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The intrinsic and extrinsic stacking faults along the [111] direction in silicon are studied within
the local-density-functional approach with ab initio pseudopotentials using a plane-wave basis set.
The stacking-fault energy is obtained from first principles and is found to be in reasonably good
agreement with experimental values. Electronic defect states are found within the energy gap. The
defect state with energy 0.1 eV above the valence-band maximum is consistent with photolumines-
cence data. The electron density near the fault is found to deviate only slightly from the perfect
crystal. The Hellmann-Feynman force theorem is used to study the forces on atoms near the fault
and to determine the resulting structural relaxations. It is found that the interplanar separations in-
crease by about 1% to achieve vanishing forces. This relaxation does not affect appreciably the
stacking-fault energy, the eigenvalues, and other electronic properties.

I. INTRODUCTION

The study of the electronic and structural properties of
defects in semiconductors has attracted considerable at-
tention since the 1950’s. Most studies concentrate on
bond-breaking defects such as dislocations and vacancies.
In contrast, there are few investigations of stacking faults
because of the experimental and calculational difficulties
resulting from the small energies involved.

Stacking faults correspond to errors in the stacking pat-
terns without breaking any bonds. In diamond-type crys-
tals like Si and Ge, they are often found to be accom-
panied by other defects. For example, dislocations (which
are line defects) in Si and Ge tend to dissociate into par-
tials and create stacking faults in between; these were ob-
served by Ray and Cockayne' using weak-beam electron
microscopy. One can measure the separations of these
partial dislocations and deduce the stacking-fault energies
from elasticity theory.? Several workers have performed
these measurements subsequently on different types of
dislocations.2~7 The stacking-fault energies obtained were
of the order of 50 erg/cm?. This is an extremely small en-
ergy difference, since 1 erg/cm? is approximately equal to
6X10~° eV/A2 Hence it is difficult to calculate the
stacking-fault energies, however a calculation of this kind
can serve as a crucial test of the accuracy of a theoretical
approach.

Although there are several calculations on stacking
faults in silicon, to our knowledge a completely first-
principles calculation has not been carried out. In the
present work, we employ the density-functional formal-
ism!® in the local-density approximation!® with ab initio
norm-conserving pseudopotentials.!” This approach has
been successfully applied to many metals, semiconductors,
and surface systems to obtain various structural and elec-
tronic properties.!® In this scheme, the only input param-
eters are the atomic number and crystal structure. The to-
tal energies of a perfect crystal and crystals with stacking
faults are calculated separately using the supercell method
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and a plane-wave basis set. By taking the difference be-
tween these energies, an estimate of the stacking fault en-
ergies is obtained. The resultant small energy difference is
at about the limit of the precision of modern theoretical
techniques within this area.

The existence of electronic energy levels within the gap
is another interesting aspect associated with defects. A re-
cent experiment by Kimerling et al.' used charge-
collection scanning electron microscopy to study extrinsic
stacking faults in n-type silicon. They suggested defect
states with energies about 0.1 eV below the conduction-
band minimum. More recently, Weber and Alexander,?°
using photoluminescence spectra of plastically deformed
silicon, observed a stacking-fault state approximately 0.15
eV above the valence-band maximum. The possibility of
defect states and other electronic properties such as the
charge density of defect states will also be discussed here.

When stacking faults occur in a crystal, it is expected .
that the atoms near the faults relax slightly. Using the
Hellmann-Feynman theorem?! to calculate the force on
each atom, we can study quantitatively the extent of this
relaxation. A fully relaxed structure is obtained by using
the calculated directions of the forces to indicate the
motions required for a zero force reconstruction.

II. CALCULATIONS
A. Geometry

We will consider only the standard diamond struc-
ture form of silicon, and in the following sections, the
terms (111) plane and [111] direction are taken with
respect to the cubic fcc lattice. Along the [111] direction,
the atoms follow the stacking pattern of
AA’BB'CC’'AA’'BB'CC’ - - - , where the atomic layer 4’
(B’ or C’) is on top of the atomic layer 4 (B or C) with a
separation equal to a covalent bond length. The separa-
tion between different adjacent double planes, e.g., be-
tween A’ and B, is equal to one-third of a bond length.
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Stacking faults correspond to errors in the stacking se-
quence with the number of tetrahedral bonds per atom
unchanged. We will consider two kinds of stacking faults
in this paper: the intrinsic and extrinsic stacking faults
(ISF and ESF). The former can be thought of as obtained
by removing a pair of atomic layers, e.g., A4’, from
the perfect stacking sequence, while the latter can be
thought of as obtained by adding this pair of atomic
layers to the perfect stacking sequence. The stacking se-

quence is changed to AA'BB'CC'BB'CC’'--- and
AA'BB’AA’'CC'AA'BB’'CC' - - - for the ISF and ESF,
respectively.

In order to maintain the crystal periodicity and thus
many computational advantages, the supercell method is
employed in this calculation. Hence the stacking faults
are repeated after a certain number of atomic layers in the
[111] direction, and are assumed as infinite planar defects
on the (111) plane. It is required that the number of
atoms per supercell by sufficiently large to avoid interac-
tions between stacking faults, but sufficiently small to
make the calculations feasible. The supercells used are
hexagonal on the (111) plane with trigonal symmetry, and
the third axis is along the [111] direction. Fig. 1(a) shows
the projected atomic arrangement on the (111) plane. An
adjacent angle of 120° is chosen for the unit vectors on
this plane. When expressed in the Cartesian coordinates
marked in Fig. 1(a) (the z axis is perpendicular to the
page), the unit vectors are

by

(@)

(b) ©

FIG. 1. (a) Projection of the atomic arrangement (see text) of
silicon on the cubic (111) plane. The unit vectors for the hexag-
onal lattice are labeled a; and a,. (b) The first Brillouin zone
for this hexagonal lattice. The length in the z direction varies
for different supercell lengths. The shaded parts are equivalent.
(c) The two-dimensional Brillouin zone (perpendicular to the z
axis).
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where a is the cubic lattice constant and » is the num-
ber of atomic-double layers in a unit cell. There are 16
atoms AA'BB'CC’'BB’'CC'AA'BB'CC’ (n =38) in the unit
cell use for the ISF and 14  atoms
AA'BB'AA'CC'AA'BB'CC' (n=7) for the ESF. The
atomic positions projected on the (111) plane (for all cases,
within one unit cell) are

A: 0a1+0a2; B: %a;—}-%az; C: %a1+%a2. (2)

Both the ISF and ESF supercell structures are invariant
under the symmetry operations of the space group D3j.
The hexagonal first Brillouin zone is shown in Fig. 1(b),
with shaded parts being equivalent. A nonzero thickness
along the z axis results from the finite size of the real
space unit cell in that direction. When the length of the
unit cell goes to infinity, which is the ideal case, the first
Brillouin zone is reduced to a hexagon, shown in Fig. 1(c).
Electronic states will be discussed later in terms of the
two-dimensional Brillouin zone. In order to make a con-
sistent comparison, the perfect crystal is also calculated in
a similar unit cell with the same space group, where the
smallest unit cell contains 6 atoms 44'BB'CC’ (n =3).

The ball-and-stick models for both the ISF and ESF are
show in Fig. 2. For atoms near the fault plane, the num-
bers of first- and second-nearest neighbors, 4 and 12,
respectively, are unchanged compared with the perfect
crystal, but the number of third-nearest neighbors is re-
duced to 8 from the original value of 12. However, one
additional neighboring atom is found at a distance of
5V3ay/12 (=~0.722a,), which is only slightly larger than
the second-nearest-neighbor distance ay/v2 (=~0.707a,).
The net effect can be described as the change of the rela-
tive orientation between atoms at two ends of the sixfold
rings in the diamond structure. Near the fault, the nor-
mal sixfold rings are changed to the “boatlike” arrange-
ment, as is marked in Fig. 2.

(a) ISF (b) ESF

FIG. 2. Ball-and-stick models for (a) intrinsic and (b) extrin-
sic stacking faults. Some of the boat-shaped sixfold rings are
shaded.
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B. Calculational methods

To evaluate the total energy, we employ the density-
functional scheme!® in the local-density approximation.'¢
The exchange-correlation energy functional used is the
form suggested by Perdew and Zunger?? based on the elec-
tron gas data by Ceperly and Alder.?* As for the ion-
electron interaction, the pseudopotential approach is em-
ployed, where the core electrons are assumed frozen (i.e.,
atomiclike) and only the valence electrons respond to the
change of environment. These ionic pseudopotentials are
norm conserving and angular momentum dependent, and
are generated from free atoms.!”

The one-particle Kohn-Sham equations are solved self-
consistently using a plane-wave basis set, and the total en-
ergy is calculated in the momentum-space representa-
tion.?* Plane waves with energies up to 10 Ry are includ-
ed in the calculation. This corresponds to about 70 plane
waves per atom. Stacking-fault energies are obtained by
comparing the total energy of the perfect crystal and
those of the crystal with stacking faults. Although nei-
ther of the two absolute energies is accurate to the order
of the stacking-fault energy, the subtraction is expected to
cancel most of the inherent errors since both energies are
evaluated in an equivalent way. The convergence of
stacking-fault energies with respect to the number of
plane waves will be discussed in the next section.

Since the energy difference considered is extremely
small, care must be taken to maximize accuracy. An im-
portant consideration is the summation over the Brillouin
zone using a finite-k point sampling in the calculation of
band energies, charge density, etc. Because the number of
atomic layers per unit cell is different in each case, the k-
point grid along the z direction has to be chosen accord-
ingly. This is to ensure that each k point represents an
equivalent part of k space for different structures in
which the total energies are to be compared. The grid in
the xy plane is chosen to be the same. We used 16 k
points in the irreducible zone for both the ISF and ESF,
and the total energy is compared with that of the refer-
ence perfect crystal evaluated with 26 and 36 k points,
respectively.

To study the relaxation of atoms near the fault plane,
we used the Hellman-Feynman theorem?' to evaluate
forces on each atom. The force acting on a specific atom
is obtained by taking the explicit derivative of the total
energy with respect to the basis vector of that atom;?* the
contribution from the implicit derivatives of the wave
functions has been shown to vanish.?!

III. RESULTS AND DISCUSSIONS

As a test of the numerical method, we studied the
structural properties of the perfect silicon crystal in the
geometry of the hexagonal six-atom unit cell. Results of
the cubic lattice constant, bulk modulus, and cohesive en-
ergy®® are listed in Table I. They are consistent with the
previous calculation using the same theoretical methods?’
and are in good agreement with experimental values.?8~3°
The calculated cubic lattice constant 5.41 A will be used
in the studies of stacking faults.

TABLE 1. Calculated structural properties compared with
experimental results and the previous calculation.

This Yin

work and Cohen® Experiment
Lattice constant (A) 5.41 5.45 5.429°
Cohesive energy (eV/atom) 4.76 4.84 4.63°
Bulk modulus (Mbar) 0.93 0.98 0.99¢

2Reference 27.

bReference 28 (0 K).
‘Reference 29 (0 K).
dRefernce 30 (77 K).

A. Stacking-fault energies

By comparing the total energies of the perfect and
faulted crystals, we obtain stacking-fault energies of 1.9
mRy per cell for the ISF and 1.5 mRy for the ESF.}! Di-
viding by the area V3a3/4, these correspond to 33
erg/cm? and 26 erg/cm? respectively. The stacking-fault
energy of the ESF is found to be slightly smaller than that
of the ISF. This may suggest a repulsive interaction be-
tween the two deformed sixfold rings; the separation of
them is slightly larger in the ESF and thus lowers the mu-
tual interaction energy. The error resulting from the fin-
ite number of plane waves and limited k-point sampling is
estimated to be 20%. We have checked the convergence
with respect to number of plane waves for the ISF and the
result is shown in Fig. 3.

The stacking-fault energy is divided into two contribu-
tions which are listed in Table II. First, the difference in
the arrangement of ionic cores (nuclei plus core electrons)
raises the electrostatic energy compared with the perfect
crystal. This ion-ion energy can be calculated in the back-
ground of uniformly distributed negative charge. Since
the number of changes in the surroundings is the same up
to the third-nearest neighbors for both intrinsic and ex-
trinsic stacking faults, these energies should be similar.
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FIG. 3. Stacking-fault energy of the ISF with respect to the
plane-wave energy cutoff.
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TABLE II. List of various contributions to the calculated
stacking-fault energies.

Energy (erg/cm? ISF ESF
- Ion-ion 850 849
Electronic —817 —823
Total 33 (£20%) 26 (+20%)

The results are 850 and 849 erg/cm? for the ISF and ESF,
respectively. These energies are surprisingly large com-
pared with those in the simple nonalkali metals.'
Second, the electron distribution is altered and therefore
the total electronic energy, which includes the interaction
energies with the ionic cores and among themselves. This
term is calculated from the local-density-functional for-
malism. In the cases of the stacking faults, the electronic
energy is lowered and gives rise to negative differences in
Table II. This effect arises mainly from the existence of
one additional atom at a distance slightly farther than the
second-nearest-neighbor separation. The electron-ion in-
teraction energy is more negative and the increase in the
Hartree energy is not sufficiently large to compensate the
reduction. This electronic energy has to be evaluated ac-
curately because of the large cancellation with the ion-ion
energy.

In Table III, we compare this work with previous calcu-
lations and experimental values. As discussed earlier,
stacking faults in real crystals are usually bounded by par-
tial dislocations, hence the quantities measured are separa-
tions of isolated partial dislocations,”?*%7 radii of curva-
ture in extended nodes of dislocation networks,>> or the
widths of double ribbons® (ribbons of intrinsic and extrin-
sic stacking faults lying next to each other). Using the
weak-beam method of electron microscopy,1 one can im-
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age dislocations as narrow peaks and greatly increase the
resolution. The experimental numbers for the stacking-
fault energies are then derived from continuum elasticity
theory in each case, and may be influenced by the type of
defects used. These values, in erg/cm?, vary from 50 to
70,! =732 with the average deviations of measurements to
be 10—20 %. In addition, the shear modulus of silicon is
needed in the derivation; the suggested values can differ
by 20% in the literature.>®> There are also inherent errors
in treating materials with directional bonds as continuum
media. Considering the uncertainties in both experiment
and calculation, the agreement is satisfactory.

The ratio of the intrinsic and extrinsic stacking fault
energies is also interesting. It is found to be 1.15+0.09 in
the double-ribbon experiment.® This is expected to be
more accurate than the absolute values because it is mea-
sured on one sample and is not influenced by the usual
systematic uncertainties. The ratio of our calculated
stacking-fault energies, 1.3, is consistent with this experi-
mental value.

The stacking-fault energies of silicon have been studied
using several theoretical approaches. They were estimated
to be 44 erg/cm? for both the ISF and ESF by a valence
force field which went beyond the harmonic approxima-
tion.'”” Chen and Falicov® applied a local empirical pseu-
dopotential in second-order perturbation theory for intrin-
sic stacking faults. They obtained a stacking-fault energy
of 55 erg/cm?, in remarkably good agreement with experi-
ment. Weigel and co-workers® calculated the stacking-
fault energies by summing the band energies in the semi-
empirical extended Hiickel theory (EHT). Their results
were 86 and 85.5 erg/cm? for the ISF and ESF, respec-
tively. They attributed possible discrepancies between ex-
periment and calculation to the imperfectness of EHT pa-
rameters and the fact that measurements were performed
for stacking-fault areas surrounded by different types of

TABLE III. Comparison of the stacking-fault energies between this work, previous calculations and
experimental values. (EHT denotes the extended Hiickel theory, NTB denotes the nonorthogonal tight-
binding method, and GWF denotes the generalized Wannier function method.)

Energy (erg/cm?) ISF ESF Ratio
This work 33 (+20%) 26 (£20%) 1.3
Altmann et al.? 44 44 1.0
Chen and Falicov® 55

Weigel et al.° (EHT) 86 85.5 1.0
Mattheiss and Patel® (NTB)

Unrelaxed 110 - 85 1.3
Relaxed 64 44 1.5
Sanchez-Dehesa et al.° (GWF)

Unrelaxed 190+30 90+30 2.1
Relaxed 145430 50+30 29
Experiment! 50—70 (+10) 1.15+0.098

2Reference 12.
bReference 8.
°Reference 9.
dReference 10.
‘Reference 11.
fReferences 1—7.
8Reference 6.
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dislocation lines, while in the calculation the ideal areas
were infinite. Mattheiss and Patel'® did a comprehensive
study of silicon stacking faults using the nonorthogonal-
tight-binding (NTB) method with a supercell geometry.
The NTB parameters were fit to the bulk band-structure
results of empirical nonlocal pseudopotentials** and in-
teractions up to three shells of neighbors are included.
They obtained 110 and 85 (64 and 44) erg/cm? for the ISF
and ESF, respectively in the unrelaxed (relaxed) case. For
the unrelaxed geometry, the stacking-fault energy was
evaluated by taking the difference in the band energy.
For the relaxed geometry, a short-range force-constant
model®® was used to account for an additional contribu-
tion coming from the difference between the ion-ion and
electron-electron interaction energies. Sanchez-Dehesa
et al.'! employed the generalized Wannier function
(GWF) method with a local pseudopotential. Their re-
sults are 190 and 90 (145 and 50) erg/cm? for the ISF and
ESF, respectively, in the unrelaxed (relaxed) case. Both of
the two calculations above found a rather significant re-
laxation energy for stacking faults. In contrast, the
present calculation, which is a fully first-principles study,
finds that relaxation gives rise to only minimal changes in
the stacking-fault energy as will be discussed in Sec. III C.

B. Electronic properties

1. Eigenvalues

The calculated eigenvalues along symmetry axes of the
two-dimensional Brillouin zone [Fig. 1(c)] for the crystal
with stacking faults are compared with those of the per-
fect crystal to determine defect states related to the stack-
ing faults. These defect states near the gap are indicated
by dashed lines in Fig. 4. The shaded areas stand for the
projected bands of the perfect crystal. In practice, because
of the finite length of the supercell used in the calculation
along the [111] direction, the calculated defect states may
have small dispersions along that direction. The eigen-
values of these defect states are calculated at points with
k,=0 and points on the zone boundary k,=+G;. The
dispersions are found to be extremely small; for example,
the dispersions at I' are within the thickness of the dashed
lines.

The projected bands of the perfect crystal are deter-
mined from the eigenvalues calculated in the hexagonal
unit cell. Some correspondences could be found between
the fcc Brillouin zone and the two-dimensional hexagonal
Brillouin zone. For instance, all the points from I" to L
in the first fcc Brillouin zone are projected onto one point
T in the two-dimensional zone, and the point X is project-
ed to M. The conduction-band minimum is projected to
somewhere between T and M, and the gap calculated in
the local-density-functional scheme is, as always, overly
small compared with the observed value.

The calculated eigenvalues of the ISF and ESF are
compared with those of the perfect crystal. The valence-
band widths only differ by 0.01 eV, which tests the relia-
bility of the supercell results. Near the energy gap, defect
states are found near T, M, and K at energies below the
conduction-band edge and slightly above the valence
bands. At T, these states are 0.1 eV above the valence
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FIG. 4. Energy eigenvalues of defect states (dashed lines) in
the two-dimensional Brillouin zone (perpendicular to the cubic
[111] direction) for (a) ISF and (b) ESF. The valence-band max-
imum is chosen to be zero. The shaded area is the projected
bands of the perfect crystal. Numbers in parentheses are values
of the localization parameter a (see text) at T, M, and K.

bands and 0.2 eV below the conduction bands. The form-
er is a doubly-degenerate state above the valence-band
maximum of the perfect crystal, and is occupied. This is
consistent with the photoluminescence finding by Weber
and Alexander.?* On the other hand, all the states below
the conduction-band edge at T', M, and K (with the lowest
state at M) are above the absolute conduction-band
minimum. The positions of these states may not be deter-
mined accurately in this calculation, since the local-
density-functional approximation underestimates the band
gap.

Defect states found for the ISF and ESF are quite simi-
lar, as shown in Figs. 4(a) and 4(b). One of the visible
differences between the ISF and ESF is that defect states
of the former seem to be slightly deeper into the energy
gap. All the defect states found are consistent with results
of previous calculations.!% 1114

2. Charge density

The charge densities of the two defect states at T are
plotted in Figs. 5 (ISF) and 6 (ESF). The state 0.1 eV
above the valence-band maximum is shown in Figs. 5(a)
and 6(a). It is an occupied state, with charge density
mostly concentrated along the covalent bonds between
two different pairs of atomic layers, e.g., between 4’ and
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FIG. 5. Charge density of stacking-fault states at T for the
ISF with energies (a) 0.1 eV above the valence-band maximum,
and (b) 0.2 eV below the conduction-band edge. The charge den-
sity is in units of electrons per cell volume (cell
volume=2137.07 a.u.). The plane shown is the (110) plane
with contours drawn in intervals of (a) 2.0 and (b) 6.0.

B. As shown in the plot, more charge density accumu-
lates near fault atoms; the maximum is about twice
higher. The charge density of the state 0.2 eV below the
conduction-band edge at T is shown in Fig. 5(b) and 6(b).
Almost all the charge is concentrated near the faults
within the boat-shaped sixfold rings.

To examine the localization of the electron density near
the fault for each electronic defect state, the electron den-

1/; >)
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FIG. 6. Charge density of stacking-fault states at T for the
ESF with energies (a) 0.1 eV above the valence-band maximum,
and (b) 0.2 eV below the conduction-band edge. The charge den-
sity is in units of electrons per cell volume (cell
volume=1869.94 a.u.’). The plane shown is the (110) plane
with contours drawn in intervals of (a) 1.5 (b) 3.0.

Charge Density Difference
(10" electron/a.u.) ISF
-3 -2 -1 0 1 2 3
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T
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(+0.001)

(-0.003)
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(-0.001)

FIG. 7. Left: difference of the integrated charge density over
the (111) plane between the crystal with ISF and the perfect
crystal. Right: Atomic positions on the (110) plane for the ISF
in the ideal geometry. Numbers in parentheses indicate the
change in the net electron number associated with each atom.
The region between two dashed lines is used to evaluate the lo-
calization parameter a (see text).

sity is integrated over a region near the fault and com-
pared with that of a perfect crystal. A parameter a can
be defined as

Y—Y,

a
where Y is the integrated electron density over a specific
region for the ISF or ESF and Y, is the value for a per-
fect crystal. The total electron density in the unit cell is
normalized to one for a single electronic state. The value
of a is one if this state is fully localized within the speci-
fied region, and is zero if the integrated density is the
same as that of a perfect crystal. Thus, a can be thought
of as a parameter that measures the degree of localization
for one state. The integration region near the fault is
chosen to include three pairs of atomic layers in the case
of ISF and four pairs in the case of the ESF, as indicated
in Figs. 7 and 8. For defect states in the gap, the calculat-

Charge Density Difference
(10"° electron/a.u.) ESF
-3 -2 -1 0 1 2 .3

{-0.001)

(+0.003)
(-0.002)

(-0.002)
(+0.002)

(+0.002)
(-0.002}

(-0.002)
(+0.003)

(-0.001)

FIG. 8. Same as Fig. 7, for the crystal with ESF.
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ed values of a are indicated in parentheses in Figs. 4(a)
and 4(b). The unoccupied defect states near the
conduction-band edge are more localized near the fault
(i.e., with larger a values than the occupied states). For
example, consider the two defect states at T in the ISF; a
is 0.9 for the upper state and 0.3 for the occupied lower
one.

It is interesting to examine how the total charge density
is affected near the fault. Because the stacking sequence
along the z axis has been changed, it is convenient to com-
pare the integrated charge density over the (111) plane as
a function of z. The difference in this integrated one-
dimensional charge density between the faulted and per-
fect crystals is plotted in Fig. 7 for the ISF and in Fig. 8
for the ESF. Also shown in the same figure is the net
electron number change associated with each atom. This
is obtained by integrating the electron density over a slab
with one atomic layer in it and subtracting from it the
value of a perfect crystal with four electrons per atom.
As indicated in the figures by the small unit used, the
charge density changes slightly in the crystal with stack-
ing faults. The atoms at the ends of the boat-shaped six-
fold ring have slightly more electronic charge in their vi-
cinity. However, the change is extremely small compared
with those of other kinds of defects.

C. Relaxations

The calculated Hellmann-Feynman forces are displayed
in Figs. 9(a) for the ISF and 10(a) for the ESF, where all
the bond lengths and bond angles are the same as those in
the perfect crystal. The use of the plane-wave basis set
considerably reduces the computational complexity in
evaluating the forces.?*?> Since the threefold rotational
symmetry around the [111] axis is maintained in the cal-
culation, the only nonvanishing forces are along the [111]
direction. These forces are orders of magnitude smaller

(a) ldeal (b) Relaxed

(1]

FIG. 9. Hellmann-Feynman forces on each atom in the (a)
ideal and (b) relaxed geometries for the ISF. The forces are in
units of 10~2 Ry/a.u. Arrows indicate the force directions. The
atomic arrangement shown is on the (110) plane. The percen-
tage increase of the interplanar distance is marked for the re-
laxed case.

(b) Relaxed

(a) Ideal

1)

0.05*

FIG. 10. Same as Fig. 9, for the crystal with ESF.

than those on ideally terminated surface atoms because of
the small deviations from perfect-crystal environment.
To understand how atoms tend to relax near the faults,
one can get a better picture by examining the ESF case be-
cause the boat-shaped sixfold rings do not overlap. As in-
dicated in Fig. 10(a), atoms belonging to the same double
layer near the fault (atoms b and c) tend to stretch the co-
valent bond between them. Atoms belonging to different
double layers (atoms a and d) tend to repel each other.
Hence the preferred relaxation will be a stretch along the
z axis with the interplanar distances near the fault in-
creased. In the case of ISF, since the boat-shaped sixfold
rings overlap slightly, the forces show a similar trend but
are more complicated.

One can displace the atoms along the force direction
and recalculate the new structure self-consistently. How-
ever, it is difficult to consider all of the degrees of free-
dom and we expect that atoms away from the fault are
less relevant. Thus we consider only the relaxation of the
first three interplanar separations near the fault. There
are two quantities that can be examined after the displace-
ment: the total energy of the system and the forces on
each atom. We find that the slight increase in the unit-
cell volume introduces much larger numerical noise for
the total energy than for the forces. (This will be dis-
cussed in the Appendix.) Therefore our approach is to in-
crease the interplanar distances near the fault and try to
minimize the forces. Fig. 9(b) shows one relaxed structure
for the ISF with very small residual forces. The interpla-
nar distances near the fault are increased by 0.6—0.7 %
and the forces are reduced by a factor of 5—10. Similar
results for the ESF are found in Fig. 10(b). The small
amount of the residual forces is close to the limit of the
accuracy of the force calculation. We conclude that only
a small relaxation takes place, which is estimated to be of
the order of a 1% increase in the interplanar distances.

For the relaxed configurations in Figs. 9(b) and 10(b),
the change of the stacking-fault energies is within the pre-
vious 20% calculational uncertainty. We do not find
large relaxation energy change found in the previous cal-
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FIG. 11. Total energy change per atom with respect to c-axis
variation (see Appendix) for the perfect crystal with six atoms
per cell in the hexagonal lattice. The smooth dashed line is a
least-squares cubic spline fit.

culations!®!! and similarly for the eigenvalues, the differ-

ence is found to be almost negligible. Hence changes aris-
ing from the relaxation in the electronic properties can be
considered to be minor.

‘'IV. CONCLUSION

In summary, we have performed a first-principles cal-
culation of the properties of the intrinsic and extrinsic
stacking faults in silicon along the [111] direction using
the local-density-functional approach with norm-
conserving pseudopotentials. The calculated stacking-
fault energies are in reasonably good agreement with ex-
perimental values. In particular, the ratio of the intrinsic
to extrinsic stacking-fault energies agrees very well with
the observed values. The small amount of energy in-
volved in the calculation requires very high computational
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FIG. 12. Magnitude of force on each atom with respect to
the c-axis variation (see Appendix) calculated for the perfect
crystal with six atoms per cell in the hexagonal lattice. The
smooth dashed line is a least-squares cubic-spline fit.

M. Y. CHOU, MARVIN L. COHEN, AND STEVEN G. LOUIE 32

accuracy; it is near the limit of present theoretical tech-
niques.

Several defect states are found with the energy-gap re-
gion in the calculation. One with energy 0.1 eV above the
valence-band maximum is consistent with photolumines-
cence finding and consistent with some previous calcula-
tions. The charge density near the fault is also examined.
Only an extremely small charge difference is found com-
pared with the perfect crystal.

Relaxation of atoms is studied by calculating the
Hellmann-Feynman forces. To minimize the forces on
each atom, the interplanar distances near the fault are in-
creased by about 1%. The change in the stacking-fault
energy after relaxation is minor, and is less than the calcu-
lational uncertainty. It is found that this small relaxation
does not affect the electronic properties appreciably.
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APPENDIX

In this appendix, we examine the calculational noise for
the total energy and the forces when the unit-cell volume
is slightly altered. As a test, we consider the silicon per-
fect crystal in the hexagonal unit cell with six atoms per
cell discussed in the text. When the length scale along the
¢ axis (the [111] direction) is uniformly expanded or
compressed, it is expected that the total energy is raised
and the forces on each atom increase from zero. If the
volume is only changed by a very small amount, for in-
stance, less than 0.5%, the existence of numerical noise in
the total energy is expected. This is because the expected
total energy change is small compared with the individual
components which make up the total energy. This is
within the calculational uncertainty of the absolute value
of the total energy (the change of volume will affect the
G-vector grid in the k space, the number of plane waves
included, the interpolation of potentials, etc.). The in-
crease in the forces on the other hand is much larger than
the calculational uncertainty which is usually around
10~* Ry/a.u. when full self-consistency is achieved. Fig-
ures 11 and 12, respectively, display the calculated total
energy and the magnitudes of the forces with respect to
small c-axis variations. The points for the total energy in
Fig. 11 show appreciable fluctuations, while those for
forces in Fig. 12 follow a very smooth curve in the small
region of unit-cell variations. It is therefore suggested
that for the small relaxations considered for the stacking
faults, the use of force as a guide is more reliable than the
use of total energy.



1. L. F. Ray and D. J. H. Cockayne, Philos. Mag. 22, 853
(1970).

2[. L. F. Ray and D. J. H. Cockayne, Proc. R. Soc. London, Ser.
A 325, 543 (1971).

3A. G. Cullis, J. Microsc. 98, 191 (1973).

4A. Gémez, D. J. H. Cockayne, P. B. Hirsch, and V. Vitek, Phi-
los. Mag. 31, 105 (1975).

5J. C. H. Spence and H. Kolar, Philos. Mag. 30, 59 (1979).

6H. Foll and C. B. Carter, Philos. Mag. A 40, 497 (1979).

7H. Gottschalk, J. Phys. Paris (Collog.) C 6, 127 (1979).

8L. J. Chen and L. M. Falicov, Philos. Mag. 29, 1 (1974).

9C. Weigel, H. Alexander, and J. W. Corbett, Phys. Status Solidi
B 71, 701 (1975).

10, F. Mattheiss and J. R. Patel, Phys. Rev. B 23, 5384 (1981).

113, Sanchez-Dehesa, J. A. Vergés, and C. Tejedor, Phys. Rev. B
24, 1006 (1981).

12§, L. Altmann, A. Lapiccirella, K. W. Lodge, and N. Tomas-
sini, J. Phys. C 15, 5581 (1982).

13C. W. Krause, Philos. Mag. 33, 207 (1976).

145, Marklund, Phys. Status Solidi B 108, 97 (1981).

15p. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

16W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

17D, R. Hamann, M. Schliiter, and C. Chiang, Phys. Rev. Lett.
43, 1494 (1979). '

18M. L. Cohen, Phys. Scr. T 1, 5 (1982).

191, C. Kimerling, H. J. Leamy, and J. R. Patel, Appl. Phys.
Lett. 30, 217 (1977).

20E. R. Weber and H. Alexander, J. Phys. Paris (Collog.) C 4,
319 (1983).

21H. Hellmann, Einfiihrung in. die Quanten Theorie (Deuticke,
Leipzig, 1937), p. 285; R. P. Feynman, Phys. Rev. 56, 340

32 THEORETICAL STUDY OF STACKING FAULTS IN SILICON 7987

(1939); J. C. Slater, J. Chem. Phys. 57, 2389 (1972).

225, P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981),
Appendix C.

23D. M. Ceperly and B. J. Alder, Phys. Rev. Lett. 45, 566
(1980).

243, Thm, A. Zunger, and M. L. Cohen, J. Phys. C 12, 4409
(1979); 13, 3095(E) (1980).

25M. T. Yin and M. L. Cohen, Phys. Rev. B 26, 3259 (1982).

26The cohesive energy is the difference between the crystal ener-
gy (including the zero-point vibration energy) and the total en-
ergy of the isolated pseudoatom (spin-polarization effects in-
cluded).

27M. T. Yin and M. L. Cohen, Phys. Rev. B 26, 568 (1982).

28], Donohue, The Structures of Elements (Wiley, New York,
1974), corrected for thermal expansion and atmospheric pres-
sure compression.

29L. Brewer (unpublished).

30H. J. McSkimin, J. Appl. Phys. 24, 988 (1953); H. J. McSki-
min and P. Andreatch, Jr., ibid. 34, 651 (1963); 35, 2161
(1964).

31These are small energy differences compared with those ob-
tained from the frozen-phonon calculation for silicon. In Ref.
25, the atomic displacement employed range from 0.01 to 0.1
A. For the LTO mode at T, these correspond to energy
differences of 0.1 to 10 mRy per atom.

32See table in Ref. 6, p. 507.

33For example, the shear modulus used was 7.9 X 10'! dyne/cm?
in Refs. 1—3, and 6.36 X 10!! dyne/cm? in Ref. 6.

34]. R. Chelikowsky and M. L. Cohen, Phys. Rev. B 10, 5095
(1974).

35D. J. Chadi, Phys. Rev. B 19, 2074 (1979).



