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Effective-mass theory of resonant Raman scattering by semiconductor donors
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We derive the Raman scattering cross section for transitions between states of a shallow semicon-
ductor donor within a one-electron effective-mass theory that uses the II A interaction to second or-
der. For interband enhanced scattering, we show that the cross section is given by the product of
the (free-) conduction-band-electron cross section and a form factor which depends upon the donor
wave functions. We show that within one-electron theory the cross section has a truncated reso-
nance at the band gap, even in the absence of lifetime broadening, but that the absolute cross section
is quite huge, particularly for light-mass (narrow-gap) semiconductors. The results of this theory,
together with the availability of tunable lasers resonant with semiconductor band gaps, point to the
possibility for novel tunable far-infrared sources, and the use of light scattering as a sensitive analyt-
ical tool for characterizing impurities in semiconductors.

I. INTRODUCTION

Raman scattering has been extensively employed to
study vibrational modes, including those of crystalline lat-
tices. Scattering by shallow electronic impurity states in
crystals has been much less studied because small (uncom-
pensated) concentrations are required to avoid overlap
(and Stark) broadening, and this makes Raman efficien-
cies small.

Raman scattering between electronic impurity levels in
a crystal was first proposed by Elliot and Loudon and
first observed by Hougen and Singh in rare-earth crys-
tals. Semiconductor impurity levels were first studied by
Henry et al. , while Wright and Mooradian made the
first observations of shallow-donor scattering. The latter
were also the first to compute the cross section of the 1s
manifold valley-orbit transition. Most experimental stud-
ies of spin-conserving shallow-donor Raman scattering
have been confined to such transitions.

The first discovery of shallow-donor orbital transitions
between rather than within hydrogenic shells was made by
Henry and Nassau who observed the Lyman-u transi-
tions of CdS donors using the near-band-gap —resonant
4880-A argon-laser line. Until the present decade, this
remained the only such report, when Ulbrich et al. re-
ported intershell Raman scattering from CdTe donors
when band-gap resonance is approached, inferring re-
markably large cross sections.

To explain the large efficiencies claimed for such inter-
shell Raman processes, workers are currently appealing to
sophisticated theories, such as those involving excitonic
polaritons. ' They are presumably doing this because
simple existing one-electron theory considering interband
resonance predicts cross sections that are too small. In
part, this is because the simple calculation has not been
done correctly. The existing calculation' obtains a very
small, if nonzero, intershell transition cross section by
misapplying the completeness relation. In the present pa-
per we seek to present a correct treatment of all single-

valley shallow-donor Raman scattering processes within
the limitations of an approximate, but comprehensive
theory.

II. BASIC ASSUMPTIONS

We compute the light-scattering cross section, employ-
ing the notation of Yafet, "within one-electron theory via
the Fermi golden rule, obtaining our perturbed Hamiltoni-
an from the minimal substitution

~s
H = g + V(r;)+ [VV(r;)Xp; o;]

4m ~c2

+ H'+H"

where

H'= g II; A(r;),
mc

II; =p,"+ [o; X VV(r;)],
4mc

2
H"= g A (r;),

2mc

A(r) =
1/2

2~Ac

, ~2 (opaque q +e ~aqge q ),
q z (coq)

and V(r) is the self-consistent crystal potential. To ob-
tain light scattering we must "apply" A at least twice. In
the present paper we apply H' in second-order theory and
neglect the first-order contribution of H". It is argued"
that, roughly speaking, for free electrons, the term due to
H' is smaller than that due to H" by a factor of P. For
electrons in shallow-donor states, the reduced envelope
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velocity p is approximately a/ep. However, only the H'
term shows a potentially resonant denominator, and since
this limit is in our main concern, we neglect the 0" term
in all the calculations of the present paper.

The differential Born-approximation cross section for
one electron is then given by

c/V A' EI EN

X5(&F—Et ),

ik R
P„q,(r, o)~u k, (r,o) (3)

noting the orthogonality of [ u k„(r,o.),Vn] over a unit
cell. Later we introduce less simplified assumptions (Sec.
IV).

We assume that the presence of a donor is adequately
modeled within one-band effective-mass theory, i.e., that
we write the bound-donor wave functions as

Q~(~'(r, o)=u q, (r, o)g~t~(R. ),
where P is constant over any unit cell within the accuracy
of the theory. We take the zero of energy as the
conduction-band bottom: Ec~(k")=0. We use the short-
hand uc~(r), uzi(r) to denote the periodic parts of the
Kohn-Luttinger states of the conduction band and valence
band, respectively. Within these assumptions' there are
three types of intermediate states

~
N) which contribute

in (2).

(1) Interband states. These are the valence-band states.
We assume the presence of the donor negligibly perturbs
them from the form (3).

(2} Bound intraband states. These are bound states of
the donor other than the initial and final states and are of
the form (4).

where c/V is the incident photon flux. In effecting the
calculation of matrix elements for (2), we approximate
that A(r) does not vary over the unit cell, i.e, ,
A (r)~A (R) for a unit cell at R. We take the simplest
possible model for our semiconductor. We make the-one-
electron approximation. We assume both the crystal and
donor sites possess inversion symmetry and that the band
structure is described by two single-valley bands with sca-
lar (spherical) masses, separated by a direct gap we choose
to place at k*=0 for convenience. We first assume the
limited region of k space in which we are interested is suf-
ficiently close to the band extremum (k"=0) that we can
replace the Bloch functions by the corresponding Kohn-
Luttinger functions, i.e.,

&k.r

f„k,(r,o)—=u„k,(r, o.
.
) ~

ikr
=u „, (ro)

7l, k, S V

and, moreover, assume that the plane-wave part of the
Kohn-Luttinger function is constant over a unit cell at R:

(3) Free intraband states. These are the "scattering"
states of the donor (the conduction band) and are only
poorly modeled by a form such as (3), as difficulties with
donor photoionization theories which use even better wave
functions reveal. '

In computing matrix elements for (2), we exploit the spe-
cial form of the wave functions (3) and (4). The slowly-
varying parts of (3) and (4), viz. , e' ' /~V and PM (R),
respectively, are denoted collectively by S(R). The gen-
eral matrix element evaluates within our assumptions as

f u,*(r)S;*(R)[II[A(R)~Ape +—'q' ])uj(r)SJ(R)d R

=5 J f S,*(R)—VR Ape +—'q' SJ(R)d R
l

+(1—5J )— u,*(r)II, Apus(r)d r

x f S;*(R)e+-'"' SJ(R}d R,
where 0 is the unit cell volume and [ i,jj each refer to ei-
ther the conduction band (CB) or valence band (VB). We
now apply this result to each of the three intermediate-
state resonances cases numbered above.

III. INTERBAND RESONANCE
We first remark on the nature of the resonant inter-

mediate states for the interband enhanced scattering. Two
types of interband intermediate states, A and B, might
occur in principle.

A. This process involves only a single electron. The
first application of II A takes the electron out of the ini-
tial donor state, putting it into an empty valence-band
state. The second application of II A then takes the same
electron and places it into the final donor state.

B. In this process two electrons are involved. First,
II A takes an electron from a filled valence-band state,
placing it into the final donor state. Then, H. A takes the
original donor electron and annihilates the valence-band
hole created in the first step.

For a given valence-band state, only one of 3 or B is
permitted, depending upon whether it is originally empty
or occupied, respectively. Fortunately, it can be shown
that the two processes have identical scattering ampli-
tudes, ' except for electron-electron interactions in the in-
termediate state. For scattering between (localized) donor
states, these corrections are potentially quite important.
However, for simplicity of exposition, we calculate cross
sections completely within the one-electron approximation
and then verbally address the qualitative effects many
electron corrections have on the relevant type of process
for full valence bands, type B.

We intend to show that the cross section for donor Ra-
man scattering is closely related to that for (free-)
conduction-band electron scattering and so we begin by
rederiving the latter in a form similar to that used by
Wolff. "

Case 0: Interband-intermediate-state conduction-band-
electron scatterEng.

The quantum efficiency (not power flow) cross section
is given by
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dO Th ~s
dQ 8ir/3 '

coi

(CB'~ll eie "' ~VB)(VB~II e,*e " ~CB)
Mo= g + e ~ e

VB m (Eca E—va fico,—)

The ellipses include an antiresonant sum, which we neglect, where crTh
——(8ir/3)r, i is the Thompson cross section,

r,~

——e /mc is the classical electron radius, m is the free-electron mass, I refers to the incoming (laser) photon, and s
refers to the scattered photon. The dimensionless term Mo is given within the two-band model by

~l +ca,va+va, ca e ~ (kf ql kva)5 (k; —q, —kva)
Mp ——

m [Eca(k; ) —Eva(kva) —fico, ]

with

IIca va =— d r u ca(r)IIuva(r)

MO 8 (kf ql kvB @ (k q kva)
Rk, , kvB

with

(8)

Esap =Eca(k =0)—Eva(k =0) ~

IIva ca—: d3r u va(r)IIuca(r) .0
The tensor Hcz vBHvB cz can be broken into symmetric
and antisymmetric parts which can be evaluated with the
use of the identity (aXb).(cXd)=a (cd —dc) b, and
within the two-band model, in terms of the conduction-
band inertial' mca and spin m c('a"masses, giving

I

and, of course,

fickf +Eca(kf ) =fick;+Eca(k; ) .

This result preserves all the important physical features of
more realistic one-electron band models, "' including the
possibility of both spin-flip and spin-conserving processes.

We observe that since /3«1 for electrons near the
conduction-band edge, the scattering is quasielastic. Note
that the cross section diverges when Eca(k;)
—Eva(kva)~fico, . In reality, energy-broadening effects
limit the divergence, which we can represent by adding
ifiI" to R«« in (8). We point out that in this quasielas-

tic interband-enhanced free-electron scattering is the Ra-
man dissipative process corresponding to' the degenerate
four-wave mixing recently studied in InSb. This mixing
indeed showed huge enhancements as band-gap resonance
is achieved.

In this paper the integrated Raman scattering cross sec-
tion of a donor can be written as

R««»—:Eca(ki ) —Eva(kva) —fico'

is the resonance factor,
Th ~s

87T/3 coi
M, +M, +M

&=&xf ~x;)
partial

E'I +Es
+i X&finis; .)

m
8plOmcB partial

1s the polarlzatlon factoI', where 0 1s the sp1n- 2 ope1ator,
and

~
X; ) and Xf ) are the initial and final spinor states

I

Below, we calculate each of the potentially resonant di-
mensionless partial amplitudes, M l, Mz, and M3, in cases.
1, 2, and 3, respectively.

Case 1: Interband intermediate-state donor scattering.
We now consider scattering between donor states. The

calculation proceeds much as for the (free-) conduction-
band electrons, but now the slowly varying envelope in-
tegrals differ:

PEgypMi= g«Ry. +A kva/2mva

ikVB-R'

f pf*(R)e
—ikvB R

d R'f e ' P(R)d R,
V V

(10)

with

R p =Es,p+ (Ep & 0)—fico, ,

where E& is the binding energy of the initial donor state
l

with respect to the conduction band.
We proceed by doing the kva 1ntegral I

ikvB'(R' —R)
eI«„=—& V (R p +fi k va /2m va )

1 ik (R' —R)
d k

(2ir)3 Rp +A' k

where az is the donor effective Bohr radius.
We expand the denominator approximately as

1 1

R& +A k /2mvz

to evaluate

Ak1—
2mvaR&

I

It is possible to do the integral in general, but we find it
useful to first consider the limit of close to, but distinct
from, band-gap resonance:

2
2m

R p «Egap2mvB aa
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1
IkVB

1+ 5'(R —R'),
A' V'R R

2mvBRp

M, = ' f d'R QI(R)e' ' * p;(R)+ f f d3R d3R'pI(R')e

x [VR R 5'(R —R') ]p;(R)e (14)

The second integral can be evaluated by changing vari-
ables from R,R' to X—=R—R', R' and applying Green's
theorem ' in X space. The final result is

pEg v
Sf, ,

Rp

where the form factor SI; is given by

SI, = f d R QI(R)e ' ' p;(R)

(15)

$2 f d3+ ~s, (R)
I'(q& —S4( R

2m vBRy.

X(Vg iq, —) P;(R) .

where

CB 7 (]) KR KR
~fi fi + R fi ~1g l ~mgm,

mvB
(17)

with If; ' a pure number of order unity and R„ the donor
effective Rydberg. When we no longer neglect ql and q„
we break orbital-angular-momentum conservation, with
the scattering amplitude scaling roughly as ( qadi ) '.
These results justify the intuitive parity arguments first
presented by Henry and Nassau. Note that the enhanced
cross section continues some distance above the band gap,
but that Raman efficiency will suffer quite substantially
from reductions in scattering volume as band-gap reso-

We see that the off-resonant interband-enhanced scatter-
ing cross section for donors is essentially that obtained for
(free-) conduction-band electrons times the modulus
squared of the form factor SI;. The form factor gives the
selection rules for the effective mass envelope of the orbi-
tal donor wave function.

First, let us neglect the photon momenta, ql and q, .
Orbital angular momentum (l, m) is preserved. In the
present off-resonance limit, the second term in SI; is gen-
erally smaller than a nonvanishing first term. The first
term requires the initial and final wave functions overlap,
which is equivalent to requiring they be identical if nonde-
generate, as they are eigenfunctions of a common Hamil-
tonian. Thus, away from resonance, the only strong tran-
sition is within the (ls) ground-state shell (i.e., spin-flip
scattering), and its cross section is identically the same for
bound and itinerant electrons. We write M] as

p~g plim M (
—— Sfi,

q o Rp

I

nance is approached from below.
The general calculation of Eq. (11) gives

2m vB FI
4'

)
R—R'

[

(18)

I'i =exp[ —(2mva&y, . ~&')'"
I
R—R'

I ] a dimen-

sionless factor which approaches unity at resonance
(R~ ——0). We have

Ik VB

mvB (tII(R')e ' I'( e ' $;(R)
1 gaP 2

[
R—R'

/

Xd'R d'R'

(2)

(19)
PEgap mVB Jfi

Ry mcB 4m.

with Ig ' a pure number of order unity. Once again,
scattering amplitude scales roughly as (qadi) '. For back-
scattering in an optically dense semiconductor the scaling
parameter qa~ can be quite large. Even for the relatively
small donor in CdS, A.~„,-5000 A, az-25 A, n-2. 5,
and so

2K
qBsag ——2 nag ——0.16 .

~free
(20)

Crystal momentum is a good quantum number for the
valence band. Since the donor envelope has no singulari-
ties in momentum space, the cross-section band-gap reso-
nance [Eq. (17)] is truncated [Eq. (19)], even in the ab-
sence of broadening mechanisms, in contrast to the case
of (free-) conduction-band electron scattering [Eq. (8)].
Comparing Eqs. (17) and (19), we see the effective "spatial
localization" resonance broadening is approximately
fil =R~(mcB/mvB}, much larger than true energy-
broadening contributions. The cross-section proportional-
ity to mvB arises because a more. dispersionless valence
band allows us to "approach resonance" more closely for
a given donor wave-function size in k space. (This quali-
tative feature is in accidental agreement with a similar
conclusion regarding the cross section based on entirely
different considerations. }

As mentioned earlier, electron-electron interactions in
the intermediate state modify these calculations. Both
matrix elements and energy denominators are modified in
important and complicated ways.

In the course of studying spin-fiip Raman scattering be-
tween the 1s states of the CdS donor, Thomas and Hop-
field were the first to consider such issues. Like us, they
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hypothesized the large, band-gap-resonance-enhanced
cross section could be computed with the use of the ex-
pression of Eq. (2). However, they imagined the dominant
intermediate state in their experiment was not the one-
electron interband continuum we have used, but a discrete
state: a complex, in its ground state, consisting of an exci-
ton bound to the originally unmolested donor. Magneto-
optic studies of such three-particle complexes have
shown that it is appropriate to think of the two electrons
as occupying Kramer's conjugate states, thereby quench-
ing their paramagnetism, with the valence-band hole or-
biting nearby. If we for the moment neglect "configura-
tion interaction" considerations (allowing admixtures of
more than a single Slater determinant for a given bound-
exciton eigenstate), the ground state can be said to consist
of a pair of 1s donor electrons, as in the singlet D state,
with a Bloch state hole, consistent with the spin-flip
scattering model. Thomas and Hopfield measured the
matrix element and energy denominator in Eq. (2) for this
intermediate state and found the calculated cross section
in acceptable agreement with their measured absolute
cross section.

Adequately far from band-gap resonance, the one-
electron theory of the present paper gives a result for the
1s spin-Aip Raman cross section equal to that of Thomas
and Hopfield under the transcription

i(Xf
i
o iX;& (eiXe,*) m

,„,.„—1 ~f cosH,

where 6 is the angle between the c axis and magnetic field
and f is the measured oscillator strength ( =9+2) relevant
for the conditions under which the experiment was done.
(In our simple isotropic band model we do not reproduce
the completely anisotropic inverse-spin mass-defect con-
tribution of the 3 valence band, K —1, where
Ã = (1/m FB" )~ in the experiment under discussion).
Note that it would seem that, for the small 40-cm
resonant denominator of the spin-flip experiment, the use
of Eq. (19) rather than (17) might appear to be more
correct. However. , as the thoughtful reader has already
realized, neither is correct. By introducing a bound inter-
mediate state with a discrete rather than continuum spec-
trum, the many-electron interaction qualitatively changes
the nature of the band-gap resonance, frustrating the
divergence truncation predicted by the one-electron
theory. Additionally, here it leads to matrix elements that
turn out to be rather larger than predicted by using the
one-electron continuum. (A two-band model for CdS in
which the valence-band degeneracy is broken and the
conduction-band mass is assumed to be 0.2 predicts that
2-gap scattering should show an oscillator strength I' of
about unity. )

Similar considerations would be expected to apply to
orbital donor scattering. Recently, this was suggested by
Yu (and then clarified by Yu and Falicov). For Is ~2s
scattering, for example, one would expect an excited
bound-exciton state analogous to D (ls, 2s) (Ref. 9) to be
the intermediate state of greatest (but not sole) impor-
tance. Limited studies of excited bound-exciton states
have been done. '

Unfortunately, however, we remain largely ignorant of
what the wave functions of bound excitons look like: "An
exciton bound to a neutral donor. . . can be reduced to a
four-body problem in the effective-mass approximation.
General analytical solutions for this system are not possi-
ble, and the complicated dynamical structure must be ap-
proximated in order to make progress in understanding
the observed trends in binding energies and other proper-
ties. " (Emphasis is ours. )

It is doubtful, therefore, that useful ab initio calcula-
tions of the important bound-exciton momentum matrix
elements will be made. Moreover, they probably cannot
even be measured, as they are between pairs of excited
states of the crystal. For now, the present interband one-
electron calculation, while overly conservative in cross-
section divergence, provides a theoretical framework on
which to expand. Additionally, a simple extension would
prove most accurate when applied to considering the am-
plitude contributions of higher-lying (i.e., empty) bands
(as long as adequate account is taken of its impurity
states, of course).

Notwithstanding the difficulties discussed, we can use
the present one-electron theory to numerically evaluate a
lower bound on the band-gap resonance spin-conserving
cross section.

(2)Taking ~s Ml mcB/m &&1, gl e, =1, and If; —1,
2

(m/mca)Egap/2 mvB

Ry mcB 4~
dO OTh

d 0 Sw/3

2
Th Egap ~0 m VB

8~/3 8~R m mcB

2
3

(21)

4 2 2
+gap e aoEgap ~iiEgap (22)

which gives us a reduced integral one-electron cross sec-
tion of

F da/dn 0 006
mvB

mcB

2
3

Egap~o

77 eV

mvB=0.006
mCB

3 2

(23)

The figure of merit I' is greatly increased by any small
decrease in conduction-band mass, so that we expect espe-
cially large cross sections in narrow-gap materials, which
have very small masses [except when exciton binding is
too weak (quenching the influential exciton enhancement
of cross-section) or donor and/or bound exciton
linewidths are excessively broad due to the presence of
destabilizing chemical and thermal lattice defects]. In
Table I we tabulate the actual results for four typical
semiconductors. There are two important technological
consequences of such large donor cross sections:

(1) The Raman gain of transition is proportional to the

where R~ is the hydrogen-atom Rydberg. Over the
range 30& n &440, the empirical Moss rule ' applies
to semiconductors:
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TABLE I. Results for four semiconductors. transformations of the Bloch functions:

CdS
CdSe
GaAs
InSb

)0.7
)0.4

0.5
0.18

0.20
0.13
0.07
0.0133

Material m vB l'm m cB /m 6'p

8.9
10.6
12
18

Eg,p (eV)

2.58
1.85
1.52
0.235

)324
) 1449

103K
34M

W„(r—R', o ) = g e '"' g„'k's"(r, 8),

where
ik.r

Bloch e
0n k s un k s(r~+)

7 v'V

ratio of the integrated cross section and the linewidth.
Huge cross sections imply large gains despite considerable
linewidths. This suggests the possibility of various band-
gap radiation-pumped, far-infrared sources based on the
donor Raman interaction. A large gain is essential be-
cause excessive pump powers photoionize the neutral
donors ' on-which a device would be based. Perhaps a
ternary III-V injection laser might ultimately pump a
nondegenerate GaAs device medium. Such a source
would be tunable, as applied fields could significantly
vary the transition energies of the donor. Note that both
Raman gain and donor tunability are larger the smaller
the semiconductor band gap.

(2) Laser Raman scattering is spatially resolving down
to micron dimensions. Resonant scattering is a potential-
ly powerful tool to diagnose the presence and distribution
of residual donors for improving the purification of new
semiconductor materials.

IV. INTRABAND RESONANCE

In cases (2) and (3) we consider only intraband inter-
mediate states, which should be accurately calculated
within one-electron theory, unlike case (1). However, an
added complication here is that the simplified wave func-
tions discussed in Sec. II are inadequate to produce results
correct even in lowest order.

Within effective-mass theory, the wave function is
given by the convolution of the envelope function, S;(R),
and the Wannier function for the appropriate band,
W„(R). The Wannier functions are simply unitary

I

Neglecting spin variables, the convolution can then be
written as

g;„(r)= QS;„(R')W„(r—R),

—g u„k (r)e'" 'W; „(k'),
k'

(24)

where

u, „(k )= +S,„(R )e-'"'R'.
R'

Since S; „(R') is a slowly varying function, W; „(k') is
large only near k'=0, whence our approximations (3) and
(4). However, in computing intraband-enhanced scatter-
ing, we cannot make this approximation. We must go
beyond using

u„k(r)~u k, (r)

in (24) above, using k.p perturbation theory to obtain

1
u„k (r) ~u k„(r)+ —. g u, „,a„„V,,

n'&n

with a„„asdefined in the Appendix.
Case 2: Bound-intraband intermediate-state donor

scattering.
Considering potential resonances from bound donor

states [C&& I, including only terms potentially resonant for
scattering from the donor ground state (excited-state-
originating scattering is a trivial extension with. little new
physics), we obtain

mcB J d R'p (fR)P Re,
' e ' $1(R')

mcB

where I frj is a dimensionless tensor of order unity.(3) ~

In computing the amplitude Mq, we derived prefixes of
m/mcB due to the existence of a„„&0terms in the wave
functions used. This amplitude is in agreement with ear-
lier studies. ' The result is of the form obtained for
scattering by an atom in free space. Conservation of spin
emerges because interband-coupling tensors only appear
symmetrically. In the absence of damping, the cross sec-
tion shows a divergence when the laser photon energy ap-
proaches the energy spacing of the initial and an inter-
mediate donor state. Unfortunately, near-resonant excita-
tion will tend to be accompanied by photo (thermal) ioni-

[R HD]
iA' (27)

where

Q2
HD = +R+

2mCB eo R
f

(the donor effective-mass Hamiltonian), to change the in-
tegrals in (25) to matrix elements of R. It is then obvious
that b, l =(hl0=0, +2). This rule is broken to include

I

zation of the donor. Note that interband-enhanced
scattering requires the use of exotic far-infrared lasers.

Neglecting the photon momenta qI and q„we can use
the fact that
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Al =Alp+ Al ~ with a scattering amplitude that scales as
EI)

(qaii)
Case 3: Free-intraband intermediate-state donor scatter-

I

l ng.
Considering only donor scattering states for intermedi-

ate states, we have, again omitting antiresonant terms,

mes

2

kcs

&kCg~& —&~

f f d r'd ref(R')PR"e, e'
m (E~, —A'kc'B/2mcB+mi)

(28)

to evaluate

mcB

2

2M') R—R'/
(29)

with

I 2 expI [2mcB( —Ey,. —~i)/&']'"
I
R—R'

I I

a dimensionless factor which approaches unity at "reso-
nance" (ficoi —— E~ ). W—e have

l

T

e,'.I j'4'e, &Xf ~X;), (30)
mcB

where If; is a dimensionless tensor of order unity. The
~ (4)

same selection rules regarding spin and orbital angular
momentum derived for case (2) apply here in case (3).
Again, observe the absence of any divergence in the cross
section because the donor wave functions are delocalized
in k space.

V. SUMMARY

We have shown that a straightforward application of
the Fermi golden rule employing the II.A perturbation in
second order to a very simple one-electron two-band
single-valley effective-mass model of a semiconductor
predicts Raman scattering between all the bound spin and
orbital states of a shallow donor. We have examined in-
termediate states in the valence band, the conduction-band
continuum, and other bound donor states. Within one-
electron theory, only the last of these three types of states
leads to a divergent cross section in the absence of damp-
ing. However, excitonic corrections to the interband am-
plitude contribution also show similar divergences. Only
the interband process need not conserve donor spin. ' To
lowest order in (qaii), donor envelope orbital angular
momentum is conserved by the interband term, and
changed by hl =+2 or not at all by intraband terms. In-
traband scattering is analogous to scattering from an iso-
lated hydrogen atom. The large interband cross sections
we predict have important technological consequences for
the development of far-infrared sources and the refine-
ment and characterization of new semiconductor materi-
als.

nonzero applied external (electric or magnetic) field. Ad-
ditional work is indicated by relaxing one or more of our
assumptions. One should carefully reconsider the
term in first order. As many semiconductors and/or
donor sites lack inversion symmetry, one should reexam-
ine our parity arguments, as well as allow for zone-center
effective Hamiltonian terms linear in wave vector. The
important case of multivalley donors, as in silicon, is not
addressed by the present theory. One would expect sig-
nificant differences from fundamental edge enhanced
transitions. As we have noted, even simple complica-
tions such as mass anisotropies can have serious conse-
quences for selection rules. Calculations for Lyman
(and other) transitions of acceptor states should also be
undertaken.

We emphasize that the present treatment has ignored
the interaction of the light with the crystal as a whole. As
a first approximation, we can account for this by replac-
ing I/(co&)'~ in Eq. (1) by 1/(co&pe)'~ (Ref. 35). Howev-
er, near dielectric resonances (such as excitons) this pro-
cedure is inadequate. Proper account must be taken of
polariton effects and calculations relevant to impurity-
state Raman scattering have been undertaken. ' ' A
notable feature of excitonic polariton effects is the possi-
bility for enhanced momentum transfer in the resonance
region. While exciton and polariton effects will modify
the details of the theory presented here, the present com-
putation has the merit of being exact within the simplified
model it employs, which hopefully makes it of use in
guiding the development or more sophisticated treatments
in the future, as well as motivating systematic experimen-
tal studies of momentum and polarization selection rules.

ACKNOWLEDGMENTS

We thank D. M. Larsen and P. A. Wolff for stimulat-
ing discussions. An earlier form of this work originally
appeared as a chapter of the author's doctoral thesis.
Francis Bitter National Magnet Laboratory is supported
by the National Science Foundation.

VI. FUTURE WORK

We have already remarked on the need to consider
many-electron effects more carefully, and further to note
the usefulness of doing the calculations for the case of

APPENDIX

The completeness of the Bloch functions permit an ex-
act solution to the one-electron Coulombic defect prob-
lem, which we assume adequately represents the shallow-
donor problem.
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This exact solution sums contributions from all bands:

lb;(r)= g t)'j; „(r),

with tb; „(r) as defined in (24). Effective-mass theory as-
sumes that the contributions from all but one band are
negligible for any f; (r).

The essence of effective-mass theory is that the slowly
varying envelope, 5; „(R') in (24), obeys the simple rela-
tionship

P g*.V+SV(R) —E, „S,„(R')=0, (A2)
2

where Z*=(l/m*)'J and 5V(R) is the variation of the
self-consistent crystal potential from the form from which
the Bloch functions are derived.

Near a bound extremum, k', k p perturbation theory
can be used to derive the periodic part of the Bloch func-

tion, Iu k, (r)I, IE„(k*)I. The first-order correction
yields the result

u„k u kg+ g u, kga„„"k,
n'~n

where

g2 J u, gVu gd r

E„(k*)—E„(k')
While this term is small, of order

Ry" (n)
~
a„„.

~
-a,*(n)

Eg~I

in our two-band model, it cannot be neglected in the
intraband-mediated scattering treatment of Sec. IV.
There we exploit the form of (24) to write the k in (A3) as
(I/i)V. For the interband-mediated treatment of Sec. III,
such complications can be neglected.
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