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A theoretical study is carried out on the transfer of electrons at the edge of a microstructure,
where electrons may cross between a region of quasi-two-dimensional dynamics and a "contact re-
gion" of three-dimensional dynamics. Forking in the one-electron, effective-mass approximation, a
formal solution is found for a model having a general profile for the confining potential in the two-
dimensional region. The general form of the threshold behavior is found for ejection probabilites
and injection cross sections. Numerical results are obtained for the case of a parabolic confining po-
tential.

I. INTRODUCTION

Semiconductor microstructures, such as metal-oxide—
semiconductor field-effect transistors (MOSFET's),
Al„Gai „As/GaAs heterojunctions, and ultrathin p n p--
doping layers, have provided researchers with a tool to
study quasi-two-dimensional electronic systems. '* The
electrons are dynamically two dimensional in the sense
that their motion is unrestricted in two spatial dimensions
but quantized by a confining potential in the third dimen-
sion. Each electronic band of the bulk system is split into
a number of two-dimensional subbands corresponding to
quantum levels of the confining potential.

The properties of electrons in such two-dimensional
structures have been studied extensively by transport and
magnetotransport measurements. ' In these experiments
the microstructure is usually in the form of a channel
which is terminated at opposite edges by uniformly doped
regions in the semiconductor that serve as contacts. In
the contact regions the electrons' dynamical behavior is
bulklike. At the source end, a net current of carriers is in-
jected from the contact region into the channel; at the
drain a net current is ejected from the channel. Both in-
jection and ejection involve a change in the dynamic
behavior of the electron between two and three dimension-
al. In this paper we study these processes in detail.

A correct treatment of ejection from or injection into
the channel must be explicitly quantum mechanical. For
example, an electron approaching the (channel-drain) in-
terface from the channel side has unit classical probability
of being ejected into the drain. Quantum mechanically,
the ejection probability is, in general, less than unity; there
is a finite probability of reflection at the interface. The
ejection probability depends on the incident subband, and
the carrier may be reflected into a different subband of
the channel. We will call the determination of the various
reflection and ejection probabilities the ejection problem.

In the complementary injection problem, in which an
electron in the source approaches the (source-channel) in-
terface, the classical theory predicts a single cross section
for injection into the channel. One quantum-mechanical
effect is to raise the threshold energy: the classical thresh-
old is determined by the minimum of the confining poten-
tial; the quantum threshold is raised above this by the
zero-point energy of the ground state. Furthermore, one
may define cross sections for injection into individual sub-
bands, and the total cross section exhibits structure re-
flecting the presence of the subbands.

In present state-of-the-art semiconductor microstruc-
tures, the transition from the (three-dimensional) contact
region to the (two-dimensional) channel is gradual in the
sense that the mean free path of the electron is short com-
pared to the length over which the confining potential
changes from zero to its full value. Therefore, quantum-
mechanical effects which require a wave coherence length
larger than the transition region have not, to our
knowledge, been observed. However, current trends to-
ward increased sophistication in crystal-growth and pro-
cessing capabilities lead us to expect that the transition be-
tween the channel and the contact regions will become
sufficiently sharp in the near future for the effects dis-
cussed here to become observable.

In the next section a fairly general model is described
which we will use to study the ejection and injection prob-
lems. In Sec. III this model is solved formally. The con-
nection is made with observable quantities, and some ex-
act properties of the solutions are found, including the
behavior at energies near subband minima.

In Sec. IV we treat the specific case of a parabolic con-
fining potential. Accurate numerical solutions are found;
because the problem can be solved in dimensionless form,
the results found describe the behavior for all choices of
effective mass and well size. Section V is a discussion and
summary.
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An alternative formalism, equivalent to that described
in Sec. III, can be developed along the lines of convention-
al scattering theory. This approach is described in the
Appendix.

II. MODEL

We will work in the single-particle approximation. The
charge carrier will be treated in the effective-mass approx-
imation, with a single effective mass throughout. The re-
striction to a single mass is most appropriate for doping
structures in a horn. ogeneous host material. It is also
applicable to heterostructures if the band offset is suffi-
ciently large to confine the carriers effectively to one ma-
terial.

A single electronic band will be considered. The
present model will thus be more immediately applicable to
the conduction band than to the valence band, which for
typical semiconductors consists of overlapping light- and
heavy-hole bands.

Scattering will be neglected. Thus, our treatment will
be valid only in a region within a mean free path of the
interface. The transition probabilities and cross sections
to be determined in succeeding sections then serve to
match currents across the interface; the distributions of
charge carriers on either side are determined by a
Boltzmann-equation treatment far from the interface.

In the context of the stated approximations, the con-
finement of the electron is described as arising from an ef-
fective potential. We will define a potential sufficiently
general to include any quantum-well profile, but having
an abrupt transition between the channel and contact re-
gions (see Fig. I). Calling z the direction perpendicular to
the channel (the confining potential varies with z), and
placing the interface along x =0, we write
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Here, 6 is the unit step function: 6(y) = 1 for y & 0,
6(y) =0 for y& 0. Similarly, a basis in region II is given
by

exp(+iok~)6(+x)
~
v& .1

27r
(4)

The wave vectors in Eqs. (3) and (4) have the values
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Motion in the y direction is trivial and the kinetic energy
for motion in that direction is left out of the Hamiltonian.

The normalized eigenstates of H' will be labeled by a
lower-case Latin character. Only m and n will be used:
H'~ n ) =E„~n). Generally, the quantum well will be
chosen to lie in 'region I (x&0), so the lowest-energy
eigenstates

~

n ) form a discrete set.
Normalized eigenstates of H ' will be labeled by a

lower-case Greek character; p and v will be used:
H'

~
v)=E„Iv). In the approximation that motion in

region II (x & 0) is unbounded, the states
~

v) form a con-
tinuous set. Except where a particular basis has been
chosen, however, we shall use the notation of a discrete set
for normalization of and sums over the states v.

Both sets I ~ p ) I and I ~

m ) I are chosen to be complete
orthonormal bases. Since the total Hamiltonian K, re-
stricted to a single region (x &0 or x&0), is separable, a
complete basis of product states can be found for each re-
gion. For total energy E (excluding kinetic energy in the
y direction), these are

~

n, o ), o =+1 in region I, defined
(using the coordinate representation for the x direction
only) by
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FICx. 1. Schematic of the interface region.
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where the "positive" square root is taken (i.e., k =r or ir,
where r is real and non-negative).

With the given convention for the square root, states
with o.= + 1 either have momentum in the direction
away from the interface at x=0 or decay exponentially
with increasing distance from the interface. Conversely,
cr= —1 corresponds to motion or decay toward the inter-
face. The physical eigenstates are bounded at infinity, so
for imaginary wave vector the states with o = —1 are ex-
cluded. It should be noted that for convenience in writing
superpositions, the states

I n, cr ) and
~
v, cr ) have been de-

fined by (3) and (4) for all x, although each state is zero in
one or the other region.

We wi11 take an approach similar to that used in solving
muffin-tin models in band structure and similar to the R-
matrix approach in nuclear and atomic scattering. The
solutions

~ P ) of the Schrodinger equation with Hamil-
tonian K are most naturally described as superpositions of
the

~
n, o) in region I and of

~

v, cr) in region II. A solu-
tion valid, throughout space is determined by satisfying
the continuity conditions

(( ~y&)„, =(( ~y&)„,
and
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(x IP)
x=0

&x IP&
x =0+

(7)
with matrix elements F „=(m IF I

n). Equation (9)
may now be interpreted as a transformation rule, demon-
strating that the F&„——(p I

F
I
n ) are different matrix ele-

ments of the same operator.
If we define operators

III. FORMAL THEORY

A. Wave functions

For the ejection problem we seek energy eigenstates
consisting of a carrier incident on the interface in the state

I
n, —) plus a weighted sum over the outgoing states

(
I

m, +), Ip, +)) into which the carrier scatters. We
write

and

k'—= g Im)k (m I,
m

k"—= X ls &k, &s I

K = —,
' (k'+k"),

(12)

(14)

I
4'+'&= In —

&
—In +&+ g Im + &F .k.

+& Is +&F„„k„, (8)

then Eq. (10) becomes 1 =KF, and the solution (8) is com-
pletely specified by

(15)

g I
m)F „=g I p)F„„

I2n ) = g k
I
m )F „+g k„ I p )F„„, (10)

respectively.
The state

I

g'„+') is defined only for those n with real
wave vector k„(E&E„);F coefficients for other n have
not been defined. There is nothing to prevent our defining
the latter, however, by an extension of (9) and (10) to all
n We can then de.fine a linear operator

with expansion coefficients F „, describing reflected
waves, and coefficients F„„,describing ejected waves, to
be determined by the conditions (6) and (7). Most of the
coefficients F~„and F» are amplitudes for nonpropagat-
ing waves (wave vectors k~, k& are imaginary). These
amplitudes do not describe any net stationary current, but
they are needed to satisfy the continuity conditions.

The sum over m in (8) includes a term with m =n; an
extra term —

I
n, + ) is included explicitly in (8) to sim-

plify the equations which determine the F coefficients.
There is also a physical motivation for the form chosen.
If one defines an "unperturbed" version of the problem by
placing an infinite potential barrier at the interface, then
one may define

I
n, —) —

I
n, + ) to be the "unperturbed"

eigenstates in region I. The (large) perturbation of remov-
ing the barrier (to restore contact between the regions) in-
duces scattering out of the unperturbed states. The F
coefficients in (8) describe the rate of scattering out of the
state

I
n, —) —

I
n, + ). In this picture, —

I
n, + ) is the

part of the unscattered wave "beyond" or after the scatter-
ing region x=0. The wave

I
n, +)F„„k„is the analog

here of the forward-scattered wave in ordinary potential
scattering. These ideas are made more precise in the Ap-
pendix, where an S-matrix approach is developed.

We now apply the continuity conditions (6) and (7) to
the state described by (8), obtaining

For the ejection problem we can define, in analogy with
(8) for the injection problem, a state

Ig,'+')= Iv, —) —Iv, +)+g IM, +)FMp„, (16)

which satisfies the boundary condition that the incident
component of the wave function at infinity is

I
v, —) . In

Eq. (16) and below, capital letters (M,N) are used to label
energy eigenstates and their eigenvalues for either H' or8". A sum over M will mean, unless otherwise indicat-
ed, a sum over all m and all p.

The same procedure used to find the FM„shows that
the FM„are matrix elements (M

I
F

I
v) of the operator F

given by Eq. (15).

B. Formal properties of the solutions

I. Reciprocity relations

The full model Hamiltonian H, as well as H' and H",
is invariant under time reversal, which gives rise to re-
ciprocity relations among the matrix elements of F.
These are most easily derived by choosing the wave func-
tions (z

I
M) to be real. In this case the transformation

matrix (m
I p) is orthogonal, making K „, and hence

F „, symmetric. All reciprocity relations can be derived
by means of basis transforrnations from the symmetry of
F in a real basis.

For any pair of time-reversal-invariant states M and N,

IFMzv I

= IF~M I
(17)

because such states are proportional to real states. It is
noted that, for a one-dimensional Hamiltonian, all states
bound at positive or negative infinity are nondegenerate
and thus time-reversal-invariant. In particular, this im-
plies that relation (17) holds for any pair of discrete states.

Of special interest is the case of a constant potential in
region II, for which it is convenient to choose momentum
eigenstates

F= g Im)F „(n I,
m, n

&z
I
p&= exp(ipz),

1

v'2~ (18)
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with transverse (i.e., z-component) momentum fig. The
states

I p) and
I

—p) go into each other under time re-
versal. Thus,

IF„„I'=IF .
and

IF„NI'= IFN, „I' (20)

for a state
I
N ) invariant under time reversal.

Reflection across the x axis also reverses the transverse
momentum, so for a symmetric confining potential
[ V (z) = V ( —z) ] symmetry under the simultaneous
operations of time reversal and reflection extends the va-
lidity of (17) to include momentum eigenstates among the
possible M,X.

The eigenstates of a one-dimensional Hamiltonian are,
at most, doubly degenerate (degeneracy occurs when the
energy exceeds the potential at both positive and negative
infinity). Thus, the most general reciprocity relation,
valid for any choice of basis, is

X(IFNN I' —IFNN I')=o
where the sum runs over either one or both state(s)

I
N)

in a region with the single energy E, and the one or two
states

I
N') (in the same or different region) with energy

Et

k„ 2
Rmn =

I
~mn Fnmkm

Ik
(25)

that a carrier in the mth subband will be reflected back
into the nth subband (when k„ is real). By the reciprocity
relation (17), the off-diagonal (out-of-subband) reflection
probabilities are symmetric: R~„=R„~.

For a general potential in region II, expressions similar
to (25) can be found for the transmission probabilities. As
we are considering only the case of zero potential
( V"=0), we adopt a basis of momentum eigenstates [Eq.
(18)]. Using polar coordinates in region II (x =rcos8,
z =r sinO,

I
8

I
& n. /2, r & 0), a stationary-phase analysis

of
I

1('+') at large positive x yields

tain one carrier, so ejection from a particular subband is
described in terms of probabilities of reflection into vari-
ous allowed subbands and in'terms of an angular probabil-
ity density for ejection (generically, transition probabili-
ties). In region II, eigenstates

I p) must be normalized
not to a number but to a (lineal) density of carriers.
Therefore, the injection problem is concerned with cross
sections (having units of length) for injection into various
subbands, and a differential cross section for scattering.

We consider the ejection problem first. The current
density of the ingoing and outgoing parts of

I
@'m+') is in-

tegrated over a surface at x &0 to find the incident and
reflected fluxes. The ratio of these is the probability

2. Optical theorems

The solution (15) for Fyields the identity

F+Ft=Ft(Kt+K)F . (22)

' 1/2

P'+'- f (8)cosOexp[i(Qr +m./4)], (26)
- 2&r

FN'N +FNN' $ FMN'FMN kMI (23)

where the prime on the sum over M indicates that the
sum is over all states with real wave vector kM (E & EM ).
For N'=X, this becomes

2Re(FNN) = 2'
I FMN I

'kM ~ (24)

In the terminology of formal scattering theory, (23) and
(24) are the generalized optical theorem and the optical
theorem, respectively [see remarks following Eq. (A12)].

C. Kinematics

Having found wave functions appropriate to the ejec-
tion and injection problems (Sec. IIIA), we now seek to
relate experimentally accessible quantities to the matrix
elements of F which describe these wave functions. For
this section we will consider a confining potential in re-
gion I that has only bound states [ V (z)~ ao as

I
z

I
~ oo] and a potential in region II that is identically

zero.
The different dynamics of the two regions lead to

descriptions of the phenomena in terms of two different
kinds of quantities. In region I the eigenstates

I
m)

describing transverse motion may be normalized to con-

The N, N' matrix element of (22) can be expressed [using
Eqs. (12)—(14)] as

where Q =(2mE/A )'/ is the total wave vector of a car-
rier in region II, and fm(8) =F&m for p=Q sinO. Thus, a
carrier approaching the interface in the mth subband has
a probability

T (8)dO=k Q cos 8
I f (8)

I
dO (27)

of being ejected into a small angular range dO about the
angle 8.

The conservation of probability current can be ex-
pressed as

Q'R „+J T (8)d8=1 (28)

A (8)=2mQ Re(k )cos 8
I

f' (8)
I

(29)

where fm(8) =Fm &»„e. The reciprocity relation (20) im-
plies that

I

f' (8)
I

=
I f (8) I, so that

Am(8) = Tm(8),

and the angle-averaged cross section for injection into a

(the prime indicates that the sum is over states with real
wave vector k„). This also follows from the optical
theorem (24).

We now consider the injection problem. Injection cross
sections are defined as ratios of injected flux to incident-
flux density. The cross section for injection into the mth
subband from a carrier incident with total momentum iiiQ

from the 8 direction is
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subband m (A~) is 2/Q times the total probability of
ejection from the mth subband. As the total ejection
probability is bounded above by 1, this imposes a "unitari-
ty limit" of 2/Q on A~. Because the classical ejection
probability is 1, we shall call this the "quasiclassical"
upper bound.

In general, a carrier in the contact region has a nonzero
cross section for being reflected nonspecularly (scattered)
from the interface. It is noted that for the particular
model chosen here, in which the potential change at x=O
is abrupt, the classical prediction is of zero differential
scattering cross section.

D. Threshold behavior

As the total energy E increases through the minimum
of a subband m, a new "channel" (in the sense of scatter-
ing theory) becomes available: For E &E~, the initial
and/or final state may be in the mth subband. The ener-

gy E is called a threshold.
Some quantities, such as R „and A (8=0), are unde-

fined or identically zero below E~ and must exhibit some
nonanalytic threshold behavior. The matrix elements of F
are constant to lowest order in E E, so in E—q. (29) the
dominant threshold behavior arises from the factor
Re(k ) =k 8(E E)—, and A (8=0) increases as
( E E~ )

'~ abov—e threshold. Similarly, the angle-
averaged injection cross section A and the probabilities
for ejection and out-of-subband reflection involving the
mth subband all grow asymptotically as the one-half
power of E E~ above —threshold.

This threshold behavior is controlled by explicit factors
of k in the expressions for cross sections and transition
(i.e., ejection, reflection) probabilities. Thus, it is associat-
ed only with processes having the initial state or final
state, or both„ in the new subband; we call these threshold
effects kinematic.

There is also threshold structure associated with singu-
lar variation of F. By expanding Eq. (15) in powers of the
small quantity k~, one finds

F~~ Fiv~' —(2m/h ——)' Fg~F~~ (E E~)'—
+O(E E„), —

with the square-root convention of Eq. (5), and
F'"=F(E=E~). The first-order correction in (31) gives
rise to an asymmetric cusp in the probabilities (or cross
sections) for all processes which involve initial and final
states both coupled to the mth subband. (That is, F&
and E ~ both nonzero; this is assumed to be the case un-
less forbidden by symmetry. )

In terms of a perturbation theory (such as one associat-
ed with the S matrix of the Appendix), the cusp in F re-
sults from intermediate states in the mth subband; we call
the associated threshold effects dynamic.

confined region), in which

K „=—k 5 „+g(m
~
p)k„(p ~n)

F„„= g (p ~
m)F„„. (33)

With this convention, it can be shown that the operator
identity (22) holds, so the truncation approximation satis-
fie the optical theorems.

The reciprocity relations (Sec. IIIB1) also hold identi-
cally in the truncation approximation. These were proven
for the exact F to follow from certain symmetry proper-
ties of F, and it is easily confirmed that the same sym-
metries hold in the present case.

B. Example of parabolic confining potential

As a concrete example, we now choose the confining
potential to be parabolic and let the potential in region II
be zero:

mcoyi( )
Pl CO2'' (34a)

If K „were diagonal, then its inverse, F „,would also
be diagonal, with its diagonal elements the inverses of the
corresponding elements of IC. Equivalently, one may say
that inversion of K commutes with projection of the ma-
trix into a space spanned by an individual eigenvector.

In practice, the magnitudes of the elements X~„ tend to
decrease with increasing distance from the diagonal
m =n,, so that there is only-a small matrix element direct-
ly connecting distant levels. This suggests a natural ap-
proximation scheme based on the assumption that inver-
sion commutes approximately with projection into a
moderately large subspace.

For the example discussed in the following section, this
idea was implemented by defining a finite square X „
matrix for index values up to some chosen truncation lev-
el Nz. m, n &Nr. The finite matrix is readily inverted to
give an approximation to F „. This truncation approxi-
mation is particularly useful because the reflection proba-
bilities are described completely by the finite set of F „
corresponding to real k~, k„("small" m, n).

The truncation approximation can be improved sys-
tematically by increasing the truncation level. Observa-
tion of the convergence of F as the truncation level is in-
creased can be used to estimate the accuracy of the pro-
cedure.

We take all matrix elements E~„not explicitly calculat-
ed at some truncation level (i.e., for m or n &Nr) to be
identically zero. With this choice, other matrix represen-
tations of the operator F are defined consistently in the
truncation approximation by the usual transformations
from the purely discrete representation. For example,

IV. NUMERICAL RESULTS V (z)=0. (34b)

A. Truncation approximation

We shall find it convenient to solve for E in the discrete
representation (corresponding to the basis of states in the

In a semiconductor microstructure one may think of
the parabolic potential as that produced by the space
charge of a thin layer of ionized donors sandwiched be-
tween layers of ionized acceptors (p-n-p structure). '
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We choose fuu to be the energy unit, so H has energy
levels E„=n+—,', n =0, 1,2, . . . . With the length unit
chosen to be (A'/me@)'~, the Hamiltonian takes the form

r

1 a' a'
H = —— + +-,'z'e( —x),

BX2 Bz2
(35)

which contains no adjustable parameters.
The total Hamiltonian H has reflection symmetry

about z=0, so parity is conserved. Since eigenstates
~

n )
of H have parity ( —1)", I'~„ is zero unless n and m are
both even or both odd. Physically, this means that a car-
rier in the channel can be reflected from the interface only
into a subband of the same parity. It also means that
dynamical threshold effects at E =E will not be ob-
served in reflections into states of parity opposite that of
state m.

From a computational point of view, reflection symme-
try allows one to apply the truncation approximation
separately to the even and odd states, avoiding the calcu-
lation of matrix elements that are identically zero and di-
minishing both computation time and storage space by a
factor of between —,

' and —,'.
Another computational advantage is associated with the

symmetry of the confining potential under an interchange
of momentum and coordinate: The wave functions have
the same form in the momentum as in the coordinate rep-
resentation. Thus, the transformation matrix (p

~
m) to

harmonic-oscillator eigenstates of momentum p, needed
to determine k~„, does not require a separate computa-
tion.

We have computed the amplitude matrix F in the trun-
cation approximation, using ei.ght even and eight odd
states. For the energies investigated (0 & E & 12), the
values of the matrix elements F~„converge quickly with
increasing truncation level. For the energies plotted in the
curves below, errors in computation of probabilities are
believed to be smaller than 10

Reflection probabilities are plotted in Fig. 2 for energies
between 0.5 and 4.0. The diagonal reflection probabilities
(R„„) fall off quickly with energy from the threshold
value of unity; off-diagonal reflection probabilities in-

crease quickly at threshold. Both effects follow the pre-
dictions of kinematic threshold behavior described in Sec.
III D.

For comparison, we consider a one-dimensional (1D)
analog of the present model, in which an electron moves
in a potential V(x)= Voe( —x), with Vo&0. This prob-
lem is easily solved; the probability of reflection for a car-
rier incident from x & 0 (region I) is given by

1 ~o
R ~D ——tanh —ln 1—'4 E (36)

This one-dimensional reflection probability has the same
form of threshold behavior as the three-dimensional re-
sult.

For an estimate of the reflection probability from sub-
band n, we choose Vo E„. F——or the range of energies
studied here, R,D was always greater than the total reflec-
tion probability, typically by a factor of about 2—3. This
approximate tracking of one- and two-dimensional
behavior covers a range of 4—5 orders of magnitude in re-
flection probabilities and a range in energy of from 0 to
12.

The one-dimensional model clearly does not have a pro-
cess analogous to off-diagonal (out-of-subband) refiection.
It is striking that the off-diagonal reflection probability
can be quite large. A carrier in the zeroth band, with en-
ergy greater than —1.01E2, is actually more likely to be
reflected back in the second subband than in the original
subband. The ratio of off-diagonal to diagonal refiection
probabilities falls off with increasing subband index and
also (slowly) with energy.

The total angle-averaged injection cross section
(A= g A~ ) is plotted as curve (a) in Fig. 3 for energies
between 0.0 and 5.0. For comparison, the corresponding
classical prediction (for the same Hamiltonian) is also
plotted [curve (b)]. The classical cross section A, i is found
to be (2E)'~ by noting that the classical condition for in-
jection is that the kinetic energy associated with motion in

0-
I—

CQa
O l0~
K)

CL

O
I—

LLI

lO 4-

0.5 f.5

Roe

2.5

O
I—

LLI

40 2
O
Ck:

O

ENERGY

ENERGY

FIG. 2. Reflection probabilities involving the lowest few sub-
bands. Energy is in units of the subband spacing.

FIG. 3. (a) Total cross section for injection, averaged over an-
gle of incidence, in dimensionless length units as described in the
text. (b) Classical value of same. (c) Quasiclassical upper
bound.
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the negative x direction be greater than the increase in po-
tential energy ( V') at the point of impact on the interface.

The quantum-mechanical cross section follows the gen-
eral upward trend of the classical cross section, but has
additional features associated with the subband structure.
A part of this may be thought of as arising from a phase-
space factor, which reflects the number of available injec-
tion states. The quasiclassical upper bound on A, which
is 2/E'~ multiplied by the number of energetically acces-
sible subbands, exhibits the general steplike behavior asso-
ciated with the subband structure; it is plotted as curve (c)
in Fig. 3. Because the number of subband minima with
energy less than E is about equal to E/fm, the quasiclas-
sical bound is asymptotic to the classical cross section at
high energies. The actual cross section comes close to the
upper bound, reflecting the fact (cf. Fig. 2) that the ejec-
tion probability approaches unity quickly.

The initial rise in the cross section above each threshold
is again a kineinatic threshold effect. Dynamic threshold
effects that can be distinguished from kinematic ones are
again small.

V. SUMMARY AND DISCUSSION

We have solved formally a model for a sharp interface
between a channel in which electrons are confrned to
move in two dimensions and a contact region in which
their motion is unconfined. Expressions were found for
injection cross sections and various transition probabili-
ties. Choosing a parabolic confining potential, we have
obtained numerical results for energies on the order of
0—12 subband spacings.

Rigorous qualitative results include the finding that, at
energies just above a subband minimum E, cross sec-
tions and-transition probabilities involving the mth sub-
band exhibit kinematic threshold singularities proportion-
al to (E —E~)'~ . There are useful reciprocity relations
which lead, inter alia, to an upper bound on the injection
cross. section that does not depend on details of the con-
fining potential.

Numerical results indicate that good electrical contact
is established between the bulklike contact region and a
subband in the channel at energies not far above the sub-
band minimum. A measure of this is the approach of the
ejection probability to unity, or equivalently the approach
of the injection cross section to its quasiclassical upper
bound. The subband structure is reflected in the steplike
variation of the injection cross section as a function of en-
ergy.

Off-diagonal reflection (reflection back into the channel
accompanied by a change of subband) is the dominant re-
flection mode at most energies for carriers approaching
the interface in the lowest subband. The extent of off-
diagonal reflection decreases with increasing subband in-
dex.

The numerical results obtained for the parabolic confin-
ing potential are expected to be qualitatively correct for
nonparabolic potentials. If the potential is approximately
parabolic, then quantitative results should be approxi-
mately correct if the subband spacing is used as the ener-
gy unit fuu and if cross sections are scaled by the length

unit (R/me@)'~ .
The selection of a model with a sharp interface is most

appropriate for situations in which the electron wave-
length is long compared to the width of the actual inter-
face. The present results should be qualitatively correct,
moreover, when the wavelength is shorter.

The key approximation limiting the validity of this
work is the neglect of scattering. It is necessary, for any
of the present results to be valid, that the mean free path
be long compared to the width of the transition between
channel and contact regions.
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APPENDIX: S-MATRIX THEORY

Hp =H + Vp5(x—), (A 1)

which we call the unperturbed, or uncontacted, Hamil-
tonian. In this language the problem considered previous-
ly becomes the perturbed problem which is created by
adding a perturbation V = —Vp5(x).

A particular basis of eigenstates for the unperturbed
Hamiltonian Ho may be found in the same manner as
previously (Sec. IIIA) for the perturbed Hamiltonian H.
Seeking states identical in form to (8) and (16), we write

I
@/k)= IE, —) —IN, +)+y IM, +)F /k~,N(A2)

where k =k&(E) is explicit to distinguish states of dif-
ferent energy.

The addition of a potential barrier leaves the continuity
condition (6) for the wave function unchanged, so that the
amplitudes F~~ may again be interpreted as matrix ele-
ments of a single (energy-dependent) operator:
FM„=&M IF

The delta-function barrier does, however, introduce a
discontinuity in the wave-function derivative, so that the
derivative matching condition (7) becomes

d
O

(x IP)
.x=O

=Up(x =O
I P),

(A3)

where Uo—=2mVo/A . This leads to a modified equation
for the amplitude operator F:

In this appendix we show how the problem studied in
the body of the paper may be treated by an S-matrix for-
malism resembling that conventional for the scattering of
particles in free space. Rather than develop the whole
formalism explicitly, we shall concentrate on exhibiting
the connection with the F-matrix formalism of Sec. III,
and quote freely some well-known results of formal
scattering theory.

To begin we generalize the model Hamiltonian [Eqs. (1)
and (2)t by adding a delta-function potential barrier at the
interface between the two regions. That is, we define
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Fo=(IC +ivo/2) (A4) The transformation matrix between these bases is called
the S matrix:

Formal scattering theory proceeds by defining scatter-
ing solutions

I
1bIvk'& of the full Hamiltonian that are re-

lated to unperturbed states of the same energy via the
Lippmann-Schwinger equation:

PNk & I ONk & +« H—o+t 1) ~
I gEk &

The Green's functions (E Ho—+iri) ' (with g~0+) are
chosen so that the outgoing (ingoing) states

I
QIvk'&(

I /teak'&) approach asymptotically the unperturbed
state

I /teak & in the remote past (future). In particular,
this means that

I
tttttk'& satisfies the same incident-wave

boundary condition as
I 1bzk &. This is the boundary con-

dition that defines
I

1bIv+'& of Eqs. (8) and (16), so this
latter is identically the outgoing scattering state which
solves (A5). In similar fashion, the incoming states are
found to be

I
ttttk'&= I» —

&
—I»+ &

—g I

M kM &F~—NkN
M

SMk, ttk' &
—ttMk'

I WIvt '& . (A8)

By construction, the S matrix is independent of the choice
of vo of the unperturbed Hamiltonian. (For heuristic
reasons, however, and because some important results fol-
low from taking the limit, it is useful to think of vo~ ao

as defining "the" unperturbed Hamiltonian. ) As it is a
transformation between complete orthonormal bases, S is
unitary:

dk" g SMk ttkSMk» tt k =5tvtv 5(k k') . —(A9)
M

Because energy is conserved, the S matrix is propor-
tional to a delta function in energy:

Sttk, Mk =5~~5(k —k') —2trt 5(E E') Tm—r . (A 10)

In this equation, TNM is the transition matrix, which may
be expressed as

(A6) TtvM=&Pttk I
I'IQMk& . (A 1 1)

& WMk I
eNk' & & PMk I

PNk' & 5M%5(k (A7)

That is, outgoing and incoming scattering states separate-
ly form orthonormal bases. As these bases can be
transformed continuously into a complete basis (that for
vo infinite), and as there are no bound states, it is assumed
that I I

P~q'& I, I I
tbMk'& J are complete bases.

where
I
M, k & stands for

I
M, tr & with k =okM.

If we allow vo to become large, the unperturbed states

I fstk & approach
I
M, kit &

I
M—+kM &, which are

orthonormal. Scattering states have the same orthogonali-
ty relations as the unperturbed states, so

This does not depend on the choice of vo; if vo is allowed
to approach infinity, F&M is asymptotically (2livo)5tvM,
and one finds

fi
TNM ~ +MNkMkN .

27Tl77l
(A12)

Equations (A10) and (A12) establish the correspondence
between the F-matrix and S-matrix formalisms.

The generalized optical theorem is the expression of the
unitarity of the S matrix in terms of the transition matrix
T; using relation (A12), this takes the form of Eq. (23).
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