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Image potential of a two-dimensional electron gas
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The image potential of a two-dimensional electron gas (2DEG) in a heterojunction system such as
A1GaAs/GaAs is calculated. It is shown that this potential has a substantially different dependence

on the electron separation compared to the familiar image potential of a metal. For example, it
remains finite as the distance from the surface goes to zero. This happens because of the finite

spread of the wave function of two-dimensional electrons in the direction transverse to the surface.
Therefore, the image-force lowering of the interface barrier is smaller than it would be near a metal-

lic surface. It is shown that a quite accurate approximation of the image potential is

V~ (zp) =e /4ei(
I
z»

I
+zp), where e is the electron charge, e2 is the dielectric constant on the side

of the test electron location, zo is the electron s distance from the surface, and z+ is the average dis-

tance of the 2DEG electrons from the surface.

I. INTRODUCTION

II. JOINT POTENTIAL OF THE TEST ELECTRON
AND THE T%0-DIMENSIONAL C)AS

The potential induced by an electron removed from the
2DEG surface by a distance zp(zp &0), is defined by
Poisson's equation

V' P(r,z)+2S
I g(z)

I
P(r)=0, z &0

V P(r, z) =+(4~e/ez)5(z —zp)5(r), z &0,

(2.1a)

(2.1b)

where r is a two-dimensional vector in the plane of the
2DECx, z is the coordinate perpendicular to the plane
(z=0 corresponds to the heterointerface), e& is the dielec-
tric constant on the side of the 2DEG (z&0), g(z) is the

The effect of image-force lowering of the potential bar-
rier at a metal-semiconductor contact is well known. ' To
study the analogous lowering of the heterojunction barrier
confining a two-dimensional electron gas (2DEG) (like in
a AIGaAs/GaAs system) it is necessary to find the image
force produced by the 2DEG. At first glance, it appears
that at high electron-sheet concentrations the image force
of a 2DEG should be the same as that of a metallic sur-
face. However, as shown below; at small distances from
the surface the two effects are quite different. The reason
for this is connected with the fact that two-dimensional
electrons are on average separated from the surface by a
nonvanishing distance z~. As a result the potential ener-

gy of the attraction of the test electron to the induced
charge stays finite even when the electron separation from
the surface, zp, goes to zero. Therefore the energy of the
test electron, V;m(zp), in the field of the image force can
be written in the form

2

&; (zp) =-
4ez(

I
z.

I
+ I zp I )

'

where e2 is the dielectric constant on the side of the test
electron's location and e is the electron charge.

normalized envelope wave function of the lowest subband
(we will assume that only this level is occupied),

P(r)= f, P(r,z)
I
g(z) I'dz (2.2)

is the potential, averaged over z,

S =(2/Rtt)/[I+exp( EF/T)]— (2.3)

therefore at zero temperature, in contrast to the three-
dimensional case, the induced charge e5n (r,z) is propor-
tional to the change in the electron energy 5E] in the po-
tential P(r, z). At finite temperature the ratio of the
second-order term in 5E i to the first is
P=5Ei/2Tt 1+exp[(E~ Ei)/T) j. In —the case of de-
generacy (bE =Ez Ei &0) this ratio ha—s a maximum,
relative to the parameter AE/T, at 1.27 and
P=P,„=0.14k,Ei/b. E. In GaAs the value of &E is
equal to Mzn, /mi ——g meV at the surface concentration
of the 2DEG n, =2&(10" cm . The value AEi can be
estimated using the image potential EEi ——V; (zp) [see
Eq. (1.1)]. If we take z» =25 A then for GaAs EEi ——10
meV. This estimation shows that P,„is of the order 0.14
at the temperature T=8/1.27 meV (73 K). With increas-
ing surface concentration the parameter P decreases due
to the increase of the Fermi energy. Hence, the linear ap-
proximation of the induced charge that is used in the Eq.
(2.1a) is valid for all temperatures and concentrations in
the practical range.

is the screening factor of the 2DEG, ' EF is the Fermi
level of the 2DEG relative to the bottom of the first sub-

band, T is the temperature in energy units, Rtt is the ef-
fective Bohr radius in GaAs (Rg eifi /m ie ), an——d m i is
the electron effective mass in GaAs.

The second term in the Eq. (2. la) is the induced charge
density in the 2DEG multiplied by 4n/ei It is w. ritten in
the linear approximation in the potential P. The electron
density of the 2DEG is defined by the equation

Pl ) T
n (r,z) = lnI 1+exp[(Ep —Ei )/T] j I

g(z)
I
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The Eq. (2.1) is subject to the boundary conditions:

P(r,z)=0 when r +0—0 and z~+~ .

Performing the Fourier transformation

P(q, z) = f P(r, z) exp( —iq r)d r,
we obtain

(2.4)

(2.5)
P(q)

where A. =@2/e~, and the prime indicates the derivative of
the function F(z) with respect to z.

To obtain an equation for P(q), we multiply Eq. (2.8a)
by l

g(z)
l

and integrate it with respect to z from z=0 to
z =Do. We find

d p(q, z)/dz —q p(q, z)= —2S
l
g(z)

l p(q), z &0 (2.6a)

d P(q, z)/dz qP(—q, z) =(4me/e2)5(z —zo), z &0,

where
2.6b

4meA, X(q) exp( —q l
zo

l
)

q&2 [1—F(q)]( 1+1,) + [AF'(0) —F(0)/q ]p(q)

(2.11)

where

P(q)= f P(q, z) g(z)
l

dz= f P(r) exp( —iq. r)d r

(2.7)

F(q)= f F(z)
l
g(z)

l
dz,

p(q)= f l
g(z)

l
exp( —qz) .

(2.12)

(2.13)

and the boundary condition becomes P(q, z)~0 for
Z~+

DOER

The solution of Eq. (2.6) is given by

P(q, z)=A& exp( qz)+P(q—)F(z), z &0 (2.8a)

P(q, z)=A2exp(qz) (2~e/qe—2) exp( —q lz —zo
l

), z &0,
(2.8b)

where

III. ELECTRON POTENTIAL ENERCr Y

As yet, we have calculated the potential P(r, z) which is
the sum of the electron potential Po(r, z) and the potential
of the charges induced by it in the two-dimensional gas.
Only half of the latter is the image potential which is of
interest to us.

According to Eq. (2.5) the potential of the system elec-
tron plus 2DEG is equal to

F(z)= ——f lg(z') i~exp( —q lz —z'l }dz', z&0.
q 0

P(r,z)=
2 f P(q, z) exp(iq r)d q .

(2~)
(3.1}

(2.9)

Here, we used a diffe'rent particular solution of Eq. (2.6a)
from that chosen in Ref. 4.

The coefficients A
&

and A2 are determined from the
continuity of the electric field and the potential at the in-
terface. They are given by

A) —— 1 F'(0)
(1+A,) q

P(q) —AF(0)

The self-electron potential can be written in the form

Po(r, z) =
e2[r +(z —zo) ]'~

f Jo(qr) exp( —q l

z —zo
l
)dq, (3.2)

0

where Jo(x) is a Bessel function of zeroth order. Thus,
the potential energy Vo(zo) of an electron separated by a
distance

l
zo

l

from the heterointerface can be found as
the limit

4me A,

q&2
exp( —q lzo

l
)

(2.10)

V(zo) = lim —,
'

[ eP(r, z)+ego(r, z)]—.
z +zO

r~O

(3.3)

A2 —— p(q) +F(0)1 F'(0)
1+i,) q

2~e (1—A, )+ e"p( —q lzo I
)

qE2

Using the representation for the Bessel function

Jo(x) =(1/2~) f exp[ix cos(a)]du (3.4)

and Eqs. (3.1) and (3.2) we can rewrite Eq. (3.3) in the
form

00

V(zo) = —lim — qP(q, z)+(e /e2) exp( —q l
z —zo

l
} Jo(qr)dq

z~zo o 2 2m
(3.5)

where we took advantage of the fact that the function p(q, z) depends only on the absolute value of q.
Because zo & 0 in Eq. (3.5) we must use Eq. (2.8b) and the result we obtain is of the form

00

V(zo) = —lim qA2 Jo(qI ) exp(qz)dz .
z zo 4m

r~O

(3.6)
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Substituting A2 into Eq. (3.6), we obtain

V(zp) = + I qP(q) +.F(0) exp( —q l
zo

l
)dq

—1 e (1—A, ) e ~ F'(0)
(I+~), 2ez lzo

l

(3.7)

The first term in Eq. (3.7) is trivial. It is connected with
the surface charge polarization induced at the heterointer-
face. If the external electron is located in a medium
which has a larger dielectric constant than the medium in
which the 2DEG gas is located (A, ) 1) then the induced
charge is negative. In the A1GaAs/GaAs system A, &1
and therefore this effect increases the attractive force of
the 2DEG. The influence of the polarization effect on the
electron-electron interaction and the subband levels was
studied in Ref. 5. The second term in Eq. (3.7) describes
the effect of the 2DEG.

To proceed with the calculation we must choose a par-
ticular envelope wave function for the lowest subband of
the 2DEG. As was shown in Ref. 6, the best analytical
wave function (which gives for the energy of the first sub-
band a value that is different from the exact numerical
value by less than 2%) is given by

V(zp) = —e (1—A, )

4e2(1+A, )
l
zp

l

eSa' "+" ~ 0(q) exP( —q lzp l
)+ 2'(1+A) p (q+a)(2v+i)

(3.14)

where

P(q) =—4mek;

[a/(a+q)]' +"exp( —q l zo l
)

( I+A, )q [1—F(q)]—S(A,—1)(a/a+q)' "+ '

where F(a,p, y, z) is the hypergeometric function. Then
Eq. (3.7) becomes

N*(v) =Nq, ~) +n, (39+5v) /2

v= —,
' —5+ 5'+ + —,",

' 1/2

[(2v+ 1 }/2]
g(z) = z"exp( —az/2),l.i rz(2v+ 1)

where the parameters a and v are defined by

a=2[2~(4v —1)N (v)/Rs]'

(3.8)

(3.9)

(3.10)

(3.15)

From Eq. (3.14) we see that in the formal limit S~O, i.e.,
when the screening length tends to infinity the effect of
the image force disappears.

In another limit corresponding to two-dimensional elec-
trons located at the surface (i.e., to the case of the extreme
localization of the wave function (3.8): (a—mao), Eq.
(3.14) takes the form

5=(64Nd, p)+39ng/2)/15n, .
(3.11)

n, is the surface concentration of the 2DEG and Nd, ~) is
the surface concentration of the ionized impurity centers
in the depletion region on the side of the 2DEG.

Using the wave function (3.8), we obtain for E(0),
F'(0), X(q), and F(q) the following expressions:

)
E

I-
Z —4
LU

0
Q

LLl

U

-S~(2-+~}
F(0)=,F'(0) =qF(0),

(q +a)(2m+)) '

' (2v+1}

X(q) =
(3.12) 20

Iz.t(A)

40 60

8SI (2v+ 3/2) aFq = — )i'~'"ql (2v+2) a+q

'3

&CF(2v+1, —2v;2v+2;(a —q)/2a), (3.13)

FICr. 1. Image potential as a function of the distance
l zo

l

from the surface. Solid curves have been calculated by using
Eq. (3.14) without the polarization potential V~&. The dashed
curves have been calculated by using Eq. (1.1). The dotted curve
is the polarization image potential V~~. The curves 1, 2, 3, and
4 are calculated for n, =5&10",10', 5~10', and 10' cm
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FIG. 2. Shape of the potential barrier near a heterointerface:
curve 1, n, =10' cm; curve 2, n, =5)&10' cm; curve 3,
n, =10' cm

FIG. 3. Heterojunction barrier lowering as a function of the
electron sheet concentration.

e (1—A, )
V(zp) =-

4ez(1+A, )
I
zp I

1 —A.

2(1+~) 2
I
zp

I

q 1+ +2S 'exp —2q zo dqei(1+/) p

exp(y
I
zp

I
)Ei ( —y I zp

I
) (3.16)

where y =4S/(1+ I,), and

Ei ( —y) = —I [exp( t)/t]dt—

is the integral exponent function. When the product
S Izp I goes to infinity, then V(zp)~e /(4e2 Izp I

) ie
the image potential energy has the same form as it has
near a metallic surface. The parameter S

I zp I
cannot be

increased by increasing the 2DEG surface concentration
because the screening length practically does not depend
on concentration. Therefore, this inequality is fulfilled
only at large distances from the surface.

To analyze effects of the 2DEG image force in real sit-
uations we have to integrate Eq. (3.14) numerically, using
the expression (3.15) for P(q). It is useful to consider
separately the polarization part of the full image potential
and the proper image potential of two-dimensional elec-
trons. W'e will denote them as V~~ and V;m, respectively.

Figure 1 shows the dependence of V; on the distance
I

zp
I

for several values of the 2DEG concentration. The
dotted line shows the dependence of the polarization po-
tential. The parameters we used are m ~

——.067m 0,
ei ——12.85, ez ——11.93 (x=0.37 in Al„Gai „As), and we
have assumed that Xd,~~ &~n, . We see that in the limit
zo —+0, V; tends to a constant value unlike the metallic
image potential that approaches infinity. We can also see

that the value of V~,&
becomes smaller than V; within

the distance of several angstroms. The dashed curves in
Fig. 1 were plotted by using Eq. (1.1) and appropriate con-
centrations. The value z~ was taken equal to (2v+1)/a.
A comparison of these curves with the solid line shows
that the nonvanishing separation of the 2DEG from the
surface is the main factor that influences the image poten-
tial of the 2DEG. The Eq. (1.1) is a good approximation
of the detailed calculation. As can be seen, the difference
with exact solution is of the order of 10%. In Fig. 2 we
have plotted the full image potential plus the potential—zpE(0) of the electric field E(0) that is equal, near the
heterointerface, to 4men, /eq This gives . the barrier shape
near a heterointerface. The lowering of the barrier is of
the order of 20 meV when n, =10' cm . The depen-
dence of the barrier lowering on the concentration n, is
plotted in Fig. 3.
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