and

x10 T T T T T
15 1

P(w,T) (cm) —

0.5

800

FIG. 7. Full EELS spectrum P(w,T) for a GaSb-AlSb super-
lattice with d;(GaSb)=100 A and d,(AlSb)=200 A. The tem-
perature T is 300 K. The simulated resolution which has been
achieved by convoluting P(w,T) with a Lorentzian function is
30cm~l.

next, for AlSb(first layer)-GaSb. The purpose of these
calculations is to evidence the effects of the first layer on
the EELS spectrum of a superlattice. The thicknesses of
the layers, d(GaSb)=50 A and d(AlSb)=100 A, are iden-
tical in both systems, as if the topmost layer of one super-
lattice were removed so as to define the second superlat-
tice. Hence, in addition to the effects resulting from the
permutation of the layers, the differences between the two
spectra of Fig. 8 i is further amplified by the fact that the

d,/d, ratio, from 5 in Fig. 8(a), grows into 2 in Fig. 8(b).
On the other hand, the period of the GaSb-AlSb superlat-
tice being half the period of the superlattice with
d,/d, =+ already considered explains the differences be-
tween the spectra of Fig. 6 and Fig. 8(a): In the latter
case, the A and B peaks have nearly equal intensities.

We now turn our attention to another, extensively stud-
ied, superlattice made of GaSb and InAs,'° for which the
layer thicknesses that we have chosen are below the
semiconductor-semimetal transition.?* As far as macro-
scopic vibrational properties are concerned, the GaSb-

(a) (b)

— Pg (W) (em ) —

it

FIG. 8. Comparison of the EELS loss distribution Py(w) for
(a) GaSb(first layer)-AISb and (b) AlSb(first layer)-GaSb. The
layer thicknesses for both of these superlattices are d(GaSb)=50
A and d(AISb)=100 A. The electron parameters for the simu-
lated EELS experiment are those used for Fig. 6.
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FIG. 9. Classical EELS loss distribution P (w) for a GaSb-
InAs superlattice with d; =60 A and d,=80 A. The electron
energy is 6 eV and the incidence angle is 45°. The dashed lines
correspond to the wro and wy o frequencies of GaSb (refer to the
caption of Fig. 3). As for the second layer (InAs), wro=219.0,
wr0=243.5 cm™!. The w.c frequencies are computed from the
Lyddane-Sachs-Teller relation.

InAs semiconducting superlattice differs from the GaSb-
AIlSb heterostructure studied here above, and from the hy-
pothetically thick GaAs-InAs superlattice considered pre-
viously,® in this sense that the Restsrahlen interval
(wt0,@10) of the first layer (GaSb) is included inside the
Restsrahlen of the second layer (InAs). Consequently,
there is a @ region C where both Ree; and Ree, are nega-
tive, and the region C separates two regions B where
Ree; <0,Ree; >0. These regions are indicated in Fig. 9,
where the classical loss distribution is plotted. The posi-
tion of the maximum of the main EELS peak (whose ori-
gin is the localized branch in the €; <0,€6; <0 region of
Fig. 3) corresponds to the frequency of the macroscopic
surface phonon of GaSb, which lies on the high-frequency
border of region C.

VII. CONCLUDING REMARKS

In this paper, emphasis has been put on the calculation
of the effective dielectric function of multilayered materi-
als, so as to deduce the EELS spectrum of such systems.
The assumption of a histogramlike z dependence of the
dielectric constant in an idealized multilayer is very con-
venient, for it leads to a simple continued fraction expan-
sion of £y(k,w). This assumption is however not essential:
In principle, the Riccati equation (3.5) allows us to deal
with any model of e(w,z). For instance, one could ac-
count for a nonabrupt spatial variation of the electron
density in semimetallic or metallic heterostructures, and
thus take account of the related high-multipole surface
and interface plasma excitations,? although these modes
are likely to play a minor role in the long-wavelength
theory of EELS.
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APPENDIX

In this appendix, it is shown how the two-dimensional
k integration in Eq. (2.15) can be reduced to a one-
dimensional integration over k in the interval (0, Kk, )
when £y(k,w) does not depend on the polar angle ¢ of the
wave vector k (this is realized for isotropic target materi-
als). Using polar coordinates, the integration over the po-
lar angle ¢ (which is measured from the direction v, of
the incident electron) can be expressed in terms of the in-
tegral

T—® u
J =
f“’ [(1—ecosp)®+u

2

a4 (A1)

where e and u are two dimensionless quantities given by
e=kv, /o, u=kv, /o, and ®(0<P<m/2) denotes a
function of k obtained from the analytical expression
(2.16) of the domain D. We now indicate how the integral
(A1) can be evaluated. This integral is first rewritten as
follows:

1|7 al
J=+|L_ 9L
2 lu du |’ (A2)
where
f”"q’ u _d¢=ImR (1+iu) (A3)
= - wu),
®  (l—ecosd)+u?
with ‘
T—® d?
R(Z)—_—f@ ecosp—z
1 z tan® —i(z2—e?)1/?
—3 ln . A4
i(z2—e?)17? ztan®+i (z2—e?)1/? ad

R(z) is an analytic function of the complex variable
z =1+iu outside a cut along the real axis which contains
the interval (— e cos®, +e cos®). Consequently, when z
is outside the cut, we can write

ol

——=ReR'(1+iu), (AS)
du
with
yoy_ dR(z) e?sin(2®)
Ri(z)= dz | z%2—e2cos?® +2R(2) z2e? ’
(A6)

For ® =0 (which is realized as long as the wave number k
is smaller than k., cosy;), these formulas yield



w
N

(pr+p_)—4
[4—(p1—p_)1""
o« pr+p—(pr—p pi+pl—pyp_)/4
(pip-)’

o
J==
4

» (A7)

where

pr=(ul4(1£e))172,
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When @ differs from O, rather than manipulating the
cumbersome analytical expressions obtained by deriving
the imaginary and real parts involved in the above formu-
lation, it is easier to compute numerically R (z) and R'(z)
from Egs. (A4) and (A6) using complex arithmetics, and
next deduce the numerical value of J [Eq. (A2)]. Evalua-
tion of the EELS spectrum then requires only a one-
dimensional integration over k, with substantial saving in
computing time.
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