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Two-dimensional polaron in a magnetic field
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The ground-state energy of a Frohlich optical polaron confined to two dimensions, placed in a
perpendicular magnetic field is calculated within the Feynman path-integral approach. The
Feynman-model mass, the magnetization and the susceptibility are calculated as a function of the
magnetic field strength for different values of the electron-phonon coupling. We find that within
the generalized Feynman approximation the polaron exhibits a discontinuous transition from a
dressed state to a stripped state if the electron-phonon constant a is larger than 1.60. For a & 1.60,
the transition occurs continuously with increasing magnetic field.

I. INTRODUCTION

In the present paper we study the Frohlich optical pola-
ron in a constant magnetic field which is perpendicular to
the plane in which the motion of the electron is confined.
This ideal two-dimensional (2D) system has been studied
recently by several authors' in the limit for small
electron-phonon interaction. In the present paper we will
concentrate on the ground-state property of the 2D pola-
ron system for arbitrary electron-phonon coupling and ar-
bitrary magnetic field strength. We will use Feynman's
path-integral approach of the polaron to calculate the
ground-state energy, the mass of the Feynman polaron
model, the magnetization, and the susceptibility as a func-
tion of both the electron-phonon coupling and the mag-
netic field strength. Results for the Gaussian approxima-
tion will also be given. The motivation for using the
Feynman approximation lies in the fact that for the
three-dimensional (3D) optical polaron in the presence of
a magnetic field it was found by two of the present au-
thors that the Feynman path-integral method is superior
to all the other existing approaches. For nonzero magnet-
ic field the Feynman approach leads to lower values for
the polaron ground-state energy than obtained from other
theories. Unfortunately there exists no mathematical
proof that, in the case of a nonzero magnetic field, the
ground-state energy in the Feynman approximation is an
upper bound to the exact ground-state energy. But in Ap-
pendix A of Ref. 6 strong arguments were given, based on
physical intuition, in favor of the upper-bound nature of
the polaron ground-state energy calculated in the Feyn-
man approximation when a magnetic field is present.

For zero magnetic field the Feynman approximation
has been applied to the 2D polaron problem. The re-
sults show that both ground-state energy and effective
mass are continuous functions of the electron-polaron
coupling constant o.. The same conclusion is true for the
3D optical polaron. However, in Ref. 6 the influence of
a magnetic field was examined: the ground-state proper-
ties of a 3D polaron were studied and it was found that
there exists a transition of the Feynman polaron from a

dressed polaron state to a stripped polaron state with in-
creasing magnetic field strength. In the present work we
will investigate whether or not a similar magnetic-field-
induced transition can be found for the 2D polaron.

The organization of the present paper is as follows. In
Sec. II the problem is formulated, the approximations are
outlined, and the ground-state energy is calculated. Ana-
lytic results for limiting values of a and co, are presented
and discussed in Sec. III together with our numerical
data. The conclusions are presented in Sec. IV.

II. FORMULATION AND APPROXIMATION

The Hamiltonian describing the 2D polaron in a mag-
netic field is given by'

'2

H= p+ —A. + gmakak1 e
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where
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S,= f du {r (u)+ico, [y'(u)x(u) —x(u)y(u)] I2m
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k

where Vk =fico, (v 2trct/Sk)'~ (fi/mco, )'~ . p and r are
the electron momentum and positron operators, respec-
tively, ak (ak) is the creation (annihilation) operator of an
optical phonon with wave vector k and energy Ace„a is
the electron-phonon coupling constant, S is the volume of
the 2D crystal, and A is the vector potential which is tak-
en in the symmetrical gauge: A= —,B(—y, x,o).

In the well-known Feynman path-integral representa-
tion of the partition function the phonon variables can be
eliminated exactly. After this elimination each electron
path contributes e '"~ to the path integral, with the ac-
tion
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is the action of a free electron in a magnetic field with
co, =eB/mc the cyclotron frequency of the noninteracting
electron, P= 1/ktt T is the inverse temperature, and

P P
St ———g i Vk i f du f du'G„(u —u')

)& expI ik [r(u) —r(u')] J

(4)

The variational ground state is then
P

3 3 2
1 2 2 sndnE=—, gsn —w —(v —w )

n=1 , (w+s„)

where
' 1/2
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a dt
2 2 o VD(t)
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is the action which contains a memory effect as a conse-
quence of the elimination of the phonons. G„(u )
= —,'n(co)(e" ~" ~+e"'~ ~" ~') is the Green's function of
the free phonon system with n(co) =(e"~ 1—) ' the num-
ber of phonons with energy %co. In the following, for con-
venience, we will use units such that A'=m =co, = 1.

Since the path integral with action (2) cannot be solved
exactly, we will follow Feynman' in order to get an ap-
proximation to the exact ground-state energy. For the 3D
polaron and in the absence of a magnetic field Feynman
introduced a trial action So to derive a variational upper
bound to the exact ground-state energy ( Es ), i.e.,
Ee &E =ED A —B, whe—re Eo is the ground-state energy
corresponding to the trial action while A and B are func-
tions which depend on the variational parameters of the
trial action So. We will use a similar approximation in
the present paper. In the case when a magnetic field is
present the action is complex and we no longer have a
proof that the approximate ground-state energy is an
upper bound to the exact polaron ground-state energy. In
Ref. 6 intuitive arguments were given which suggest that
for a particular choice of the trial action, namely for a
trial action derivable from a Hermitian Hamiltonian, the
Feynman inequality is still valid.

The trial action we choose is

So=s.+S
where

w v2 — 2

S~t = f du f du G~(u —u ')

with

3

D(t)= g d„(1—e ")
n=1

and

1 S~ —W
2 2

3s„+2( —1)"s„co,—v

For co, —+0 Eq. (10) reduced to the familiar result given in
Refs. 7 and 8. For given electron-phonon coupling con-
stant a and magnetic field strength co„ the parameters v

and w are determined by a minimalization of E with
respect to u and w.

III. RESULTS AND DISCUSSION

It seems impossible to derived from Eq. (10) an expres-
sion in a closed form for the ground-state energy. Only
for some limiting values of a and co, analytic results can
be obtained.

-In the small-coupling limit ix«1 we have u=w and
the ground-state energy becomes

an ~co, I ( 1+1/co, )
(12)

I ( —'+1/co, )

which was recently obtained in Refs. 3 and 5 with
second-order perturbation theory. For small magnetic
fields co, «1, the following series expansion results from
Eq. (12):

X [r(u) —r(u')]' (6)

2
ma ~c ~c
2 8 128

(13)

and S, is given by Eq. (3). The action So can be obtained
from the Hermitian Hamiltonian (see Ref. 6)

'2

Ho= p+ —A +, + —,'K(r —r')1 e (p')
(7)

2m ' c 2fPl

after eliminating the variables of the fictitious particle
(r', p'). Here we have defined the usual Feynman varia-
tional parameters u and w. The Hamiltonian Ho can be
diagonalized exactly,

1HO= g Sn(CnCn+ 2 )
n=1

(8)

with the eigenfrequencies s„ to be determined from the
solution of the third-order algebraic equation in s„(for
details we refer to Ref. 6)

COc

2

a+n coc ann' ln2
2 ~co&

Note that the electron-phonon correction to the ground-
state energy is proportional to a~co, which is much
larger than for the 3D case where the correction goes as

c.
For large electron-phonon coupling a&~1 and weak

magnetic fields co, «1 we have v »w and the ground-
state energy, after minimalization with respect to v and w,
can be reduced to

1 c
2u' '

In the strong-magnetic-field case we have (v —w)/
v «1, and consequently we may again start from v =w
in Eq. (10). Performing an expansion of Eq. (12) for large
chic values we obtain the ground-state energy
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FIG. 1. The mass of the Feynman polaron model, the mag-

netization, and the susceptibility are shown as functions of co„
near the critical point a =1.60,

u= 3.5

where the variational parameters are given by w =1 and
u =(ir/4)a —(4 ln2 —1). The terms —(m. /8)a
—2 ln2 ——,

' are the ground-state energy of a 2D polaron in
the strong-coupling limit in the absence of a magnetic
field. This result can be obtained directly from the corre-
sponding 3D result by using a scaling argument intro-
duced in Ref. 8. co, /2u is the zero-point energy of a par-
ticle with mass u =(na/4) place. d in a magnetic field.

For arbitrary strength of the electron-phonon coupling
constant and the magnetic field the minimalization of E
with respect to u and w has been performed numerically.
We have calculated numerically the mass of the Feynman
polaron model M = (u/w), the magnetization
p= —BE/Bco„and the susceptibility X= BE/Bco, fo—r
several values of the coupling constant a and the magnet-
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FIG. 3. Magnetization as a function of co, for a=3.5 and 4.0
in the case of the generalized Feynman approximation (thick
solid curve) and for the Gaussian approximation {thin solid
curve). Behavior of the metastable state is indicated by the
dashed curves.
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FIG. 2. Feynman polaron mass as a function of co, for
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FIG. 4. Same as Fig. 3, but now for the susceptibility.
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refer to Refs. 6 and 13 for further details on the physics
of this "polaron stripping transition. "

The discontinuity in the polaron state is shown much
more clearly in the behavior of the magnetization IM and
the susceptibility X. At the point where the discontinuous
transition starts to occur, i.e., a = 1.60+0.01,
co,, =2.10+0.01 (see Fig. 1), p is still continuous, but X
diverges which is reminiscent of a critical point where the
transition is of second order. For Iz & 1.60, both IM and X
are discontinuous at a certain value of the magnetic field
(see Figs. 1—4). The transition behavior of the polaron is
summarized in Fig. 5 where the magnetic field at which
the transition occurs is plotted versus the inverse of the
electron-phonon coupling constant.

The effect of the electron-phonon interaction on the
properties of the polaron are enhanced in two dimensions

W/wc

FIG. 5. Phase diagram for the polaron in the generalized
Feynman approximation plotted vs the inverse of the electron-
phonon coupling strength (1/a) and the inverse of the magnetic
field strength (1/co, ).

ic field strength co, . In Figs. 1—6, the magnetization
p, =p —p, and the susceptibility X=X—X, are referred to
the free-electron values p, = —0.5 and +, =0. Conse-
quently /T, and X are purely a consequence of the electron-
phonon interaction.

For a &1.60 (see Fig. 1) the ground-state, the model-
mass M =(u/w), the magnetization, and the susceptibili-
ty of the 2D polaron are continuous functions of the
electron-phonon constant a and the magnetic field co, .
However, for a & 1.60 the polaron undergoes a transition
from a "dressed state" [M =(U/w) »1] to a "stripped
state" [M=(U/w) 1]. The transition is similar to that
found for the 3D-polaron (see Ref. 6) case and for the
problem of an electron on a liquid helium film. ' We

( U/w)EGaussian

a=0. 1

0.0
0.1

0.2
0.4
0.6
0.8
1.0
1.5
2.0
4.0

10.0

—0.157 54
—0.109 51
—0.061 49

0.034 51
0.13049
0.22647
0.322 47
0.562 61
0.803 00
1.767 59
4.682 67

—0.15708
—0.10905
—0.061 05

0.034 92
0.13086
0.226 80
0.322 75
0.562 80
0.803 13
1.767 63
4.682 67

1.036
1.039
1.042
1.046
1.045
1.043
1.038
1.022
1.014
1.004
1.000

a=1.0

TABLE I. Polaron ground-state energy for a=0. 1, 1.0, and
4 for different values of the magnetic field strength within the
generalized Feynman approximation (E„, ,„,) and within the
Gaussian approximation (EG,„„;,„). The mass of the Feynman
polaron model M = (u /w) is also given.

a, /co, Epresent
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FIG. 6. Phase diagram for the polaron as obtained in the
generalized Feynman approximation and in the Gaussian ap-
proximation.
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a=4.0
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1.021
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as compared to the 3D case (see Refs. 2—5). As a conse-
quence the critical electron-phonon coupling constant and
critical magnetic field strength, at which the transition
starts to become discontinuous, are smaller in 2D than in
the case of the 3D polaron, where it was found that
a =4.20 and co, =2.24. However, in terms of the
behavior of the 2D polaron and the 3D polaron at the
transition point, there are no qualitative differences.

For comparison, the ground-state energy, the magneti-
zation (see Fig. 3), and the susceptibility (see Fig. 4) are
also calculated for the Gaussian approximation which is
obtained from Eq. (10) by putting w =0, in which case we
are left with only one variational parameter. In Table I
we compare the resulting values for the ground-state ener-

gy with the results from the generalized Feynman approx-
imation presented here. It is obvious that our generalized
Feynman approximation gives lower values for the
ground-state energy than the Gaussian approximation. It
is interesting to note that for a & 2.48 the ground-state en-
ergy obtained from the Gaussian approximation is, for all

identical to the result given by second-order
Rayleigh-Schrodinger perturbation theory [this result is
given by Eq. (12)]. The reason is that for a&2.48 the
variational parameter U in the Gaussian approximation is
zero for all values of the magnetic field.

In Fig. 6 we compare the discontinuous behavior of
both approximations with each other. Note that the
Gaussian approximation gives, as a function of a, a first-
order transition for all values of co„even for co, =0. As
discussed in Ref. 8 (see also Ref. 9) this behavior is an ar-
tifact of the Gaussian approximation.

IV. CONCLUSION

We have recently found in Ref. 8 that the Feynman ap-
proximation to the polaron ground-state energy in 2D
(EzD ) can be obtained from the 3D result ( E» ) by using
the scaling relation EzD(a) = —,E3D(3na/4). This scaling
relation breaks down when a magnetic field is applied, the
reason being that the scaling relation results from the fact
that in the Feynman approximation for co, =0 the com-
ponents of the motion of the electron in the different
space directions do not couple with each other and are
treated within the same approximation. But a magnetic
field introduces a special direction into the problem and
destroys this spherical symmetry which as a consequence
implies that E2D can no longer be obtained from E3D by
the scaling relation of Ref. 8.

The "stripping transition" of the polaron found in the
present paper is analogous to the one found for the 3D po-
laron by two of the authors in Ref. 8. Recently a similar
transition was found for an electron on a liquid-helium
film. ' There the electrons interact with the surface exci-
tations of the liquid-helium film which are called ripplons
(this problems can be mapped into a 2D acoustic polaron
problem). For such a system it was found in Ref. 13 that
the effect of the transition is much more dramatic and

could lead to a change in the model mass M =(v/w) of
5—6 orders of magnitude.

The discontinuity of the polaron state found in 2D for
a&1.60 and which occurs at a well-defined magnetic
field strength is obtained within a generalization of the
Feynman approximation as presented in Ref. 6 for the 3D
polaron. One may argue that this discontinuity can be an
artifact of the present approximation and may not be a
property of the Frohlich Hamiltonian. Concerning this
point one may reflect on the discussion on the absence of
a discontinuous self-trapping transition of the Frohlich
polaron as was presented in Ref. 9 (see also Ref. 14).
Note also that within a variation scheme it is impossible
to prove the existence of a phase transition.

In conc1usion, on physical grounds, it is intuitively clear
that as a function of the magnetic field there should be
two regions: (i) a relatively small magnetic field region in
which the polaron as an effective particle moves as a rigid
entity, and (ii) a high magnetic field region in which the
electron oscillates so rapidly that the phonon cloud is no
longer able to follow the electron. Whether or not the
transition from the dressed polaron state to the stripped
polaron state is continuous or discontinuous is open to
discussion. We found that within the generalized Feyn-
man approximation the transition is continuous for ma-
terials with a & 1.60 and discontinuous when a & 1.60.

The fact that confinement of the electron motion to two
space dimensions enhances the polaron effects in compar-
ison with polaron motion in 3D implies that the critical
coupling in 2D, a=1.60, is reduced in comparison with
the critical coupling in 3D where a=4.20. As a conse-
quence a larger number of materials are available in
which, from the present study, we expect that the polaron
undergoes a stripping transition as a function of the mag-
netic field if the electron motion is confined to 2D. For
example, the present ca1culation predicts that for a hetero-
structure of AgC1 (a=1.84) a discontinuity occurs for
co /coLQ 2.6 or at a magnetic field of about B—140 T.
In this calculation we neglected the finite width of the
electron layer and temperature effects (which is expected
to be valid at helium temperatures). The transition should
be visible in a cyclotron resonance experiment in which
we expect a sudden narrowing of the cyclotron resonance
line due to the sudden decrease in the effective electron-
phonon interaction. At the transition point, the polaron
cyclotron resonance spectrum transforms to the spectrum
of a quasifree electron in a magnetic field.
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