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We present a density-functional theory of the surface tension of liquid metal alloys. The theory is
applied to miscible alloy Na K& and the results are similar to typical miscible alloys. The
phenomenon of segregation of the low-surface-tension component to the surface is obtained with use
of a simple hyperbolic tangent concentration profile. An estimation of the surface concentration is
made within the monolayer surface model.

I. INTRODUCTION

It has long been known that the surface tension of most
liquids is strikingly modified by the presence of a few
low-surface-tension impurities. The modification consists
of a dramatic drop in surface tension with impurity con-
centration, and occurs because the impurities tend to mi-
grate to the surface, thereby lowering the free energy and
the surface tension as well. The effect is of practical as
well as fundamental importance. Certain liquid metals
are difficult to maintain entirely free of impurities, and
the strong impurity dependence means that measurements
of the surface tension of the pure liquids are difficult to
carry out with reliable accuracy. Moreover, certain con-
vection processes ("Marangoni convection") are driven by
surface-tension gradients parallel to the surface. If there
is a gradient of impurity concentration x parallel to the
surface, and if r is strongly dependent on x, then Maran-
goni convection may be quite important, and may indeed
dominate the spatial distribution of liquid in a low-gravity
environment such as an orbiting satellite, where gravity-
driven convection processes are suppressed.

The purpose of this paper is to describe a method for
calculating the surface tension of liquid metal alloys,
which conspicuously shows both surface segregation and
the associated dramatic drop of surface tension at low
concentrations of the low-surface-tension impurity. The
method of calculation consists of a generalization to al-
loys of the density-functional scheme used by Wood and
Stroud' for monocomponent liquid metals. This scheme
breaks the free energy of the liquid metal into a local part,
involving a free-energy density, and a non-local portion,
which is taken in the gradient approximation. In the
present paper both the free-energy density and the gra-
dient contribution are calculated from first principies, us-

ing approximations derived from a combination of pseu-
dopotential theory and equilibrium statistical mechanics.
The resulting calculation gives good results for the surface
tensions of both pure liquid Na and pure liquid K (the
two metals chosen as examples in this calculation). The
surface tension of the alloys has not been measured, to our
knowledge, but the depression of the surface tension of
the alloy relative to a straight-line interpolation of those
of the constituents is found to be clearly correlated with
the degree of surface segregation.

There have been several previous theoretical attempts to
deduce the existence of surface segregation from simple
models. Moran-Lopez and Falicov have calculated the
composition and short-range order in the surface layer of
a soLid alloy within an Ising-like model, using the pair (or
Bethe) approximation to solve the model. The parameters
of the model were not, however, calculated from any fun-
damental theory but rather were taken as empirically
determined quantities. Miedema has suggested that the
major driving force for surface segregation is the differ-
ence in the pure metal surface tensions, and has proposed
empirical formulas for estimating the surface tension
based on this observation. Telo de Gama and Evans have
calculated the surface tension of a binary Lennard-Jones
fluid, using a model somewhat similar to our own, but for
an insuiating fluid. They found segregation of the
smaller-surface-tension component when x (the concen-
tration of component of lower surface tension) is very
small, but near x =1 they found surface segregation of
the component of Larger surface tension, contrary to ex-
pectations. To our knowledge, no previous theoretical at-
tempt has been made to calculate the surface tensions of
liquid metal alloys.

The remainder of the paper is organized as follows.
The formalism used in our calculations is outlined in Sec.
II. The results are presented in Sec. III, following which
is a brief discussion given in Sec. IV.

II. FORMALISM

A. Review of the density-functional approach
for liquid metals

We are concerned with the surface tension of a liquid
mixture with a free surface, and in equilibrium with its
vapor. The thermodynamic states of the two phases in
equilibrium with each other are then determined by the
pressure P, the temperature T, and one of the two chemi-
cal potentials, p~ and p2, of the constituents (these param-
eters will determine the density of each constituent in
each of the two phases). Under such conditions, the sys-
tem will go into its state of lowest grand free energy 0,
where 0 is defined by the relation
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Q[n &(z),nz(z), T]=F[n ~(z), nz(z), T]—pl f n ~(z)dz r=min F[n, (z), n z(z), T]

—p~ I nq(z)dz .

Equation (1) emphasizes that the two-phase system is in
homogeneous: It is appropriate to a situation where the
surface is situated at z =0, with the vapor phase in the
half-space z & 0, the liquid at z & 0. The grand free ener-

gy is then a functional of the two ionic number densities,
n~(z) and n2(z), both of which depend only on the coordi-
nate perpendicular to the interface, since the surface is
planar. The densities n&(z) and nq(z) are understood to
be ensemble averages of the two ionic densities of the
problem. By functional, of course, is meant a function of
the functions n~(z) and n2(z).

If the form of the function F [nt(z), n2(z), T] is known,
then the surface tension can be calculated from the rela-
tion

+ P —p]71 ) z —p2ff2 z cgz . 2

Equation (2) follows from the fact that the grand free-
energy density, sufficiently far from the interface in either
the liquid or the gas phase, approaches the bulk limit —P;
the equation is simply a statement that the surface tension
represents the excess grand free energy of the surface per
unit area of surface. The prefix min denotes that the
right-hand side of Eq. (2) is to be minimized over all pos-
sible density configurations n~(z) and nz(z), consistent
with the given P, T, and p& and p2.

According to the density-functional formalism of Wood
and Stroud, the free-energy functional F [n&(x),n~(x), T],
for an arbitrary (not necessarily planar) surface can be ap-
proximately expressed in terms of correlation functions
and free-energy densities of a related homogeneous system.
The approximate relation takes the form

F[n)( x), n (2)xT]=fdxf(n&(x), n2(x), T)

k~T
+ g J Cz(x —x';n;, nJ, T)[n;(x)—n;( x')][n J( x) nj(x—')]dxdx',

ij =1
(3)

where f(n&, n2, T) is the Helmholtz free-energy density of
a homogeneous liquid mixture of densities n~ and n2 at
temperature T, and C,i(r;n&, nz, T) is the so-called direct
correlation function for a liquid mixture of suitable inter-
mediate densities n~, nz, and temperature T (for a two-
component liquid mixture, there are three such direct
correlation functions since CIi ——C~;). n& and nz are some
suitable intermediate densities. The Fourier transforms of
the direct correlation functions are, of course, related to
the partial ionic structure factors, Sz(k), which are de-
fined below. As was shown by Wood and Stroud for a
single-component liquid (the generalization to two com-
ponents is obvious), Eq. (3) is exact for an inhomogeneous
liquid, in the limit of small-magnitude density fluctua-
tions of arbitrarily short wavelengths, although it becomes
approximate for a system with a free surface, where the
differences n;(x) —n;(x') became large. In the latter case,
part of the approximation consists of deciding at what
value of n; to evaluate the correlation functions
CJ(x—x'); this approximation is of necessity somewhat
arbitrary.

For a single-component liquid metal, Wood and Stroud
showed that Eq. (3) remains valid to the same degree as
for an insulating fluid, provided that the free-energy den-
sities and correlation functions are taken as those of a
liquid metal, including the effects of the free electron gas.
The same is true for a liquid metal alloy.

If the partial ionic densities of the liquid mixture are
sufficiently slowly varying, it may be reasonable to replace
the nonlocal kernel [the second term of Eq. (3)] by a
local-gradient approximation. In that case, a simple ex-
tension of the results of Ref. 1 gives the following form
for the free-energy functional in the case of a planar sur-

face perpendicular to the z axis:

F[n&(z), n2(z), T]=I f[n&(z), n2(z), T]dz

oo

+ g I Kt~(n ~, n2, T)
/, J =1

dn;(z) dnJ (z)
X dz , (4)

cjz 8z

where the kernel functions K,J(n;, n~, T) are given by

k~T
KJ(n &, nz, T)= r CJ(r, n „n2, T)dr .

12

As in the full density-functional theory, this expression is
exact through second order in the density deviation,
n;(z) n;~, with respec—t to some unperturbed uniform den-
sity n;~, and with the further approximation of slow spa-
tial variation of density.

Equations (2) and (3), or (2) and (4), give a complete
prescription for calculating the surface tension of a liquid
mixture (or liquid alloy), given a way of computing the
free-energy densities and correlation functions of the cor-
responding homogeneous liquid. This ionic density-
functional scheme is the analog, for classical ions, of the
electronic density-functional scheme introduced by
Hohenberg and Kohn for calculating the ground-state
properties of an inhomogeneous electron gas.

B. Free-energy density and functions
for a mixture of liquid metals

We are concerned in this paper with a mixture of
nearly free electron li-quid -metals, that is, metals in which
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f=nF,

F =EM ~EBs+EEG+Ep+ —', ks T TW—,

(6)

where F is the Helmholtz free energy per ion and the indi-

the electron-ion interaction can be treated satisfactorily
within second-order perturbation theory. In that case, the
Helmholtz free-energy density is adequately approximated
as follows:

vidual terms are, respectively, the Madelung energy E~,
the electron-ion or band-structure energy Eqz to second
order in the electron-ion interaction, the su'm of the kinet-
ic, exchange, and correlation energies EF~ of the homo-
geneous electron gas, the Hartree energy Ep (which is the
term of first order in the electron-ion interaction), the ion-
ic kinetic energy 2k~T per ion, and the contribution
—TW from the entropy P' (all per ion). The individual
terms in (6) for a mixture take the following form:

EM = g g 2 (xgxj )'~ [SJ(k)—5;j],2V k (~0) i,j =1

2 I 2

k (~o) ij=l , 4'Jre

EFG ——Z*
~

— ' —0.115+0.031 lnr, Ry,
2.21 0.916

rs rs

Eo ——2mnZ e (x,Z)r(~+x2Z2r2~) .2 2

(7)

(8)

(9)

(10)

Here Z; is the valence of the ith species, x; is the atomic
fraction of the ith species, V is the total volume of the
system, SJ(k) is the partial ion-ion structure factor, e(k)
is the wave-vector-dependent zero-frequency dielectric
function of the interacting homogeneous electron gas,
Vz'(k) is the bare electron-ion pseudopotential of the ith
species, e is the electron charge, and r, is the electron ra-
dius in atomic units, defined by the relation

4m'
S

where Z'=x ~Z&+x2Z2 is the average valence and X is
the total number of ions. It is generally convenient to use
for the pseudopotential the Ashcroft empty-core form:

4mZ;e
V~"(k) = — cos(kr;) .

k

With the use of (12), the Hartree term Ep takes the form
given in Eq. (10); the notation r&n and r2& denotes the
fact that the core radii r; entering into the Hartree term
are generally chosen to differ from those used in the
band-structure energy Eas'. Finally, n =X/V is the ionic
number density. The partial ionic structure factors S~j(k)
are defined in the usual way as

ik (R(')—R~J.))

—(x xJ) X5qo,1/2

where 8~' is the position of the ath ion of the ith species,
and the angular bracket denotes an aver'age over the ap-
propriate ensemble.

In order to evaluate Eq. (6) at a given density, concen-
tration, and temperature, one requires a method for calcu-
lation the partial ionic structure factors and the entropy.

Such a method is provided by the well-known Gibbs-
Bogolyubov inequality, which may be written in the form

F=Fo+ (H Ho~o . — (14)

Equation (14) states that the free energy F of a system
described by a Hamiltonian H is bounded by the free en-
ergy Fp of a reference system with Hamiltonian Hp, plus
the expectation value of the perturbation H —Ho, evaluat-
ed with respect to the correlation functions of the refer-
ence system. In the present problem, it is convenient to
choose for a reference system a mixture of hard spheres of
different diameters. The structure factors of this refer-
ence system are available analytically within the Percus-
Yevick approximation, while the hard-sphere free energy
exists as an analytic fit to the results of computer simula-
tion. With this reference system, therefore, Eq. (14) ef-
fectively defines a variational method for calculating the
free energy F: For any n, x ~, and T, one chooses the two
variational parameters (the hard-sphere diameters) so as to
minimize the right-hand side of the inequality (14), and
then takes the resulting minimum upper bound to approx-
imate I'.

To complete the prescription for calculating the inputs
for the density-functional formalism, one requires a
method for approximating the direct correlation functions
C,&(r). These are extremely difficult to estimate in a reli-
able way, and errors in these probably form the weakest
link in the present calculations. We have used the so-
called mean-spherical approximation

c;J (r), r &(o.;+o.j)/2CJ(r)= .
(15)0&;J(r)/k&T, r ~ (a;—+crj)/2

where C1 (r) are the hard-sphere direct correlation func-
tions appropriate to a mixture of hard spheres of different
diameters [these are, like the corresponding S,J (k)'s,
available analytically within the Percus- Yevick approxi-
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mation], and @,J(r) is the screened ion-ion pair potential
between an ion of species i and one of species j, as calcu-
lated at the same total ionic density n .N,z(r) is given
within pseudopotential theory by the expression

@1(r)= 3 Jd k NJ(k)e'"',
(2~)

aF
p2 F——(ni ) x—p ax pal, T

which gives the two chemical potentials pi and p2 needed
for execution of the density-functional theory, in terms of
the properties of the homogeneous alloy.

N,J(k)=
4+z,.zje'

k

(16)
V"'(k) V'&'(k)

1+ —1
~(k) Z, Z, (4~e'/k')'

III. APPLICATION TO Na„Ki —x

In the present calculations, the hard-core diameters used
in Eq. (15) were obtained from the condition

4;;(o;)= —,
' AT, (17)

xpi+( I —x)p2 —— (19)

T

1 BM"' "'=N ax T, V, X
(20)

The boundary conditions are

xppi+(1 —xp)p2=F(ni)

(22)

where nI is the density of the homogeneous liquid alloy of
concentration xo, temperature T. Solving these gives

' aF
pi ——F(ni)+( I —xp)

nI, T
l

(23)

which means that o; is the distance of closest approach
between two like ions, as determined from classical
mechanics, if one of the ions is stationary and the other
has kinetic energy —,k&T. The hard-sphere diameters ob-
tained from Eqs. (17) will differ slightly from those ob-
tained within the variational approximation, but seem the
most appropriate ones to use, since there is no particular
reason why variational hard-sphere diameters should be
the optimum ones from which to calculate correlation
functions.

Once the Helmholtz free energy is known as a function
of density, alloy concentration, and temperature, the
chemical potentials needed for the density-functional for-
malism can be obtained froin the following thermo-
dynamic relations.

If N; is the number of ions of type i in a homogeneous
alloy of volume V, then we have

d~ = —S dT —PdV+p, ~ dN&+p2dN2

= —SdT Pd V+ [xp—i+(1—x)pz]dN

+N(p& —p2)dx,
where ~ =NF is the total Helmholtz free energy,
Ni ——xN, Nz ——(1 x)N, and —S=NS is the total entropy
(not per ion). From this thermodynamic relation it fol-
lows that

= "'+""
n (z) = + tanh(z/io),

2 2 (25)

where ni is the density of the liquid and n„ is that of the
coexisting vapor phase and is taken as zero since it is
much smaller than nI at the temperatures considered.
This hyperbolic tangent density profile has been shown to
give very good results for the surface tension of the alkali
metals, and may give reasonable results for the overall
surface width also. It does not, of course, allow for densi-
ty oscillations, which D'Evelyn and Rice and Gryko and
Rice' have suggested may be present in liquid alkalis.

Two concentration profiles have been considered. The
simplest is a constant profile, x(z) =xp, where xp is the
bulk concentration, corresponding to no surface segrega-
tion at all. %"e have also used a hyperbolic tangent con-
centration profile:

In order to test the formalism just described, we have
chosen to apply it to the simplest liquid metal alloy,
namely, a binary mixture of two alkali metals, Na and K,
which are miscible in the liquid state over the entire range
of concentration. This system has been selected because it

- has long been known that the thermodynamic properties
of homogeneous liquid alkalis, and their alloys, are quite
accurately treated within the formalism just outlined, and
because the density-functional theory in the gradient ap-
proximation gives rather good results for the surface ten-
sion of the pure liquid alkalis. While experimental data is
more readily available for the polyvalent alloys at present,
the gradient theory has not yet achieved the same results
for the pure polyvalent liquid metals.

The calculation of the surface tension of the alloy in-
volves three steps: (i) evaluation of the terms in the free-
energy density and the gradient coefficient, (ii) evaluation
of the chemical potentials appropriate to the concentra-
tion and pressure of interest in the bulk liquid (usually the
pressure will be atmospheric pressure effectively zero
pressure in comparison to the energy scale of the other
terms in the free energy), and (iii) minimization of the
free-energy functional to obtain the surface tension. This
last step could, in principle be done exactly by writing out
the Euler-I. agrange equation appropriate to the minimiza-
tion and solving it directly. In practice, this would be a
very difficult undertaking, and we have chosen to mini-
mize the surface tension with respect to a surface density
profile that depends on one or two parameters only.

To carry out the minimization, we parametrize the in-
terface in terms of n (z) and x (z), the position-dependent
density, and concentration of component 1. For the den-
sity profile, we use the following function:
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xo+xs xo —xsx (z) = ' + tanh(z j]]]),
2 2

(26)

where x, is a variational parameter and w is the same
width parameter as in (25). (Allowing a different width
parameter m' would be more reasonable, but leads to a
computationally more difficult three variational parame-

ters in the surface tension functional. ) We note that the
hyperbolic tangent concentration profile has the correct
asymptotic exponential behavior in both liquid and vapor
limits, as predicted by Widom. "

With these parametrized profiles, the expression for the
surface tension [Eqs. (2) and (4)] is readily minimized
with respect to the two unknown parameters w and x„
the results are as follows:

r(x, ) =2[3 (x, )8(x, )]'i

]]](x, ) =[8(x, )/2 (x, ) ] '~

] f [n(y), x (y)] —[six(y)+F2[1—x(y)] In (y)
A(xg)= f Gfg—1 y2

n (y) = —,
' ni(1+y),

x (y) = —,
' (xo+x, )+ —,

'
(xo —x, )y,

8(x, ) = ,
'

n] [1—].,rf+ —,
'

(xo —x, ) I].],
IC=E]](n] ) —2I].]z(n],n2)+%2'(n2),

X,ff =K]](n] )x +2K] (2r1],ng) x(1 —x)+K22(112)(1—x)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

TABLE I. Input parameters used in the calculation. The
columns represent the density at melting temperature ( T =371
K) of Na, empty core radius r;H used to fit the zero-pressure
density.

Na
K

n&ao

3.598
1.861

1.69
2.226

riH /p

1.08
1.12

I 1n] and n2 are chosen to be 2 n]xo and z n](1 —xo).
In applying these results to Na„K& „, we have made

the additional assumption that the atomic volume of the
alloy is a linear function of concentration ("Vegard's
law"). In principle, the actual variation of atomic volume
could be computed directly using the present formalism,
but previous work on homogeneous liquid alloys has sug-
gested that other quantities of interest (the heat of mixing,
for example) are not significantly affected by the assump-
tion that the atomic volumes. vary linearly, and so, in the
interest of computational convenience, we have assumed
the same here.

Table I shows the input parameters for K and Na used
in carrying out our calculations. The core radii r; are tak-
en from Wood and Stroud, and were determined there
from fits to resistivity of the pure liquid metal. The core
radii r;H are chosen so as to give the correct zero-pressure
density of the pure liquid metal at melting. The only oth-
er parameter required is the exchange-correlation function
G(k) used in calculating the dielectric function; we have
followed Wood and Stroud in using the Hubbard-
Geldard-Vosko interpolation scheme for this function, as

described in Ref. .9. Note that the core radii and densities
are the only input parameters to the problem; everything
else (free energy of the bulk liquid, surface tension of the
pure constituents, and variation of surface tension and
surface profile of the liquid alloy) is computed from first
principles.

The surface tension of liquid Na„K, „ is plotted in
Fig. 1 as a function of concentration for a number of dif-
ferent temperatures. In all cases, we have found that the
"surface concentration parameter" x, =0, giving max-
imum surface segregation. In order to compare with the
effect of no surface segregation, we show also in Fig. 1 the
result of using a constant-concentration profile (x, =xp).
As is clear, the curves with a hyperbolic tangent concen-
tration profile show the expected rapid drop of r near
x =1 (small concentration of the low-surface-tension K
impurities), while the constant-concentration-profile curve
does not.

Figure 1 also makes clear the effect of temperature.
The influence of surface segregation is more pronounced
at low temperatures than at high temperatures (it would
eventually become very small at sufficiently high tempera-
tures). This behavior is expected since at the lower tem-
perature the contribution to r is dominated by surface en-
ergy, which will be smaller if the surface is more popu-
lated by the smaller-v. component. At higher tempera-
tures, the effects of surface entropy would be expected to
decrease the segregation.

To show the segregation effect more directly, we plot
the density profiles of each of the components in Figs. 2
through 5. When xo) 0.5, the density of potassium,
nK(z), develops a maximum; this maximum is most dis-
tinct at x=0.02, indicating very strong segregation of K
to the surface at this concentration.
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FIG. 1. Calculated surface tension ~ (dots) of Na„K~ „as a
function of the concentration x. The curve labeled as constant
concentration shows the results of assuming concentration con-
stant through the surface. All the other curves are results of us-

ing hyperbolic tangent concentration profile at different tem-
peratures. Also shown are the experimental surface tensions of
pure K and Na.
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FIG. 3. Same as Fig. 2 but for xN, ——0.6.
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FIG. 2. Density profile of the compounds of Na K~ „at
T=371 K. The vertical axis is normalized to the bulk density.
The horizontal axis shows the distance into the bulk liquid.
This graph is plotted for xN, ——0.2. FIG. 4. Same as Fig. 2 but for xN, ——0.8.
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tension impurity. The latter effect is in agreement with
present predictions. Figure 6 shows the calculated surface
concentration of Sn, as deduced from the experimental
surface tension and a monolayer phenomenological sur-
face model as discussed below, plotted as a function of the
bulk concentration. This surface concentration is in
agreement with the value of x deduced from Auger elec-
tron spectroscopy of the surface. '

The present dramatic segregation effect at x —1 in
Na„K~ can be qualitatively understood, just as can the
results for Ga„Sn& „,by the so-called surface monolayer
model. This model assumes that the alloy consists of a
bulk with concentration x, and a single monolayer of sur-
face with concentration x . Simple thermodynamic rela-
tions then lead to the following result as shown in Ref. 14:

0.2—
x2+x(A)I 2

(I)

X2 = (I)1+(Ai —Az)xil z
(35)

0
-IO 0 5

Distance into Liquid (aQ)

FIG. 5. Same as Fig. 2 but for xN, ——0.98.
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%'hile there are no experimental data available for the
alloy system considered in this paper, the experimental
surface tension has been carefully measured as a function
of concentration for the polyvalent liquid alloy system
Sn„Ga~ ~, which is miscible over the entire concentration
range. ' This alloy system shows (i) an apparent
minimum in surface tension as a function of concentra-
tion, possibly associated with an approaching phase
separation, and (ii) a dramatic drop in surface tension near
x =0, i.e., a small concentration of the low-surface-
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FIG. 6. Surface concentration x of S„as a function of bulk
concentration x at T=623 K for liquid metal alloy Ga& „Sn„.
This result is taken from Ref. 13.

FIG. 7. Calculated surface concentration xK (dots) of I( as a
function of bulk concentration x~ at T=371 and 600 K for
liquid metal alloy Na~ „K„.
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(]) 1 O'7
r2 =—

kgT Blna2 z-, ,
'

where a ~ is the thermodynamic activity defined through

(36)

p,- =@0+k~T lna, (37)

and p; is the chemical potential of pure component i.
In the dilute limit (x2-0), a2=xq (Henry's law), and

Eq. (35) becomes

where A, and A2 are atomic areas, i.e., areas per atom of
types 1 and 2. The relative adsorption I 2" of component
2 with respect to component 1 at the surface is given by
the Gibbs equation

With our calculated results for surface tension r as a func-
tion of x in Fig. 1 and approximation of A;,=n;, we
can compute x as a function of x for Na„K& „. The re-
sults are shown in Fig. 7. The behavior displayed in Fig.
7 is similar to the experimental results of Fig. 6, although
the former is expected to be good for the dilute case only.
The effect of temperature on surface segregation is clearly
demonstrated here; for xx ——0.05, xz ——0.4 at T =371 K,
whereas xz ——0.3 at T =600 K.

Finally we note that the segregation effect discussed in
the present paper can also be studied by constructing a
lattice-gas model for the liquid-vapor interface of an al-
loy. %'ork along this line is in progress.

x(1—x)A i

kg T Bx

x (1—x)(A i
—A2)

kg T Bx
(38)
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