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Calculation of bulk moduli of diamond and zinc-blende solids
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Theoretical arguments on the role of covalency in determining the bulk moduli of diamond and

zinc-blende semiconductors and insulators are shown to yield a surprisingly simple and accurate ex-

pression for determining the bulk moduli B of these materials. One resulting formula for com-

pounds in the center of the Periodic Table depends only on the nearest-neighbor separation d. It has

the form B= 1761d for B in GPa and d in A.

I. INTRODUCTION

In the past few years, it has become possible' to com-
pute lattice constants, bulk moduli, cohesive energies,
phonon spectra, and other static properties knowing only
the atomic numbers and masses of the atoms composing
the materials. Although applications of these total-energy
approaches have been limited to simple solids and solid
surfaces; in principle, extensions to more complicated
structures appear to be limited only by the availability of
computer resources.

Because the ab initio calculations are complex and re-
quire significant effort, more empirical approaches have
been developed ' to compute properties of materials. In
mary cases, the empirical methods offer the advantage of
applicability to a broad class of materials and illustrate
trends. In many applications, these empirical approaches
do not give highly accurate results for each specific ma-
terial, but they still can be very useful. In particular, the
simplicity of these approaches allows a broader class of
researchers to calculate useful properties, and often trends
become more evident.

In this paper, an empirical calculation of the bulk
modulus B for a specific class of materials is presented.
The theory yields a formula with three attractive features.
Only the nearest-neighbor distance is required as input,
the computation of B itself is trivial, and the accuracy of
the results rivals that of ab initio calculations.

II. THE BULK MODULUS AND COVALENCY

At zero temperature,

Vdp Vd2u

dV dV

where V, p, and u are the volume, pressure, and energy.
For specific models of the attractive and repulsive poten-
tials, Eq. (1) can be used to give reasonable estimates of B
for systems such as inert-gas solids and alkali-halide crys-
tals. ' In turn, experimental measurements of B can be
used to fix the parameters of the models.

For metals, a free-electron gas model ' yields a simple
expression for u and hence B. Dimensional analysis alone
gives a reasonable estimate since it suggests that B should

scale as the Fermi energy EF divided by the volume per
electron. The direct calculation using Eq. (1) and the
free-electron gas energy of , EF per—electron gives

8= —,nEF =
3

6.13 GP (2)

'

where n is the electron concentration and r, is the elec-
tron gas parameter. Although Eq. (2) often gives values
within a factor of 2 of the measured results, it is clearly
far from complete since the effects of exchange, correla-
tion, and the ionic potential are ignored. Full ab initio
calculations for specific metals' which include these
terms give excellent results, and expressions for s pmet--
als based on model potentials have had some success.

In contrast, a similar situation does not exist for co-
valent materials. Neither a simple free-electron gas ap-
proach nor a "6-12" potential model is appropriate for a
covalent system. It can be argued that this class of ma-
terials is the most interesting to study since the largest
bulk moduli (lowest compressibilities) are found in this
group.

To achieve a scaling relation for B similar to Eq. (2) for
metals, it is convenient to use the Phillips —Van Vechten
scheme for determining a suitable energy scale. In the
Phillips —Van Vechten approach, tetrahedral compounds
sharing eight valence electrons per atom pair are charac-
terized by a covalent or homopolar gap E~ and an ionic
gap C. These are related to the electronic dielectric func-
tion and the plasma energy Ez,

E'= 1+ 2 2

E2
(3)

EI, +C
A convenient series of solids to examine using this

model is Ge, GaAs, and ZnSe. For all three, E~ —15.6 eV
and E~-4.3 eV. The dielectric constant change results
from the charge transfer in going from a group-IV to III-
V to II-VI material. According to Phillips, C=O, 2.9,
and 5.6 eV for Ge, GaAs, and ZnSe. Similarly, other III-
V and II-VI compound semiconductor dielectric constants
can be obtained from their homopolar counterparts. An
important observation for studying B is that the lattice
constants of Ge, GaAs, and ZnSe are approximately the
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0

same, i.e., the nearest-neighbor distance 1-2.45 A.
Hence, the lattice constant is roughly independent of C
for this row, and d depends predominantly on Ep, . Ex-
tending this argument to B, it is expected that B will not
depend strongly on C.

The above considerations and the expectation that co-
valency will dominate B suggest that E~ should be chosen
as the energy variable for covalent systems in analogy
with Ez for the free-electron gas case. Since the electron-
ic charge is concentrated in the covalent bond, a reason-
able estimate of this volume completes the scaling for 8
Investigations of charge-density plots9 for covalent bonds
reveal bond geometries of roughly cylindrical shape with
volumes -n(2a~) d, where a~ is the Bohr radius. Using
these values, the above argument gives

8=45 6E&d (4)

0

for 8 in GPa, Eq in eV, and d in A. If the Phillips
values for E~ are used, excellent estimates of 8 are ob-
tained.

Phillips used a scaling argument based on the group-
IV elements to find the dependence of Eq on d for the
whole class of tetrahedral compounds 'sharing eight
valence electrons per atom pair. He chooses EI, propor-
tional to 1 . Using this scaling and Eq. (4), we obtain

8= 1761d (5)

0
where the nearest-neighbor distance d is in A and B is in
GPa. This expressio'n is expected to be appropriate for
group-IV, III-V, and II-VI materials in the diamond and
zinc-blende structure in the center of the Periodic Table.
The effects of ionicity are not included explicitly; howev-
er, the Phillips values for E~ and his scaling relation aver-
age the ionicity contributions.

III. COMPARISON WITH EXPERIMENT

It is instructive first to examine Eq. (4) and the depen-
dence of 8 on E~ for the group-IV materials C, Si and
Cxe. Since the ionic gap C=O in these cases, EI, is
uniquely determined from e and d (which fixes Ez);
hence, we denote EI, determined in this way as Eq(e). The
resulting values for C, Si and Ge are E~(e)=14.7, 5.07,
and 4.06 eV. These differ from the Phillips values of
13.5, 4.77, and 4.31 eV because the latter were chosen to
optimize the results for the broader group of materials, to
force the d scaling of Ez, and to characterize Eq as

an average optical gap. However, for the group-IV ele-
ments, Eq(e) gives very accurate values for 8 when used
in Eq. (4). It is also useful for a given row such as the
first row of the Periodic Table where Eq is expected to be
dominant. The results for C, Si, and Ge using El, (e) in
Eq. (4) are given in Table I. This table illustrates that for
the purely covalent materials, 8 is just a function of e and
d, and it can be estimated to better than 2%. Almost all
the experimental values used in this paper are obtained
from the- Landolt-Bornstein tables. ' To obtain 8 from
the elastic constants, the expression 3B=C»+2C&2 is
used.

Two other materials in the group-IV class are a-Sn and
cubic SiC. Although SiC is partially ionic and in the
zinc-blende structure, this material is often considered to
be part way between a group-IV covalent and a III-V ion-
ic semiconductor. For both a-Sn and SiC, many electron-
ic and structural properties are less well determined than
for C, Si, and Ge. Using the results for Table I for EI, (e)
and the d ' scaling, we can estimate El, (e) and 8 using
only the values of d (2.81'A for a-Sn and 1.89 A for
SiC). The results for 8 are 53 GPa for a-Sn and 211 GPa
for SiC which agree exactly with the standard measured
values. If this approach is used for all of the group IV's,
then EI, -431 ' and 8=1972d . The results for 8
differ from experiment by C—2%, Si 0%, Ge—9%, a-
Sn 0%, and SiC 0%. Clearly, Ge is anomalous in this
series for this type of scaling. One expects C, Si, and SiC
to scale consistently, and it can be argued that Ge is more
metallic, but then o.-Sn should have a lower measured
value of B. To form a consistent series from this point of
view, 8 for a-Sn should be in the 45-GPa range. If this
were the case, it would be appropriate to include a metalli-
zation factor and to analyze the group-IV materials
within a covalent and metallic bonding scheme.

To extend the calculation to all the zinc blendes, it is
advantageous to adopt Phillip's view that C and Si are the
purest covalent systems since there are no ionic and little
d-like or metallic contributions to the bonding. In this
sense, they form a small subset, and his values of E~ are
more universal than the EI, (e) used above. Using these
values or his scaling of EI, with d, Eq. (4) or Eq. (5) give
8 for a broad range of materials. It is possible to change
the coefficient 1761 to 1961 in Eq. (5) to represent E~(e)
as shown above or to consider it a fitting parameter. Here
we rely on the bond-volume argument given previously
and the d scaling of E~ to obtain Eq. (5). The 8
values for the zinc-blende compounds in the center of the
Periodic Table are given in Table II for the III-V com-
pound semiconductors and in Table III for the II-VI com-
pounds.

TABLE I. Calculated bulk moduli for group-EV materials using Eq. (4). The covalent gap Eq(e) is
determined from e and Eq.

C
Si
Cxe

d
(A)

1.54
2.35
2.45

Ep
(eV)

31.2
16.6
15.6

5.5
11.7
15.8

Eq(e)
(eV)

14.7
5.07
4.06

B(calc)
(GPa)

435
98
76

B(expt)
(GPa)

442
98
77.2

Diff.
(%)

1.6
0
1.6
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TABLE II. Comparison of calculated [using Eq. (5}] aud
measured values of the bulk moduli of III-V zinc-blende semi-
conductors.

TABLE III. Comparison of calculated [using Eq. (5)] aud
measured values of the bulk moduli of II-VI zinc-blende semi-
conductors.

d
(A)

8(expt)
(GPa)

8(calc)
(GPa)

Diff.
(%)

d
(A)

8(expt)
(Gpa)

8(calc)
(GPa)

Diff.
(%)

AlP'
AlAs'
AlSb
GaP
GaAs
GaSb
InP
InAs
InSb

2.36
2.43
2.66
2.36
2'.45
2.65
2.54
2.61
2.81

86
77
58
89
75
57
71
60
47

87
79
57
87
77
58
67
61
47

1.1
2.5
1.7
2.2
2.6
1.7
5.6
1.6
0

'8(expt) estimated from an incomplete set of elastic data.

Some systematic behavior is observed in the results of
Tables I and II. For the III-V compounds, the differences
between experiment and theory are less than 3%%uo except
for InP. The discrepancies are five times as large for the
II-VI compound semiconductors. The theoretical esti-
mates are all larger than the measured values for the II-VI
compounds, and the tendency is similar for the III-V
compounds. Although it can be argued that for inany of
these compounds the theoretical-experimental differences
are of the same order as differences between reported
measured values, it is expected that these trends are real.

A likely origin for the above result is the increase of
ionicity and loss of covalency in going from the group-IV
to III-VI and II-VI semiconductors. Because of the larger
contribution of covalency to 8, it is probably the loss of
covalent bond charge which reduces B. The extra contri-
bution of the ionic character of the bond to bonding and
8 is about half of its covalent counterpart. This can be
estimated by examining the I-VII rocksalt compounds '

which are almost completely ionic. Analysis of the results
gives an approximate scaling for these materials

8=5501 (6)
0

where S and d are given in GPa and A, respectively.
Hence, for the values of d considered, the iomc contribu-
tion to 8 is of the order of 40 to 50% smaller. A more
detailed analysis of the ionic contribution to 8 will be
given elsewhere. " The empirical result
8 =(1971—220K, )d is appropriate for the group-IV
(A, =O), III-V (A, = 1), and II-VI (A, =2) semiconductors.

ZnS
ZnSe
ZnTe
Cds
CdSe
CdTe

2.34
2.46
2.64
2.52
2.62
2.81

77
62
51
62
53
42

90
75
59
69
60
47

14.4
17.3
13.6
10.1
11.7
10.6

1972 replaces 1761). With this modification, it should be
possible to investigate the elements in the first two rows.
Materials made from these elements have the largest bulk
moduli and therefore are likely to be the hardest materi-
als.

Starting with the elements 8, C, N, Si, and P, the ex-
pression 8=1972d ' and Eq. (5) give the following
values for the known diamond and zinc-blende com-
pounds in this group (in GPa); diamond (435), silicon (99),
SiC (212), BN (367), and BP (166). To estimate 8 for hy-
pothetical or "proposed" compounds or alloys, the ionic
or covalent radii ' can be used to give an estimate of the
nearest-neighbor distance. For example, if a tetrahedral
compound could be formed between C and N, an estimate
of d would be 1.47 to 1.49 A depending on which report-
ed values of the radii are taken. The corresponding esti-
mate of the bulk modulus would be 461 to 483 GPa,
which is significantly larger than diamond.

Alloys and more complex structures with tetrahedral
bonding may be understood in an approximate way by
taking average nearest-neighbor distances. Interesting
cases are C—BN and C—BP. It should be noted that in
all of the above considerations and estimates ionicity has
been ignored. Including this effect" will weaken the
bond. It is also interesting to note that some researchers
have speculated that the intraplane stiffness (or hardness)
of graphite may be larger than diamond. Since the
nearest-neighbor distance in a layer is shorter in graphite
than in diamond, the expressions used here are to some
extent consistent with this picture. However, the two-
dimensional geometry and the sp bonding make a direct
comparison difficult.
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