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We have studied the statistical properties of random surface roughness at the Si-SiO, interface us-
ing high-resolution transmission electron microscopy (HRTEM). The spectral properties of the
HRTEM roughness on normally prepared and intentionally roughened samples appears to be well
characterized as a first-order autoregressive or Markovian process which corresponds to an ex-
ponential decay in the autocovariance function rather than the usual Gaussian approximation which
has been widely used. Such an exponential decay is characterized by tails in the spectrum which are
directly attributable to the discrete or steplike nature of the interface roughness which is restricted to
occur on crystalline atomic sites. Using a simplified model, we have estimated the effect of project-
ing the two-dimensional interface roughness through the cross-section thickness to form the one-
dimensional boundary studied here. For an isotropic ' medium, we find that the statistical character
of the roughness is preserved during this transformation, but that the rms fluctuation of the rough-
ness is attenuated so that the actual interface is rougher than indicated by the HRTEM technique.
After correcting for such averaging, the parameters estimated from.the HRTEM are more in agree-
ment with the same parameters used to fit the surface-roughness-limited Hall mobility in metal-
oxide-semiconductor field-effect transistor devices.
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I. INTRODUCTION

The electronic properties of two-dimensional electrons
in a Si inversion layer may be significantly affected by the
oxide-semiconductor interface. Scattering of the electrons
by fixed charges, surface states, and interface roughness
are all believed to be major contributions to the channel
mobility, especially at low temperatures.! Other phenom-
ena, such as the observed valley splitting in Si(111) de-
vices? and anomalous optical properties,’ are sometimes
associated with peculiarities of the Si-SiO, interface.
However, little is actually known of the microscopic na-
ture of the Si-SiO, interface or how it interacts with the
electrons in the inversion layer. In the present paper we
investigate the statistical properties of random fluctua-
tions in the interface boundary studied using cross-
sectional high-resolution transmission electron micros-
copy (HRTEM) and compare these results to the present
statistical model assumed in the theoretical description of
surface-roughness scattering.

In the past decade there have been numerous investiga-
tions into the chemistry and structure of the Si-SiO, inter-
face.* Initial investigations of the interface using Auger-
spectroscopy sputter profiling indicated interface widths
in excess of 20 A which were attributed to roughness at
the interface.*~7 However, due to sputter broadening ef-
fects, this value is somewhat greater than the actual
width.® Investigations of the initial oxidation of Si using
Auger spectroscopy without sputter profiling imply that
the transition from Si to SiO, actually occurs over only
one or two monolayers with SiO comprising the inter-
mediate layer.” X-ray photoemission (XPS) studies also
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imply an abrupt interface and additionally identify bond-
ing states corresponding to Si,O; and Si,0.!° The ap-
parent abruptness of the interface is also born out by
Rutherford backscattering experiments.!!

Studies of the Si-SiO, interface using cross-sectional
HRTEM are in agreement with the above results.'>—!°
From HRTEM the measured rms fluctuation of the inter-
face is on the order of 2 A, which is approximately one
monolayer of interface width. In these studies the param-
eters corresponding to a Gaussian model for the rough-
ness autocovariance function were estimated from the
HRTEM cross sections and compared to similar parame-
ters used to fit the low-temperature Hall mobility of n-
channel metal-oxide-semiconductor field-effect transmit-
ter (MOSFET) devices. The agreement in these studies
was reasonably close, although the HRTEM roughness
appeared to be consistently smaller than that required to
fit the Hall mobility data. This is discussed in more detail
in the present work. Studies using normal-incidence TEM
(Ref. 16) have shown similar results for the interface
width, and under certain oxidation conditions showed the
presence of Si inclusions in the oxide near the interface.
A tendency towards a rougher surface with increased oxi-
dation rate was also observed. Investigations of the atom-
ic step density at the Si-SiO, interface have been per-
formed by Hahn et al, using low-energy-electron diffrac-
tion (LEED) spot profiling.'’~!° In their work a correla-
tion was found between the atomic step density as es-
timated from the broadening of the LEED pattern and
the low-temperature hole mobility in p-channel Si(111) de-
vices. More recently, similar atomic step densities have
been estimated for Si(100) and Si(111) using XPS and
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comparing the ratio of Si’* (ideally terminated surface)
with Si't and Si*t whose appearance is believed to corre-
spond to steps in the interface.”®

Based on the literature, the model one draws of the Si-
SiO, interface is an almost atomically abrupt interface
with the presence of steps and discontinuities which gave
rise to suboxide species due to the differing bonding con-
figuration at the points of discontinuity [for instance, a
step of one monolayer on the Si(100) surface results in a
Sil* oxidation state]. For quantized channel electrons lo-
calized at the Si side of the Si-SiO, interface, steps and
discontinuities in the interface itself will perturb the elec-
tronic energy levels through fringing of the surface elec-
tric field. In the usual models for surface-roughness
scattering, one assumes an abrupt boundary between the
Si and SiO, which randomly varies according to a
quasicontinuous function A(r), where r represents the
two-dimensional position vector in the plane of the inter-
face.l2!=23 In view of the present knowledge of the Si-
SiO, interface, this assumption of an abrupt termination
of the Si lattice is probably not unreasonable. Assuming
that the surface potential may be expanded about the de-
formed interface as

IV(z)
az

the matrix element for scattering in the Born approxima-
tion is then given as

Vix +A(r))=~V(z)+ A(r) (1)

| (k| Vsr(r)| k') |2=e?F?|A(q)|?, q=k—K', 2)

where SR denotes surface roughness, F; is the average
surface field, A(q) is the Fourier transform of A(r), and q
is the scattered wave vector. Such a model is implicitly
macroscopic in nature as the atomic variation of the sur-
face field is neglected. We will not attempt to justify this
assumption, nor that of the Born approximation in the
present work. Rather, we will concentrate on the statisti-
cal properties of A(r), the relation of this to A(q), and the
corresponding effect on the scattering rate.

In the Born approximation only the magnitude squared
of A(q) (referred to as the power spectrum) is needed, and
thus the phase of A(q) can be neglected. The usual pro-
cedure has been to assume that the autocovariance func-
tion of A(r) is isotropic and Gaussian such that?!

Cr)={A(r')A(r —r) ) ~A2e ~77/E? | 3)

where C(r) is the autocovariance function, A is the rms
value of A(r), and L, which governs the decay of the au-
tocovariance, is referred to as the correlation length. By
convolution, the power spectrum is just the transform of
the autocovariance (3), which is given as

S(q)= | Alq) | >=mA2L% —9L/* @

This assumption of a Gaussian autocovariance has been
used for many years with no real justification. In fact, as
we will show in the present paper, this model does not ap-
pear to provide an accurate representation of the spectrum
in terms of a two-parameter model.

In the present work we attempt to quantify the statisti-
cal properties [i.e., C(r) and S(q) in (3) and (4)] of the in-
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terface roughness of the Si(100) sample by measuring the
roughness observed in HRTEM cross sections of the Si-
SiO, interface. In Sec. II we describe the sample prepara-
tion and cross-sectioning technique used to generate
HRTEM micrographs. In Sec. III we discuss the pro-
cedure followed in digitizing the interface boundary and
estimation of the autocovariance sequence and the power
spectrum of the roughness. In Sec. IV the results for dif-
ferent devices will be compared and the roughness param-
eters A and L for both models above will be estimated. In
the past the most serious criticism of the HRTEM tech-
nique in analyzing surface roughness is that of the averag-
ing effect of projecting the actual two-dimensional rough-
ness into a one-dimensional boundary. To understand this
effect, we present in Sec. V a simple model for the projec-
tion effect which is used to estimate the correlation be-
tween the actual two-dimensional roughness and the one-
dimensional roughness measured from HRTEM. Finally,
in Sec. VI we discuss the mathematical model for the
power spectrum, S(q), and the corresponding effect on
the electron scattering rate in the inversion layer.

II. SPECIMEN PREPARATION

In the present studies a comparison between the
roughness-limited mobility and the physical roughness of
Si(100) devices is made. In order to make such a compar-
ison, cross sections were made of the Si-SiO, interface on
large-area optical devices adjacent to the Hall bars on
which the mobility was measured. The devices used for
the present study were fabricated at the Naval Research
Laboratory. Typical Si devices were fabricated with a
gate oxide grown at 1000°C in dry oxygen to approxi-
mately 0.2 um in thickness. Cross-sectional HRTEM and
Hall mobility measurements were made on devices from
one such wafer referred to as sample 1. The addition to
normally prepared samples, one wafer, sample 2, was oxi-
dized with 5 vol% HCI in the ambient in order to in-
crease the expected roughness. Another wafer, sample 3,
was tilted 1.2° from the [100] direction toward the [111],
and thus is expected to show peculiarities in the roughness
to accommodate this tilt. All devices were oriented along
cleavage planes in the [110] direction, and cross sections
were made parallel to the principal axis of the Hall de-
vices.

High-resolution images of the Si-SiO, interface have
previously been reported'?~'* in which the cross-sectional
specimen preparation for HRTEM is essentially the same
as the method outlined by Bravman et al.?* Here the
samples are cut into strips ~1 mm thick in the direction
parallel to the Hall channel. Then the samples are turned
vertically and glued together to form a surface with
several interfaces. This sample is then mounted on glass
and mechanically polished from both sides to a thickness
of approximately 50 um. The sample is then mounted on
a metal support ring and ion-thinned using an argon
sputter gun. This is done until the central region of
the sample is thinned to approximately 100—200 A,
which is sufficiently thin for TEM examination.

The cross sections were examined in a JEOL 200 CX
electron microscope at a primary voltage of 200 kV and a
point-to-point resolution of 2.5 A. Two-dimensional lat-
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FIG. 1. Si(111) lattice images for sample 2 (intentionally roughened showing interface between the Si and SiO,.

tice images were recorded with the beam parallel to the Si
[011] direction, i.e., with the (100) interface and two sets
of (111)-type planes in Si edge on. An example of the lat-
tice images produced for a Si(100)-SiO, interface is shown
in Fig. 1 for sample 2. The image shown in Fig. 1 is
oriented along the [011] direction, and the Si(111) lattice
planes in the lower half of the picture are clearly visible.
The structureless image in the top half of the picture is
the amorphous SiO, layer, and the interface between crys-
talline Si and the amorphous SiO, is readily discerned.

III. ANALYSIS

A. Digitization of the interface boundary

In order to estimate the statistical properties of the in-
terface roughness, it is first necessary to digitize the ap-
parent interface boundary. In the present analysis the in-
terface boundary is chosen as the last discernible lattice
fringe corresponding to the periodicity of the Si. This
procedure is somewhat arbitrary at many points, as an
abrupt change from crystalline Si to noncrystalline SiO, is
not always apparent. Such an analysis also neglects the
contribution to the interface width of intermediate bond-
ing state and the existence of a transition layer between Si
and SiO,. However, in the context of the simple interface
model used to fit inversion-layer mobility, and the ap-
parent abruptness ascertained in previous studies, such a
procedure is deemed acceptable.

In the actual digitization process a reference lattice
plane is chosen as shown in Fig. 1. The position of the
last discernible lattice image is estimated from the number
of intermediate lattice sites between the reference plane
and the interface. The primary difficulty in the digitiza-
tion process arises from the sometimes ambiguous choice
of the interface boundary, especially in less resolved pic-
tures. This uncertainty may be modeled more or less as a
random error to the roughness and is expected to contri-
bute a “white”-noise component to the spectrum. In com-
paring pictures which have been redigitized at different
times, the relative error in the estimated roughness param-
eters (A and L) is on the order of 10%.

In Fig. 2 we show the result of digitizing the interface
boundary of the HRTEM picture of Fig. 3. In the inset
of this figure an expanded view is given of the Si(111) lat-
tice fringes at the Si(100) interface. A step (as seen by
HRTEM) in the surface (corresponding to a Si!* state)
occurs in the horizontal direction at a spacing of 1,92 A.
However, when no step occurs the spacing is 3.84 A. As

it is much more convenient to work with an equally
spaced sequence, we simply insert a data point of the same
value when the interface is constant so that the sampling
increment is uniformly 1.92 A. In the vertical direction
the roughness is forced to assume discrete values con-
sistent with the Si lattice spacing. Here, changes in the

_position of the interface occur in steps of 2.71 A, corre-

sponding to the allowed positions of the unresolved basis
as viewed by the cross-sectional technique.

In this particular data sequence, which represents
perhaps the most extreme example from this wafer, a very
large background “trend” is observed to be superimposed
on the random fluctuations of the interface. Such trends
have been observed in previous HRTEM studies,'? and
appear to be long-wavelength (>200 A) fluctuations in
the interface. The analysis of the statistical properties of
the interface roughness in this case is complicated, as such
long-wavelength fluctuations represent, at least over the
length of the HRTEM picture, a nonstationary (i.e., non-
constant mean) contribution to the roughness. In sequen-
tial analysis®> such trends in a random sequence are often
referred to as “deterministic” components in the data,
even though, at least in the present case, they may simply
be part of a much longer stochastic process. At best, one
can only remove such components from the data, either
through differentiation or by fitting and subtracting the
observed trend. For the present we will attribute such
trends in the data to very-long-wavelength fluctuations in
the surface which are uncorrelated with the shorter-range
fluctuations observed in Fig. 1. As will be discussed else-
where, the contribution to the electronic scattering rate
due to this long-wavelength process is very minimal and
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FIG. 2. Digitization of interface boundary including first-
and second-order fits to the background. Inset shows the
relevant dimensions for steps occurring in the interface.
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AUTOCOVARIANCE OF HRTEM ROUGHNESS
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FIG. 3. Autocovariance of the sequence shown in Fig. 2 us-
ing (5). The solid line is a fit using a Gaussian model while the
dashed line represents an exponential fit.

can be safely ignored. Thus we subtract out the observed
trend to form a stationary sequence by least-squares-
fitting the background with a low-order polynomial. In
Fig. 2 we show the fits corresponding to first and second
order. Although the second-order fit appears better, the
exact order to subtract is not well established and may in-
troduce unnecessary error in the data. This is discussed
further in Sec. V.

B. Autocovariance sequence

From the digitized sequence described above in Sec.
II A, the autocovariance function of the HRTEM inter-
face may be estimated. The autocovariance function may
be estimated for a stationary process with zero mean as?®
N—m-—1

Cm=L""3 ypn+m, (s)
n=0

N

where y(n) is the nth value of the roughness sequence, N
is the total number of digitized points, and C(m) is the
mth autocovariance coefficient. For higher values of m
the estimate becomes increasingly poor due to the smaller
number of points from which (5) is calculated. Thus, only
the first few coefficients are considered to be truly good
estimates for the actual autocovariance function. The cal-
culated covariance function of the sequence in Fig. 2 is
shown in Fig. 3 (after subtracting a first-order back-
ground). The autocovariance function in Fig. 3 is ob-
served to monotonically decay to zero, after which fluc-
tuations are observed related to the statistical uncertainty
in the autocovariance estimate [Eq. (5)]. The rms value of
the data corresponds to the zeroth coefficient of the auto-
covariance sequence

s =c=L"3 )
W=ClO=— 3 yin. ©
n=0

Here A,, denotes the estimate of the rms fluctuation of
the HRTEM interface.

As discussed earlier, it is usually assumed that the auto-
covariance function is described by a Gaussian as given in
(3). To see how this compares with the estimated covari-
ance, (5), a least-squares fit of a single Gaussian is per-
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formed using the correlation length L as a fit parameter
and A given by (6). The result of this fit is shown by the
solid line in Fig. 3. As can be seen, the fit is only fair for
short distances and quite poor for larger distances. The
disagreement at large distance is associated with the sta-
tistical error inherent in (5).%

Near the origin, the decay of the autocovariance ap-
pears more exponential than Gaussian. Thus, as an alter-
native two-parameter model we consider the exponential
function for the autocovariance,

— (V2
C,(n)=A% eV F/Em)

x=nAx (7)
where Ax is the sampling interval (1.92 A) and L,, is the
estimated correlation length. The factor of V2 in the ex-
ponential is included to yield the same prefactor as (4) in
the two-dimensional power spectrum. This is discussed in
more detail in Sec. VI. The fit using the exponential
model above is shown by the dashed line in Fig. 3. This
fit is observed to be much closer to the estimated covari-
ance near the origin than the Gaussian model, a fact
which is true for all the cross sections studied. Thus, in
terms of a two-parameter model for the covariance, ex-
ponential decay appears more appropriate than the Gauss-
ian function.

C. Spectral estimation

It is not the autocovariance function that enters into the
electronic scattering matrix element, but rather the magni-
tude squared of the Fourier transform of A(r) referred to
as the power spectrum. Thus, for comparison with the
actual scattering rate estimated from the Hall mobility, it
is desirable to estimate the power spectrum of A(r) itself
rather than the autocovariance. The determination of the
true power spectrum of a semi-infinite random process
based on a finite sampling of data is a classic problem in
the field of estimation theory.”* Thus, many techniques
are available for the optimal estimation of the true power
spectrum.

In preliminary studies,’>~!> we have calculated the
power spectrum from the fast-Fourier-transform (FFT) or
“periodogram” of the original sequence. However, as an
estimate of the true spectrum, calculating the periodo-
gram is a poor procedure which inherently leads to a large
variance between the calculated and true spectrum in-
dependent of the length of the sequence due to forcing the
data to zero outside the picture length. Due to the large
variance, the spectrum obtained by directly transforming
the data will fluctuate rather wildly about the true spec-
trum, giving a very noisy appearance.

As a better estimate of the roughness spectrum, we
have fitted the random roughness sequence using an
Mth-order autoregressive (AR) model?>?

15

y(n)=—v1y(n —1)—y,,y(n =2)
4+ +ypuyn —M)+a(n), (8)

where ¥, is the nth prediction-error filter coefficient,
a(n) is the nth component of a white-noise process (re-
ferred to as the residue), and y(n) is the original data.
Equation (8) shows the result of starting with a white-
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noise sequence a(n) (which has a uniform spectral densi-
ty), and passing this sequence through a linear, stationary
filter to obtain the correlated sequence y (n). Multiplying
(8) by y(n +k) and taking the expectation value results in
an equivalent difference equation for the autocovariance
sequence. With knowledge of the first M values of co-
variance, the coefficients y; through ¥, may then be
solved. The spectrum corresponding to (8) is given by

Splg)=0? /

M—1 ) 2
14 3 yneimox 9)

n=1

where the coefficients 7, have the same meaning as in (8)
and o is the variance of the white-noise sequence a (n).
The spectrum given by (9) has been shown to be formally
identical to that arising from maximization of the infor-
mation entropy, which has interesting physical interpreta-
tions as well.26—28

In estimating the power spectrum of the surface-
roughness function, one begins with the actual data and
not the autocovariance coefficients. Therefore, the auto-
covariance coefficients must be estimated, which, as dis-
cussed earlier, becomes increasingly poorer as the coeffi-
cient number increases. As a criterion for choosing the
optimum order [M in (8)] of the AR process, we have
used the final-prediction-error (FPE) method of Akaike,?’
in which the increasing accuracy of higher-order AR pro-
cesses is weighed against the increasing error of higher co-
variance estimates as given by (5). Thus, the FPE tends to
a minimum value for a certain choice of M in (8) which is
taken as the optimal order for representing the spectrum.
As a check on the validity of the AR model, one may use
the difference equation (8) and the calculated coefficients
Y1—7m to generate the residues a (n) from the original se-
quence y(n). If the AR model is to be consistent, then
the residue sequence given by a(n) should in fact corre-
spond to a white-noise sequence for which various statisti-
cal tests exist. For nonstationary sequences such as the
one shown in Fig. 3, we find that the AR model fails to
generate a white-noise residue spectrum. In every case,
however, subtracting a linear fit to the background ap-
pears to result in a consistent AR model corresponding to
a stationary sequence. This fact seems to indicate that re-
moval of only the first-order background is sufficient to
remove the nonstationary effects discussed earlier.

In Fig. 4(a) we show estimates of the power spectrum
using the periodogram (direct FFT) and the AR method
for the HRTEM micrograph shown in Fig. 1. Note that
we plot |A(g)| rather than |A(g)|? in.order to em-
phasize features in the spectrum. As discussed earlier, the
direct FFT of the data sequence of Fig. 2 results in the
noisy appearance of the spectrum shown in Fig. 4(a). The
variance is in fact proportional to the magnitude of the
spectrum, and thus the largest spikes in the spectrum
occur close to g =0, where the spectrum is largest. In
contrast, the fourth-order AR estimate of the same data
appears as a smoothed version of the periodogram (the or-
der of the process is determined using the FPE discussed
above). Thus, the variance of the AR spectra is consider-
ably reduced compared with that of the FFT spectra due
to the low order of the AR model (fourth). In the AR es-
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FIG. 4. (a) Direct FFT (fast-Fourier-transform) of sequence
shown in Fig. 2 compared to the fourth-order AR (autoregres-
sive) spectrum. (b) Comparison of the fourth-order AR spec-
trum with the fits arising from the exponential and Gaussian
models. The horizontal line is the white-noise spectrum associ-
ated with the lattice quantization.

timate we also observe poorly resolved shoulders or side
lobes which may represent a weak periodicity in the data,
here on the order of 12—15 A. At present it is not clear
whether such side lobes are artifacts of the sampling tech-
niques or whether they arise from true periodicities in the
surface. In fact, as discussed in the next section, these
side lobes tend to disappear when different sequences
from the same sample are averaged.

Using the parameters obtained from the fits to the au-
tocovariance sequence, the one-dimensional spectra corre-
sponding to the two-parameter Gaussian and exponential
models may be calculated. As seen in Fig. 4(b), the spec-
tral fit due to the exponential model is much better over
the entire range of the spectrum than that of the Gaussian
model. The Gaussian spectrum is observed to decay
slower than the actual spectrum at low wave vector and
then falls to zero much too rapidly at high wave vector.
This comparisen is typical of all the pictures we have
studied, as will be seen in Sec. III. The tails in the spec-
trum, which do not appear in the Gaussian model, appear
to be part of a white-noise background in the roughness.
Part of this background could arise from digitization er-
ror during the sampling process, as discussed earlier.
However, even in the most highly resolved pictures, in
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which there is little uncertainty concerning the interface
boundary, such tails persist. A more likely effect which
gives rise to tails in the spectrum of the roughness func-
tion is that due to quantization of the interface onto
discrete lattice sites. In the present work we have con-
sidered the interface “boundary” as the last crystalline lat-
tice site corresponding to the unresolved basis of the Si
lattice. Using such a criterion, the actual values of the
roughness sequence can only assume values that differ (in
the [110] direction at a_(100) interface) by increments of
ao/2, where ap=5.43 A is the lattice constant for the Si
diamond lattice. The effect of quantization error has been
well characterized in the field of communication sys-
tems® and can typically be modeled as an added white-
noise signal with a variance value of 82/12 (8 is the quan-
tizing interval) if one assumes the quantization error is
uncorrelated with the original signal. The spectrum for a
white-noise process is constant for all frequencies (wave
vectors). with an amplitude given by the variance. The
white-noise spectrum for the present situation is plotted in
Fig. 4(b). Here it is observed that the spectrum ap-
proaches this level as the wave vector becomes large. This
behavior suggests that, at least asymptotically, the rough-
ness spectrum approaches that of a white-noise process
with variance 0?=(aq/2)*/12, due to the discrete nature
of the lattice, a fact not accounted for in the assumption
of a Gaussian covariance. In the atomic roughness, the
interface boundary occurs on actual atomic sites, rather
than lattice sites which correspond to the two-atom Si
basis. Thus, the effect of quantization is somewhat dif-
ferent in the actual interface than that apparent in the
HRTEM roughness and is complicated by the nonrec-
tangular bonding configuration of the tetrahedral Si lat-
tice. However, even in the two-dimensional interface it is
expected the quantization effects will influence the spec-
trum causing deviations from the band-limited Gaussian
model given by (4).

IV. RESULTS
A. Normal Si(100)

It is expected that the interface of normally prepared Si
surfaces should be relatively smooth, a fact which is borne
out by the HRTEM results. In Fig. 5 we show a high-
magnification picture of the oxide-semiconductor inter-
face from sample 1. The interface in this picture is ob-

served to be quite smooth with very few steps in the Si
surface. In these pictures no evidence for Si clusters in
the oxide as measured by Sugano'® are found. By dividing
the number of step discontinuities by the total number of
lattice sites available along the [110] direction, a compar-
ison with the step-density measurements of Hahn
et al.,'®!° can be made. From the cross sections of sam-
ple 1, this value is approximately 14%, which compares
to the lower values measured by Hahn et al.'

To develop a composite picture of the statistical proper-
ties of interface roughness, it is necessary to average over
the results of pictures from different regions of the wafer.
Initially, an effort was made to use cross sections immedi-
ately adjacent to the Hall device in which the mobility
was measured. However, for the wafers we studied the
channel mobility was fairly uniform from device to de-
vice, and thus cross sections were used from different re-
gions so that some sort of statistical average of the rough-
ness could be obtained. To perform this average we seg-
ment the roughness sequences of different pictures to a
length of approximately 500 A (256 points) and estimate
the average parameters A and L from these segments.
This length was chosen for comparison with the numeri-
cal results of the next section. In Table I we tabulate the
results from three cross sections of sample 1 with various
orders of polynomial background removed. With only the
average removed, there is a very large variance in the es-
timated correlation lengths [both Gaussian (Lg) and ex-
ponential (L,)]. This variance is reduced as successive
backgrounds are removed. As discussed earlier, due to
large wavelength fluctuations in the roughness, the se-
quences often appear nonstationary, and the analysis dis-
cussed previously is then questionable. However, for the
normally oxidized Si samples the. original sequence did
not seem to suffer particularly from nonstationary effects
as judged visually and by the residues of the AR model
(see the preceding section). This is evidenced in Table I
by the rather monotonic decrease in the correlation length
as higher-order backgrounds are removed rather than an
abrupt decrease in this parameter from zero to first order.

To properly average the statistical properties of the
various segments, we first estimate the autocovariance
coefficients of the individual sequences using (7), and then
average these coefficients to obtain a composite autoco-
variance function. From this composite function we then

FIG. 5. HRTEM micrograph of Si-SiO, interface of sample 1.
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14%.
Background order . Average
removed A, (A) L, (A) L, (A) AR order
0 1.99+0.28 24.9+14.2 36.7+23.4 8
1 1.78+0.24 149+ 9.8 22.0+12.7 8
2 1.73+£0.25 .14.0£10.1 19.8+13.7 6
3 1.62+0.21 10.3+ 6.6 14.0+ 8.8 6
4 1.54+0.16 8.3+ 4.2 109+ 6.2 6
5 1.45+0.04 6.6+ 2.2 8.5+ 3.2 5
6 1.39+0.06 57+ 1.6 7.1+ 2.0 6

estimate A and L as discussed earlier and compute the ap-
propriate autoregressive model for the spectrum. In Fig.
6 we show the estimated autoregressive spectrum (with
the first order removed for comparison with the following
results) along with the fits due to both the Gaussian and
exponential models. It is interesting to note that while in
Table I the average AR order of the individual segments
is greater than 4, the order of the averaged process is only
first order. This suggests that features in the individual
spectrum, such as the side lobes in Fig. 4, are really ar-
tifacts of the individual sequence and are not part of the
global structure. As seen in Fig. 6, the two-parameter ex-
ponential model is a closer fit over the whole range to the
AR model than that of the Gaussian, as noted earlier.
This is not surprising as the exponential model turns out
to be formally identical to that of a first-order AR pro-
cess, which will be further discussed in Sec. VI.

B. Intentionally roughened Si(100)

In Fig. 1 we showed the HRTEM micrograph corre-
sponding to sample 2, which was intentionally roughened
with the introduction of HCI into the oxidizing ambient.
Visually, the interface in Fig. 1 appears rougher than the
normal Si case, which is verified from the average step
density of 229% measured for the pictures of this sample,
although there is considerable variance between pictures,
with some pictures appearing nearly as smooth as the nor-

AVERAGE SPECTRUM OF HRTEM ROUGHNESS
Sample 1
0.5 F(first order removed)

0.4 a=1.78A Gaussian model
L=14.94
0.3
b Exponential
0.2 \ L=22.0A

Normalized Magnitude

-1.6 -1.2 -0.8 -0.4 [¢] 0.4 0.8 1.2 1.6
Wave Vector(ﬁ_l)

FIG. 6. Composite spectrum represented by a first-order AR
model of different cross sections from sample 1, together with
the fits using the Gaussian and exponential models.

mally prepared wafer. However, in contrast to the normal
sample, many pictures from sample 2 exhibit nonstation-
ary components, as was discussed in Sec. III. Thus, part
of the effect of the HCl vapor could also be in the
creation of long-range inhomogeneities in the surface.

As discussed in Sec. IV A, we section the data of dif-
ferent pictures from cross sections on the same wafer and
average them to obtain the estimate of the roughness pa-
rameters. In Table II we compile the average estimate of
A,, and L,, from eleven sections (some overlapping) taken
from two cross sections of sample 2. Here the effect of
subtracting the background is much more dramatic. With
only the mean removed, the variance in the measured
correlation length is quite large. However, upon subtract-
ing a first-order background from each segment, the
correlation length is reduced considerably, as is the vari-
ance between sections. This behavior is quite suggestive
of the presence of an uncorrelated long-wavelength com-
ponent in the roughness that is being effectively eliminat-
ed by the subtraction process. Again, when various sec-
tions from sample 2 are averaged, the order of the AR
process is found to be unity, which suggests that the spec-
trum is in fact well represented by a two-parameter
model. As with sample 1, as shown for this sample in
Fig. 4, the exponential model closely follows the AR spec-
trum, while the Gaussian fit is much poorer. In compar-
ison with the normally prepared wafer, the average rms
height A is slightly larger for the intentionally roughened
case, while the average correlation length is somewhat less
than that of the normal wafer, although for both samples
these parameters lie within experimental uncertainty of
each other. The results suggest, however, that the inter-
face fluctuations in the roughened sample are, on the
average, larger and occur more frequently than in a nor-
mally prepared sample.

C. Tilted Si(100)

The HRTEM micrograph of sample 3 is shown in Fig.
7, where the cross section is along the tilt direction. This
is evident from the apparent angle of 1.5° between the ap-
parent interface boundary and the Si(100) lattice planes
shown in Fig. 8, which is somewhat larger than the nomi-
nal tilt angle of 1.2°. From the digitization of the inter-
face shown in Fig. 8, it appears that this tilt occurs over
successive terraces in the Si(100) planes rather than a uni-
form decrease in the interface. Here the tilt angle is taken
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FIG. 7. HRTEM micrograph of sample 3.

as the angle between a first-order fit to the background
and (100) surface.

The apparent nonstationarity in the roughness sequence
of this sample is related to the intentional tilt in the inter-
face, and thus we have a physical basis for removing at
least a linear background from the data. In Table III we
dgain list the estimated roughness parameters for various
orders of background removal. We have studied only one
cross section from this wafer, so that the number of in-
dependent sections is relatively small (4) and thus discus-
sion of the variance of the measured parameters is rather
forced. However, we do note a significant reduction of
the rms height and correlation length after removing the
first-order background that is indicative of the degree of
the nonstationarity of this particular data set caused by
the tilt. ,

The average spectrum for the sample 3 shown in Fig. 9
(first-order background removed) is found to be fourth or-
der compared to the previous first-order AR cases. This
higher order gives rise to the side lobes shown in Fig. 9,
which correspond to a weak periodicity of 11.6 A. As the
number of sections is low, we cannot be certain whether
such a periodicity is real or an artifact which could be
averaged away with the inclusion of more data. As evi-
denced from this figure, even for the fourth-order spec-

trum, the exponential covariance model is a much better
fit than the Gaussian. Here the average roughness param-
eter of the tilted wafer is intermediate between the smooth
and intentionally roughened wafers, although the differ-
ence again is within the variance of the data.

V. RELATION OF THE ONE-DIMENSIONAL
HRTEM ROUGHNESS TO THE SEMI-INFINITE
TWO-DIMENSIONAL SURFACE ROUGHNESS

The purpose of the present work is to compare the one-
dimensional roughness measured by HRTEM to the two-
dimensional roughness comprising the Si-SiO, interface.
In this respect we need to understand how the roughness
parameters A,, and L,, estimated in the preceding section
from a finite-length one-dimensional sequence compare to
a similar pair of parameters characterizing the semi-
infinite two-dimensional surface. To accomplish this we
have investigated two effects. One is the relative informa-
tion loss associated with viewing a finite segment of an in-
finite stochastic process and attempting to estimate the
statistical properties of the infinite sequence. This effect
we characterize in Sec. V A by synthesizing random data
with appropriate spectral characteristics and then at-
tempting to estimate the original spectrum from sectioned

TABLE II. Sample 2, 5 vol % HCI, Si(100), 11 segments of 256 points each, step density of 22%.

Average
Background order autoregressive
removed A, (A) L, (A) L, (A) order
0 2.82+1.20 24.9+19.4 42.1+34.7 5
1 2.04+0.40 7.1+ 2.0 9.9+ 4.0 5
2 1.95+0.40 6.0+ 1.5 7.7+ 2.4 4
3 1.91+0.40 5.6+ 1.2 6.8+ 1.2 4
4 1.88+0.40 54+ 1.1 6.5t 1.0 5
5 1.87+0.39 5.3+ 1.1 64+ 1.1 5
6 1.85+0.38 52+ 1.1 62+ 1.0 5
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FIG. 8. Digitization of the interface of Fig. 7 with first-order
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portions of this data.. The other effect we investigate is
the projection of the two-dimensional roughness via
cross-sectional electron microscopy into the one-
dimensional sequence digitized and analyzed in the
preceding portion of this paper. In Sec. VB we use a sim-
ple model for the projection effect to estimate the magni-
tude of this averaging process by numerically generating a
two-dimensional isotropic random surfaces with either
Gaussian or exponential statistics and ‘“projecting”
through this surface to simulate the HRTEM pictures.
From this comparison and the results of Sec. V A we are
able to make an estimate of the two-dimensional rough-
ness which enters into the surface-roughness formalism.

A. Finite picture length and nonstationary effects

The typical picture length used in estimating the rough-
ness spectrum varies from 400 to 800 A along the chan-
nel. Random fluctuations in the interface which have
wavelength on the order of or greater than the picture

length itself will be attenuated as they are not well
represented. Due to this fact, the measured values of A,,
and L,, are compressed somewhat, compared to their true
values averaged over the semi-infinite channel length. In
Figs. 10—12 we have quantified this effect somewhat by
numerically generating long one-dimensional stationary
sequences of “colored” random noise with spectral
characteristics given by either a Gaussian or exponential
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FIG. 9. Spectrum (fourth-order) of the roughness from sam-
ple 3 (slope removed) and two-parameter fits using the values
shown.

model. These data are then “windowed” at various
lengths and the parameters A,, and L,, are estimated as
detailed earlier for comparison with the original parame-
ters used to generate the sequence.

In Fig. 10 we show the effect of picture length on the
estimated values of A, and L,, for original values (us-
ing the Gaussian model) of A=3 A and L =15 A. Here
we average over 100 sequences to find the variance associ-
ated with the estimation method. As may be expected,
the estimates of A,, and L,, become increasingly smaller
as the window length decreases, reflecting the reduction in
long-wavelength components of the original long se-
quence. Note also the increase in the statistical variance
in A,, and L,, as the window length decreases due to the
loss of information with which to predict the original
spectrum.

In Fig. 11(a) we show the estimate of A,, versus the
original correlation length (using the exponential model)
for various orders of background removed and a fixed
window length of 490 A (which corresponds to the se-
quence length chosen in Sec. IV). As the original correla-
tion length L increases, the estimate for A,, decreases
with increasing variance. This trend results from the fact
that as L is increased, more of the spectral power is con-
centrated in the long-wavelength components of the
roughness. Thus, due to the finite length of the window,

TABLE III. Sample 3, 1.2° tilt from Si(100) toward Si(111), four segments of 256 points each, step

density of 20%. :
Average
Background order . autoregressive
removed A, (A) L, (A) L. (A) order
0 4.72+0.88 53.3+7.8 99.0+25.2 5
1 1.97+0.28 11.4+6.1 16.1t 8.3 6
2 1.91+0.24 9.5+3.3 134+ 5.1 4
3 1.66+0.11 54+1.4 7.1+ 1.5 7
4 1.60+0.06 49+1.5 59+ 1.7 7
5 1.59+0.06 49+1.5 59+ 1.6 7
6 . 1.56+0.09 4.5+1.0 53+ 1.1 7
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FIG. 10. Effect of window length on the estimated roughness
parameters A,, and L,, (using a Gaussian model) sectioned from
a long Gaussian process with a rms height of 3 A and a correla-
tion length of 15 A.
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length of the original sequence (now using an exponential co-
variance) for a fixed window length of 490 A. (b) Estimate of
the correlation length L, versus the correlation length for
several different orders of removed background.
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FIG. 12. Estimated correlation length versus order of the po-
lynomial background that is removed for several different values
of the original correlation length along with experimental data
for sample 2. Dashed line shows the effect of adding a long-
correlation-length (L = 400 A) Gaussian process to the original
sequence in which L =15 A.

fluctuation on the order of or greater than this length will
be attenuated, reducing the estimate of A,, and increasing
the uncertainty. As can also be observed, as increasing
higher-order backgrounds are removed, the estimate of
the original A is reduced. Thus, in correcting for nonsta-
tionarity by removing the background, one is also losing
information concerning the actual statistics if the original
sequence is stationary.

In Fig. 11(b) we plot the estimated correlation length
versus original correlation length as in Fig. 11(a). Again,
the trend is similar, with the estimated L,, becoming in-
creasingly poorer as the original correlation length is in-
creased and as successively higher-order backgrounds are
removed. In Fig. 11(b) it appears that the estimate of L,
saturates for increasing L and a fixed picture length. This
implies a limit to which one may estimate the correlation
length given a fixed-length picture. Thus, for very-long-
correlation-length processes, we cannot predict from a
short HRTEM segment what the original correlation
length is.

In Fig. 12 we plot the estimated correlation length L,
versus the order of background removed for different
values of the original correlation length of the stationary
semi-infinite sequence. The effect is a rather monotonic
decrease in the estimate which becomes increasingly
stronger as the correlation length is increased. Superim-
posed on this plot are the results from sample 2 (see Sec.
IV) shown by the data points. The experimental behavior
deviates strongly from the expected behavior of a station-
ary sequence between zeroth and first order, but then fol-
lows the trend quite well for higher orders. We find that
the behavior of the estimate for sample 2 is fitted quite
well if we add a very-long-correlation-length component
(L =400 A) to the original stationary sequence as shown
in Fig. 12. This added component then appears as a non-
stationary trend when segmented to 500 A and is virtually
eliminated after removing the first-order background.



B. Projection effect

In comparing the roughness parameters obtained from
HRTEM pictures to those arising from fitting the mobili-
ty, the main problem is relating the one-dimensional pa-
rameters in the former case to the two-dimensional values
appearing in the scattering matrix element. In particular,
one needs to understand what the effect is of “projecting”
the interface roughness through the nonzero thickness of
the HRTEM cross section to form the actual picture. In
the multibeam calculations of Desseaux et al.3! for Ge,
the image contrast increases monotonically from zero for
sample thicknesses less than 25 A. Thus, at a critical
crystalline material thickness a lattice image becomes
“visible” when the contrast is sufficiently large compared
to the background noise. As a simple model for the pro-
jection effect, we consider a lattice image to be “pro-
duced” when a sufficient number of crystalline lattice
points (larger than some critical thickness) are aligned
along the direction of the electron beam. Usually there is
an amorphous layer present following sample preparation
which may degrade the resolution, and thus may require a
thicker crystalline cross section in order to obtain a clear
lattice image. Therefore, we chose (somewhat arbitrarily)
a critical thickness of ten atomic layers, which is in excess
of the calculated region in which one would expect to see
an image. However, as will be shown, the results are rath-
er insensitive to the choice of critical thickness, somewhat
justifying this arbitrary choice of thickness.

To characterize the averaging effect, we generate a
two-dimensional rough surface with either an isotropic
Gaussian or exponential autocovariance by generating the
magnitude in the Fourier domain with random phase and
inverse-transforming. This random function is taken to
represent the interface roughness function A(r) of the Si-
SiO, interface. A plot of such a random surface obtained
using the Gaussian model is shown in Fig. 13(a) for
L =25 A. Qualitatively, we see that the mean distance
between the “bumps” along this surface is approximately
the same as the correlation length L. The surface appears
smooth due to the rapid falloff of the Gaussian spectrum
with wave vector which eliminates short-range fluctua-
tions. For the exponential model shown in Fig. 13(b), the
generated surface has a much noiser appearance due to
the tails in the spectrum of this model, which allows for
short-range fluctuations as well.

Using the procedure above, a lattice “image” is pro-
duced if a sufficient thickness of crystalline material is
aligned along the beam. In this way, a one-dimensional
interface boundary is produced which corresponds to the
actual boundary quantified from HRTEM pictures. This
synthesized roughness is analyzed as described in the
preceding section to obtain A,, and L,,, which are subse-
quently compared to the original values of the two-
dimensional surface. In order to determine the statistical
fluctuations of the estimated parameters, we average over
50 different surfaces to calculate the mean and variance.

The results of this calculation for a fixed cross-section
thickness of 245 A is shown in Fig. 14. This thickness
represents an extreme case, as usually the crogs-section
thickness is somewhere between 100 and 200 A for the
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FIG. 13. (a) Two-dimensional random surface %enerated
from a Gaussian model with A=3 A and L=25A. Two-
dimensional surface generated from an exponential model with
the same parameters as (a).

pictures shown here, and thus the averaging will not be as
severe. In Fig. 14(a) we plot the measured A,, [normal-
ized to the original two-dimensional (2D) value] versus L
for both autocovariance models. For small values of L
the averaging effect is severe and a large attenuation of
the measured A,, occurs. Thus, for short-range fluctua-
tions in the surface, the averaging is more severe. Thus
the attenuation of A,, is larger for the exponential model,
where more of the power is located in the tail of the spec-
trum. For larger L the measured A,, approaches a con-
stant value determined by the finite picture length, which
reduces the contribution of long-wavelength fluctuations.
As can be seen, the variance of the estimated A,, increases
with increasing L due to this latter effect. In the above
analysis we have neglected the quantization of the rough-
ness onto discrete lattice sites. We have included this ef-
fect in the projected two-dimensional surface roughness
and the results are qualitatively the same. Quantization
effects were not found to be important until the rms fluc-
tuations of the interface are somewhat less than the
quantization level itself. The main effect is a reduction of
the estimated value of L due to the “whitening” effect of
the quantization error. However, quantization of the con-
tinuous surface (Fig. 13) changes the statistics of the orig-
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FIG. 14. (a) Estimated A,, for the projected one-dimensional
sequence versus the correlation length of the original two-
dimensional sequence for both the Gaussian and exponential
models. (b) Estimated one-dimensional correlation length versus
the two-dimensional values as in (a).

inal two-dimensional surface, which complicates the com-
parison. For A greater than the lattice spacing, the results
shown in Fig. 14 are not strongly effected by quantiza-
tion.

In Fig. 14(b) we plot the measured L,, versus L of the
original surface for both the exponential and Gaussian
models. For large correlation lengths, large variance in
the estimated values occur and both models underestimate
the two-dimensional values of L. This phenomena is re-
lated more to the finite-picture-length effect discussed
previously than to effects due to prOJectlon For small L
the exponential and Gaussian models give opposite ef-
fects, with the former overestimating L and the latter un-
derestimating it. The difference in the former case could
be due to the functional difference between the one-
dimensional and two-dimensional spectra calculated for
the exponential model. We find, however, in comparing
the projected surface spectrum to the original 2D spec-
trum, that the shape does not change substantially when
projected; that is, a Gaussian autocovariance for the 2D
surface still appears to give a Gaussian-like. projected in-
terface. Thus, the one-dimensional spectrum still seems
to maintain the character of the original 2D surface.

The effect of sample thickness on A,, is shown in Fig.
15(a) for short (5 A) and long (45 A) correlation lengths.
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FIG. 15. (a) Effect of cross-section thickness on the estimat-
ed rms height for two different correlation lengths of the origi-
nal surface. (b) Effect of the critical thickness for lattice-image
production on the estimated rms height A,,.

For small correlation lengths, A,, decreases substantially
as the sample thickness increases. This result is directly
attributable to averaging of the roughness via the projec-
tion effect, which reduces the rms values of the fluctua-

. tions observed in HRTEM. Note that the statistical vari-

ation in the estimate is also reduced as the sample thick-
ness increases. Thus, the averaging effect tends to smooth
out the fluctuations in the estimate of A,,. At higher
correlation lengths, the averaging effect is not as pro-
nounced for the range of thicknesses typical for producing
lattice images (100—200 A), so that the estimate for A, in
this case does not depend strongly on thickness.

In Fig. 15(b) we plot A,, versus the critical thickness
for the image production described earlier. “This js calcu-
lated for both short (L =5 A) and long (L =30 A) corre-
lation lengths and, as may be observed, over a broad range
of thicknesses there is really little effect due to the exact
choice of the critical thickness. Thus, the somewhat arbi-
trary choice of this parameter does not really change the
results presented here.

V1. DISCUSSION OF RESULTS

A. Relation of AR model to two-parameter models

In Sec. IV we showed that for the averaged autocovari-
ance function of the roughness sequence the spectrum is
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well characterized by a first-order autoregressive (AR)
model, even though the spectrum of individual sequences
may be of higher order. To see how this first-order AR
model compares to the simple two-parameter models for
the covariance, one starts with the difference equation (8),
which represents an Mth-order AR process for the reali-
zation y (n) of the nth point in the roughness sequence. If
we multiply (8) by y(n +k) and take the expectation
value, then by definition of the autocovariance we obtain

C(k)=—y,Clk —1)—y;C(k —2)
— s —yyCk—M), k>0 (10)

where C(k) is the kth autocovariance coefficient, and the
vi’s are the prediction-error filter coefficients given in (8)
and (9). The term involving a(n) in (8) (the white-noise
sequence) vanishes when the expectation value is taken.
Knowing the first M autocovariance coefficients, (10)
may be solved to yield

Ck)=4,G7 ¥ + 4,65kl o0 | (1)

where the G;’s are the roots of the characteristic equation

pM+ypM =1+ 4yy=0, (12)

and the A;’s are obtained from the boundary conditions
given by the first M autocovariance coefficients. In gen-
eral, the roots of (12) may occur in complex-conjugate
pairs which combine to give decaying sinusoidal solutions.
Such solutions are responsible for the side-lobe structures
observed in higher-order spectrums such as Fig. 10. For a
first-order AR process, the root is real (and for all the se-
quences analyzed here, positive as well), and thus the au-
tocovariance becomes

C(k)=AG k| = g¢ & k]| (13)

If we consider (13) as a sampled version of a continuous
function with a sampling increment Ax, then the first-
order AR autocovariance is formally identical with the
exponential model discussed previously, with the correla-
tion length given as

L=—v2Ax/In(G), (14)
and the rms value
A=A417, (15)

Thus the exponential model is just a special case of a gen-
eral autoregressive process, of first order. In fact, the au-
tocovariance of high-order AR processes can be decom-
posed into a sum of exponentially decaying solutions as
shown by (11), some terms containing oscillatory contri-
butions as well. The values of L calculated from the AR
model using (14) are, in general, found to be slightly
smaller than the fits using the exponential model. This
fact arises because the first-order AR model considers all
the higher autocorrelation coefficients irrelevant past the
first two, while the exponential model was fitted to the
whole autocovariance sequence.

First-order AR processes are characteristic of a variety
of random processes such as speech-recognition models,
ultrasonic waveforms, etc., and thus it is not unreasonable
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that this is characteristic of the random roughness as well.
The first-order AR process is of special significance, how-
ever, as this is a special case of a general Markovian pro-
cess. This is apparent from the first-order difference
equation describing the first-order AR process,

y(n)=yy(n—1)+a(n), (16)

in which the future value of the random process y (n) de-
pends only on the present value and is not affected by in-
formation concerning previous values. Markovian pro-
cesses appear quite often in statistical physics, for in-
stance, in the description of Brownian motion using the
Fokker-Planck equation. However, in the present case the
roughness is not a Markovian process in time, but rather
one expressed as a function of the distance along the inter-
face.

B. Two-dimensional roughness

In analyzing the spectrum of the one-dimensional
roughness sequence, the representation using a low-order
autoregressive model is probably the most reasonable ap-
proach. However, in the present work we are interested in
estimating the two-dimensional roughness, which, when
projected through the cross-section thickness, results in
the omne-dimensional sequence we measure from the
HRTEM pictures. In fact, one may define an autoregres-
sive or all-pole model to describe the two-dimensional ran-
dom surface as*?

N—1M—1

yimn)=3 3 v(p,gy(m —p,n —q)+a(m,n), (17)
p=04g=0

where y(m,n), a(m,n), and ¥(p,q) are the two-

dimensional analogs of the same parameters appearing in
(8). However, in contrast to the one-dimensional case, the
spectrum arising from (17) does not correspond to the
two-dimensional maximum-entropy spectrum.

In the present work, rather than pursuing more sophis-
ticated representations of the two-dimensional roughness
as described by (17), we simply assume that the decay of
the autocovariance is exponential and isotropic. For this
model the matrix element for scattering is proportional to
the two-dimensional transform of (7), which is

S(q)=mA2L%/[1+(q*L?/2)]?2. (18)

Through the factor of 2 appearing in the exponent of (7),
(18) is equal to 4 at q=0, but decays more slowly than the
Gaussian model, especially at large wave vectors. Using
the Ando model®* for surface-roughness scattering, the
momentum relaxation time is given as

1 e 2 Eszm * o
(k) = —2—77'_%3—— fo do(1l ——COSG)S(q)

2
L@ | oksing/2  (19)
e(q)

where m* is the effective mass parallel to the interface, #
is Planck’s constant, k is the electron wave vector, 6 is the
scattering angle, I'(q) represents corrections for image po-
tential and electric field modification at the deformed in-
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FIG. 16. Hall mobility for sample 2 at 52 K and the corre-
sponding fits using the exponential (solid line) and Gaussian
(dashed line) models. For the exponential model, A=4.8 A and
L=13 A, while for the Gaussian model, A=3.5 A and
L=15A. The interface-impurity charge density is
N;=1.1X10'2 cm~2 in both cases.

terface, e(q) is the electron dielectric function to account
for free-electron screening, and other parameters are de-
fined in (1)—(4).

To illustrate the effect of the roughness spectrum S(q)
on the channel mobility, we fit the Hall mobility of a de-
vice from sample 2 using (19) as well as contributions
from impurity and acoustic-phonon scattering with full
temperature-dependent screening.! This fit is shown in
Fig. 16, where the ionized-impurity concentration, the
rms height, and the correlation length L are used as fit
parameters with S(q) given by both (18) and (4). Qualita-
tively, the fit to the mobility is the same for both models.
The difference is in the magnitude of the roughness pa-
rameters used in the fit. For the exponential model (18), a
larger value of A is required, as well as a shorter value of
L, which qualitatively implies that a rougher interface is
required in this model to match the scattering rate of the
Gaussian model. This behavior may result from the fact
that more of the spectral power in the exponential model
is located in the high-frequency tails of the spectrum
where scattering is not as efficient. A detailed discussion
of the effect of the roughness spectrum on the electron
mobility and comparison of the measured Hall mobility
with the HRTEM results will be reported elsewhere.>

The mobility-fit parameters shown in Fig. 16 are some-
what larger than the HRTEM roughness parameters given
in Table II. However, the HRTEM parameters are es-
timated from the one-dimensional roughness, and, as dis-
cussed earlier, are compressed from their corresponding
two-dimensional values through averaging and picture-
length effects. To quantify this averaging effect, we
simulate the effect of averaging on the measured rough-
ness using a simple projection model as discussed in Sec.
V. The results of the simulation show that there is in fact
a direct relation between the one-dimensional roughness
measured by HRTEM and the effective two-dimensional
roughness. The rms height is reduced, particularly as the
correlation length becomes small (less than 10 A), due to
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the projection effect through the cross section. On the
other hand, the estimated correlation length is reduced
and greater error introduced as the original correlation
length is increased due to limitations associated with the
finite picture length. This latter effect is really the more
serious effect, as for long-correlation-length processes one
cannot unambiguously estimate the roughness spectrum
from a short picture length. This question of picture
length is intimately related to the problem of the nonsta-
tionarity of the roughness sequence discussed earlier.
Long-wavelength components in the roughness are present
which span the picture length and thus appear as a non-
stationary component. At best, we can assume that these
long-wavelength fluctuations are uncorrelated with the
shorter processes and that we effectively eliminate these
components by subtracting the first-order fit to the back-
ground from the overall sequence. We chose first order
because this is the minimum order necessary to force the
sequences to obey a stationary model as judged by the
residue spectrum discussed in Sec. ITI. As seen in Fig. 12,
the behavior of the experimental data of sample 2 mimics
that of the sum of two uncorrelated stationary signals, one
with a long correlation length. Thus, such a model is
plausible, but does not include the possibility that the
roughness is really a single long-correlation-length process
that is inadequately represented due to the picture length.

To compare the HRTEM roughness to the actual two-
dimensional roughness appearing in (19), the one-
dimensional roughness parameters are corrected for the
effect of background subtraction, using Fig. 12, and then
compared to the effective two-dimensional parameters us-
ing the results of Sec. V. In Sec. V we presented the re-
sults of the projection effect of a thick cross section of
245 A, which is rather thick. The usual thickness actually
varies somewhat monotonically from 100 to 200 A across
the HRTEM picture. This thickness variation is difficult
to quantify experimentally, and due to the simplicity of
the projection model it is probably not meaningful to in-
clude. Therefore, we simply assume an average cross-
section thickness of 122 A upon comparison to the two-
dimensional roughness. The estimated two-dimensional
roughness parameters should not, therefore, be taken too
literally, and should instead be used as a gauge of the pro-
jection effect on the roughness.

Here, a comparison of the average one-dimensional
roughness parameters (with first order removed) to the ef-
fective two-dimensional parameters estimated as outlined
above is in order. The results for sample 3 are included
only for comparison, as the expected anisotropy due to the
tilt angle invalidates the simple isotropic model used. We
see that the difference in A between samples 1 and 2 is
further widened due to the shorter correlation length of
sample 2, which increases the averaging effect due to pro-
jection. The difference in correlation length is more pro-
nounced as well, although the experimental uncertainty in
the estimation of this parameter is much greater. As
shown in Fig. 16 and also in previous work,'*!° the one-
dimensional HRTEM roughness parameters are invari-
ably smaller than the corresponding transport results.
After correcting for projection effects, however, this trend
is reduced and even reversed, with the Hall parameters
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and the HRTEM parameters agreeing somewhat better.>3
A direct comparison of the present results with rough-
ness estimates based on LEED and XPS is somewhat dif-
ficult as these results are interpreted in terms of step den-
sity along the surface. The estimates of the step density
from the HRTEM were found to average 14% for the
normal wafer, sample 1, and 22% for the roughened sam-
ple 2, thus falling within the lower and upper limits mea-
sured by Hahn and Henzler.!® The trend seems to be that

pictures with a shorter correlation length have a high step -

density, regardless of the rms height. Thus the step densi-
ty measured by LEED seems to relate more to the correla-
tion length L rather than the rms height of roughness.
Overall, the magnitude of the roughness here is still in
agreement with previous studies, even when corrected for
projection effects which indicate interface widths of 1 or 2
monolayers. The idea of an exponential covariance which
has high-“frequency” (wave vector) tails in the spectrum
is certainly more compatible with a step-density model,
which also contains high-frequency components due to
the discontinuous changes in the surface. A Gaussian
model is essentially band-limited at the inverse of the
correlation length and thus appears rather smooth, as
demonstrated by the comparison in Fig. 14. Thus, a
Gaussian model for the covariance is not consistent with
the periodcity of the crystalline lattice, which requires the
interface boundary to assume discrete values.

In comparing the roughness of the present Si(100) de-
vices to that of other MOS systems, we find the present
samples to be quite smooth. HRTEM cross sections have
now been made of the oxide-GaAs interface®® and the
SiO,-InP interface,®**¢ both of which show substantially
more roughness than the Si-SiO, interface. For these
oxide—III-V-compound interfaces, rms roughnesses some-
times in excess of 20 A have been measured, depending on
the surface preparation. Evidence for intermediate oxides
and dislocations at the interface are also found in these
III-V systems which deviate substantially from the abrupt
boundary model used in interpreting Si mobility data.

VII. SUMMARY

In conclusion, we have attempted to estimate the sta-
tistical properties of the randomly varying roughness at
the Si-SiO, interface using cross-sectional high-resolution
transmission electron microscopy (HRTEM). Compar-
ison between normally oxidized, intentionally roughened,
and tilted Si(100) substrates indicate that the one-

dimensional roughness is characterized as a first-order au-
toregressive (AR) or Markovian process, albeit in the pres-
ence of a nonstationary component representative of
very-long-wavelength fluctuations in the interface. This
first-order AR model is characteristic of an exponential
decay in the autocovariance model rather than the usual
Gaussian model. Such a model is more compatible with
the discrete nature of the roughness which occurs at
atomic steps along the interface than is the assumption of
a Gaussian covariance.

The effect of projection of the two-dimensional rough-
ness through the nonzero thickness of the cross section to
form the HRTEM micrograph has been characterized us-
ing a simple model. Here, a one-to-one relation appears to
exist within statistical uncertainty between the one-
dimensional roughness and the original two-dimensional
roughness. The main reduction occurs in the rms or vari-
ance of the roughness which is decreased by the averaging
effect of projection. Although the correlation length does
not appear to be substantially affected by the projection
process, the finite picture length of the HRTEM micro-
graphs may severely effect the measured value of this
latter parameter.

In using the exponential model to calculate the scatter-
ing rate of inversion-layer electrons by surface roughness,
larger values of the rms height A are required to fit exper-
imental mobility data than are required using a Gaussian
model for the autocovariance. This results in a larger er-
ror in the former case between the mobility parameters
and the one-dimensional roughness parameters obtained
from the HRTEM pictures. However, after correcting for
projection effects in the HRTEM process, the agreement
with the exponential model is in fact closer and thus does
not appear to provide an unreasonable model for surface-
roughness scattering.
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Reference plane

FIG. 1. Si(111) lattice images for sample 2 (intentionally roughened showing interface between the Si and SiO,.



FIG. 5. HRTEM micrograph of Si-Si0; interface of sample 1.



Sample 3

FIG. 7. HRTEM micrograph of sample 3.



