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We have investigated the microscopic structure of the impurity states in a two-dimensional disor-
dered system by using a self-consistent Hartree-Fock-Roothaan formalism with spin-polarized po-
tentials which has previously been used to study the three-dimensional systems. It is shown that all
the matrix elements are very sensitive to a change in the dimensionality of the system. For impurity
concentrations in a large range of interest, the electronic states are localized and the system is dom-
inated by isolated donor impurities or pairs of donor impurities. The results of other models are dis-

cussed.

The purpose of this work is to investigate the impurity
states in a two-dimensional (2D) disordered system in the
light of our previous work,! hereafter denoted by I, which
has used a self-consistent Hartree-Fock-Roothaan (HFR)
formalism with spin-polarized potentials to 3D disordered
systems.

We basically assume the bound state as a hydrogenic
wave function in two dimensions, as in the work of Stern
and Howard? (SH), who carried out a calculation for an
unscreened impurity located at a thickness inversion layer.
On the basis of their work, da Cunha Lima and Ferreira
da Silva® have calculated the 2D impurity bands assuming
a Hubbard-type Hamiltonian in their calculation. They
have used a proper 2D hopping matrix

Vy=($(r—R;)| V(r—R,)| $(r—R,))

associated with the site i and j, 2D wave function
#(r—R; )> and the impurity ion potential V(r—R;)
=V"""r—R;)=1/(r—R;). Such an ion potential will
also appear in our scheme. Recently da Cunha Lima
et al.,* with a one-band formalism have calculated the 2D
density of impurity states, based also on the SH work,
taking into account the overlap effects, screening length,
and the distance from the impurities to the inversion
layer. It is worthwhile also to mention that Debney,’ Ki-
kuchi,® and Puri and Odagaki’ have also calculated the
2D one-band density of states but with a V}; in three di-
mensions.

In what follows, we will carry out the 2D calculation of
the impurity states by a numerical cluster formalism in-
stead. For a given impurity concentration N, we generate
M random impurity sites {R;;i =1,2,...,M} on a plane
surface of side L as the location of M hydrogenic atoms,
with N =M /L?. Since at high concentrations the num-
ber of impurities near the cluster boundary is not small,
we surround these M impurities with additional M, im-
purities similarly generated, in such a way as to keep N
unchanged. These M impurities reduce the surface ef-
fects and provide a mean field."® With each impurity is
associated a donor wave function ¢;(r). The Hamiltonian
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of the cluster of M impurities is
P, i2 i 1 -
H=3 —+3 V) +75 3 Viri—1;), (1)
D 2m 9 i,j

where V°(r;) is the impurity ion potential acting on the
ith electron, V**(r;—r;) is the Coulomb interaction be-
tween the ith and jth electron, and the summations are
over all of the M electrons. In the unrestricted HFR for-
malism we get a set of coupled Schrédinger equations for
each spin:!

H (r)¥,,(r)=E,,¥Y,(r),
o=mNlandn=12,... M, (2)

where
pP? ;

H,(r)=——+ V") 4+ V(r)+ V1), 3)
2m

V=33 [ |Wn(r) | W c—1)d?, s=0,—0

(4)
is the Coulomb potential, and

VW) =—3 3 8,y [ Wi £V r—1')

XYootV ()d? ,  (5)

is the spin-dependent exchange potential.
The cluster eigenfunction of Eq. (2) can be expressed as

Wna(r)zz ¢ja(r)Bjna ’ (6)
j

where
¢;(1)=¢"P(r—R;)=(8/m)"%a;; ' exp(—2 |1—R; | /ay) ,

(see Refs. 2—4, 9, and 10). Following the usual HFR pro-
cedure, we obtain!

S [(BH (By)y—EpoBy1Cnjo=0 , ™
J
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where the matrix elements of H |, are given by

L +Vion(r)

Hjo= [ ¢1(n)

and
P;A = 2 B;msBAms . ‘ 9
m

Equations (7) and (8) are solved self-consistently by itera-
tion. As the initial input, we neglect the exchange term in
(3) to obtain the Hartree eigensolution B,. Neglecting the
three- and four-center integrals, the diagonal and off-
diagonal matrix elements of (8) are written explicitly in
terms of the modified Slater!! integrals S,K,J,L,U,J’,
and K’ for two dimensions:

Hi,=E;+ 3 J(Ry)+UP;°+2 3 Pj°L(Ry)

k(£i) k(i)
+ X 3 Pad'(Rg)— 3 PaK'(Ry),
s=0,—0 k(s£i) k(1)
(10)
Hjj, =E4S(R;;)+K(Ryj)+(Pi °+Pj?)L (Ry;)
+ > PiK'(Ry;)—PiJ'(R;), (11)
§=0,—0
where U is the intra-atomic correlation energy;

E ;= —2.0 effective hartrees is the ground-state level of

an isolated impurity for a hydrogenic system in

2D;2—49%10 R;;=R;—R; is the separation between a pair

of donor sites. The overlap integral'® is

S(R;;)=S;=2(R;)* |Ko( R,;>+R K\(2R}) (12)
ij

where Rj=R;i/ag, and K, and K, are the modified
Bessel functions of zero and first order, respectively. The
energy for the transfer of electrons between impurity
sites'® (hopping matrix) is

K;;=—8RjK|(2R}) . (13)

The Coulomb interaction of an electron in an impurity or-
bital on nucleus i with nucleus j is

Jy=—4[1—4RSI,2R)Ko(2R})] (14)

where I, is Bessel’s function of first order. The electron
correlations are

1 1 * *\2
j Rij Rl; ij ]
—0.3(R;})* | exp(—2.36R}j) (15)
and
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¢,(r)d2r+221> v [ [ DBV EAr—1)[$a(r)8;(r) — $a (1) ()8, ]d r d*r"

(8)

L;;=2.36{O(R;; —1.1)exp(—1.72R;; +0.78)
+O(1.1— R} )exp[ —0.65(R} )*— 03Ri,]}

(16)
and the exchange is

Kjj=(0.41R}+2.776)S;[1—exp(—0.85R;)]1/R;} .
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We found Egs. (15), (16), and (17) to be the best-fitted
analytical curves for J’,> L, and K’. The term U which
is 0.625 effective hartrees in 3D is equal to 2.36 effective
hartrees in 2D.>° We also use the value U=1.76 to cal-
culate the impurity density of states (IDOS). This value is
obtained through the calculation of Phelps and Bajaj,'*
who, using a trial wave function with many terms in its
expansion, calculated the ground-state energy of a D~ ion
in a 2D semiconductor, and found it to be —2.24 effective
hartrees. Since the ground-state energy of an isolated im-
purity is E;=2.0 effective hartrees, the binding energy
Eg(D~) of the D~ ion becomes equal to —0.24 and
U=Ez(D~)—E;=1.76. The 2D and 3D Slater integrals
as a function of R are shown in Fig. 1. All of the above
2D energy integrals as well as overlap on two neighboring
donors are much reduced for Ri] >2 and substantially
enhanced for R <2, compared to their values in 3D. For
R} j > 3 the effects of such integrals in the IDOS will be of
minor importance, except for U, which will play the ma-
jor effect. Even for smaller R;] (higher concentrations), U
will be the major importance in the disordered systems in
2D.

Taking a given value of N and a particular configura-
tion of random impurity distribution, we can calculate the
matrix elements from (10) and (11) and solve (7) for the
eigenenergies. In our calculation we use a cluster of
M =40 impurities with M; =960 impurities and average
over a large number of random configurations.! The
IDOS D (E) is normalized to

\dE =L —Na2 . (18)

[ DB e

The Fermi energy Ep, at O K, is calculated with the as-
sumption made in the HFR calculation, namely, that the
first M states of low energy were occupied in each config-
uration. When this condition is not satisfied, we expect
an internal charge transfer between different configura-
tions, and the HFR calculations would have to be per-
formed accordingly. This “charge inhomogeneity” gen-
erations called “inner compensation” in I is caused by the
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FIG. 3. Same as Fig. 2 for P =16(N'%a;=0.28).

FIG. 1. Slater integrals in two (a) and three (b) dimensions.
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FIG. 2.

X(N'2a;=0.20). The CB is set at zero energy. Shaded area
represents the overlap of split bands. The arrow indicates Ep.
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The dots correspond to the IPR L,,.
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FIG. 4. (L,,) for various values of the impurity concentra-
tion P. Details are discussed in the text.
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FIG. 5. Probability distribution of cluster as a function of the
number of impurities covered by the cluster states, for various
values of P,

potential fluctuation of the system itself. The Ep for
U =2.36 moves into the conduction band (CB) at P~10
(corresponding to N!/%2ay ~0.22), while for U=1.76 it
crosses the bottom of the CB at P~15(N!2ay ~0.27).
The calculated IDOS consists of two bands, the lower D°
band and the upper D~ bands, separated at very low con-
centration by the intra-atomic Coulomb correlation ener-
gy U.

The IDOS are shown in Figs. 2 and 3 as a function of
impurity concentration P=2, 8, and 16 (corresponding to
N'2q5 ~0.10, 0.20, and 0.28, respectively). The dots ap-

pearing on these figures are the inverse participation ratio
(IPR) discussed below.

We use IPR as a measure of localization of the eigen-
states."!* It is defined as :

E | Bjno | * ‘/[é IB,-,,alzl ) (19)

for the nth eigenstate with spin o, where Bj,, comes from
Eq. (6). The IPR varies from 1, corresponding to a state
which is as localized as possible, to 1/M, corresponding
to a state which is as extended as possible. In Figs. 2
and 3, the IPR’s are shown as a function of the eigen-
energy for different impurity concentrations. For
P <4(N'"%ay <0.14) the great majority of the states are
found to be localized. Increasing the concentration up to
P=16(N'"%ay,=0.28), although for many of the states
the IPR is less than 0.5, we found that most of the occu-
pied states have an IPR between 0.5 and 1.0 indicating an
isolated impurity state or a pair state.! In Fig. 4 we show
the mean value of the IPR for each sample of the cluster,
indicated by dots, as a function of concentration, and the
configuration average of IPR (L,,) over all the sample
clusters, indicated by the solid curve. Even for such
higher concentrations (8 <P <16), when Er goes to the
region approaching the bottom of the conduction band,
where large clusters would become more probable than
isolated close pairs I, the localized and extended impurity
states coexist in such a way that the conducting states
delocalize less rapidly than for a 3D disordered system (I).
Since higher density fluctuations are expected with in-
creasing of the impurity concentration, we calculate the
probability 7(n) of the eigenstate ¥, ,(r) covering a num-
ber of 7 impurities, which is shown in Fig. 5. For all
range of concentrations considered here, we observed that
the 2D systems are dominated by isolated donor impuri-
ties or donor pairs of impurities. .
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