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A tight-binding model is presented which is suitable for numerical simulations of electrical con-
duction in finite multiband systems driven by a time-dependent vector potential. The systems stud-
ied_are linear chains of static atoms with periodic boundary conditions. The time evolution of the
electrons is followed by integrating numerically the equations of motion of the density matrix.
Dimerized finite chains with one electron per atom, i.e., insulators, are found to exhibit undamped
periodic current oscillations in a steady moderate electric field. These oscillations are interpreted in
terms of the single-band acceleration theorem (SBAT) for finite insulators. At higher fields the
SBAT breaks down and Zener tunneling is studied in different regimes. The effect of the presence
of impurities on the electric currents in both insulating and metallic chains of atoms is also studied.
The relationship between the present work and the London theory of ring currents in cyclic mole-

cules in a magnetic field is discussed.

I. INTRODUCTION

At the present time, most theoretical work on electrical
conduction in solids is based on the Kubo formula or the
Boltzmann equation. These approaches have been very
successful, so much so that they have come to define the
standard conceptual framework for thinking about trans-
port problems. However, they have certain limitations.
The Boltzmann equation is inherently semiclassical.
While the Kubo formula is exact, it is applicable only to
linear response. Also, its applicability is limited mainly to
the study of thermodynamic averages, namely, the trans-
port coefficients. Thus, the possibility of obtaining exact
and complete microscopic information about nonlinear
current-carrying systems by solving numerically the quan-
tum equations of motion of the electrons in the time
domain is very appealing. However, little such work has
been done. In this article the feasibility of such calcula-
tions is explored and a number of interesting results con-
cerning electrical conduction in some simple finite sys-
tems are presented.

In order for such an approach to be successful, it is
necessary to use a discretized theory and to work with a
small number of electronic bands. Thus, it is crucial to
choose a good restricted basis and an appropriate Hamil-
tonian. In Sec. II a tight-binding formulation of this kind
is presented, which is particularly suitable for use with
periodic boundary conditions. It is set up originally for
the one-band case, and then multiband effects are studied
by introducing a periodic lattice distortion which splits
the original band.! Depending on the choice of the distor-
tion and the filling of the available states by electrons, the
case of a metal or of an insulator can be studied. Here the
case of noninteracting electrons in a finite one-
dimensional chain will be considered with periodic boun-
dary conditions. The lattice distortion chosen for most of
the calculations reported here has a period of two atomic
spacings, so that the system has two bands. The electric
field is introduced by means of a time-dependent vector
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potential. The electrons are taken to be in the ground
state at ¢t =0 when the electric field is switched on
smoothly from zero. The subsequent time evolution of
the system is studied by integrating numerically the equa-
tions of motion of the electron-density matrix.

In Sec. III the results are presented for the case of met-
als and insulators with and without “isoelectronic” impur-
ities. It turns out that a finite insulator with periodic
boundary conditions is very different from the familiar
case of an infinite insulator. The finite insulator exhibits
periodic, undamped current oscillations in a steady elec-
tric field which is not too strong. These oscillations are
not due to Zener breakdown (which only occurs for very
high fields and/or small band gaps). Rather, the oscilla-
tions are closely related to the oscillations of Bloch elec-
trons which would occur in a perfect metal in a strong
steady electric field. However, in marked contrast with
the case of a metal, the oscillations in the finite insulator
are extremely stable. They are not damped by scattering
from impurities or lattice imperfections, although their
amplitude is somewhat lower in the presence of strong
scattering centers than in the perfect crystal. The ampli-
tude and period of the oscillations decrease with increas-
ing length of the chain so that the usual passive behavior
of insulators is recovered in the long-chain limit. The fin-
ite perfect metal exhibits the expected current oscillations
in a steady electric field, but when an imperfection is in-
troduced into the chain, the simple oscillations are re-
placed by a complex high-frequency behavior whose am-
plitude fluctuates but does not decay with time.

Also in Sec. III, Zener breakdown is studied by begin-
ning with the insulating case and examining the behavior
as the electric field is increased, or the band gap is re-
duced by reducing the amplitude of the lattice distortion.
Different regimes are studied, each with its own charac-
teristic current pattern. :

It should be noted that the electric currents studied in
this article are all purely electronic in origin. They are not
due to the sliding charge-density waves which are ob-

7952 © 1985\The American Physical Society



served in some quasi-one-dimensional conductors, since
the sliding charge-density waves involve the vibrational
motion of the atoms, and in the present model the atoms
are assumed to be fixed. However, it is clear that a good
understanding of the electronic currents in static finite
chains needs to be obtained before one can use finite
chains with periodic boundary conditions to model the
microscopic physics of sliding charge-density wave con-
duction.

This work also offers a different and complementary
perspective of the physics of finite crystals in an electric
field to that which is presented by the theoretical investi-
gations of Stark ladders in finite systems (see Ref. 2 for a
recent study in this field and further references). The
work on Stark ladders has been concerned mainly with the
energy spectrum ‘of electronic states in the presence of an
electric field derived from a scalar potential, while this
study examines the time-dependent currents in similar
systems, but where the electric field is derived from a vec-
tor potential. The latter feature of the present work is ap-
propriate for transport calculations if periodic boundary
conditions are used. In Sec. IV the relationship between
this work and the London theory of ring currents in
aromatic molecules’ is examined.

II. THE TIGHT-BINDING FORMALISM

It is well known that if periodic boundary conditions
are to be used, them the most consistent way to formulate
the problem of electrical conduction in a solid is to intro-
duce the electric field by means of a time-dependent vec-
tor potential. Since the tight-binding approximation and
its refinements are widely used in solid-state physics, a
generalization of the tight-binding Hamiltonian which in-
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32 THEORETICAL STUDY OF ELECTRICAL CONDUCTION IN . .. 7953

cludes the effects of such a vector potential should be of
general interest. Surprisingly, no such generalization ap-
pears to be widely known among solid-state physicists, al-
though the London Hamiltonian describing the related
problem of ring molecules in a steady magnetic field was
put forth many years ago.”2 A simple formulation in a
solid-state context will be given in this section.

A. Single-band Hamiltonian and current operator

In the absence of the electric field, the tight-binding
electron Hamiltonian is

Hy=3 tijsCiIst , (1
i,j,s
where
ttjs=<¢ls'(p2/2m+V)l¢]:> ’ (2)

c,-l creates an electron in a state | @; ) belonging to band s

and located in the neighborhood of site i, and V is the
periodic potential of the lattice. Unless otherwise stated,
spin variables will be suppressed and summations over
them understood. We include the effect of an electric
field E by introducing a time-dependent vector potential
A, assumed for simplicity to be spatially uniform in the
region of interest. Then

—0A
= 3
E Y (3)
and the Hamiltonian becomes
HA = 2 tigfs’ci:tcjs' ’ 4)
i,},s,s'
where

tigy =¢is | [(P—qe AV/2m + V]| ¢ = (s | expliger A/#)(p?/2m + V)exp( —iger A/#) | ¢5)
= 3 (i | expliger: A/A) | Ppe ) trgs{ bus | exp(—iger A/H) | ) (5)

k,1,s"

and g, is the charge of an electron.

The choice of the tight-binding states |¢; ) is crucial.
In general, if Wannier states are used, H, is band diago-
nal as in Eq. (1). Since r is a Hermitian operator, one can
always choose the |[@;) to be linear combinations of
Wannier states belonging to band s, such that

(Bis | 1| djs ) =158y . (6)

Thus, H, remains band diagonal and r is now site diago-
nal within any band, although, of course, r is not band di-
agonal. A representation having just these properties was
recently used by Roy and Mahapatra? to study the energy
spectrum of Stark ladders.

A “single-band” Hamiltonian describing a particular
band s can now be obtained by omitting from the above
expression for t,-@sf, all terms involving other bands, yield-
ing

H= Zt,-jsexp[iqe A‘(ris—rjs)/ﬁ]CiIst . (7)
ij

[

In other words, in the single-band approximation, the vec-
tor potential simply phase shifts the hopping matrix ele-
ments ?#;; by an amount depending on the separation of
the sites 7,j. The electrical current-density operator is

ja=4q.[r,H,]/Qiti, (8)

where () is the volume. Using the same basis states and
again omitting interband matrix elements of r and H“
yields a single-band current-density operator for band s

i=[g. 7/(Qit)] 3, t5(x;s — 1)

ij
Xexplig, A(r;; —1s )/ﬁ]c,-zcjs . 9

The physical content of Egs. (7) and (9) can be under-
stood very simply as follows. Suppose for ¢<O,
E=A=0, and after ¢ =0, the electric field is smoothly
switched on by varying A appropriately. If A is spatially
uniform and the {r;;} form a Bravais lattice, it follows
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that the solutions W of the one-band Schrodinger equation

inSY e (10)
ot
for a single electron have the form

ik-r;

1
Y(t)=—= i), 11
( ) ‘/NY(t);e I¢xs) ( )
where N is the number of Bravais lattice vectors and y(¢)
is a phase factor obeying

m%?tizesm—qu/my , (12)

where

&(k)= 3 te
j

ik'(rj—r,-)

(13)

€(k) is the energy of Bloch state |k,s) in the absence of
external fields. The wave vector k of the state is a good
quantum number as expected for the uniform vector po-
tential A. Using (9) and (13), the current density in state
¥ is

ge 1 | 9€
j =— = 14
<‘P ‘ ] | ‘P) Q 7% aq q=k—q,A/% ’ (14)
ie.,
ge 1 | O¢
VIj|l¥)=——=|— . 15
w1j1¥) Q # | 0q |q=k+#lq, fO’E(z')dr' (13)

This is the current which is predicted by the familiar ac-
celeration theorem

dk _ 4B

4t 7 (16)

for an electron which begins in a Bloch state with wave
vector k at time ¢ =0, and is subsequently accelerated by
an electric field E. The validity of using (16) in a single-
band approximation has in the past been questioned.*
However, at present it is widely believed to be correct for
large band gaps and/or small fields.>>® The numerical
calculations for the two-band systems which are described
in Sec. III lend additional support to the validity of the
single-band equation (15) under these conditions. The
above results suggest that the Hamiltonian (7) and the
current operator (9) contain the essential physics of Bloch
equation propagation in a single-band approximation in a
perfect crystal. For finite crystals, states with only
discrete values of k are allowed. Nevertheless, the func-
tion €,(k) is defined for all values of k by expression (13),
and the variable q in (15) sweeps a continuum of values,
resulting in a smoothly varying current. Henceforth, we
shall consider only the particular band s and suppress the
subscript s from all symbols.

I
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B. Splitting the band

In the above treatment the lattice sites (or in simple
cases, atoms) are evenly spaced. We would like, however,
to also consider distortions from this periodicity within
the same tight-binding scheme. We can do this by identi-
fying the {r;} with the positions of the atoms and the ¢;
with the resonance integrals involving the tight-binding
states on atoms i and j. Adopting such a simple tight-
binding view and restricting ourselves to nearest-neighbor
hopping, it seems reasonable to apply the results (7) and
(9) directly to the case of unequally spaced atomic sites r;,
assuming that the resonance integrals f; are a smooth
function of the displacement r; —r; between sites / and j.

Although this approach in the spirit of the tight-
binding method is physically appealing, it is difficult to
justify in detail. It has been successfully used to describe
the electronic structure of polyacetylene’ but in the ab-
sence of electric currents. Further justification of the ap-
plication of this approach to the present problem will be
provided by the numerical results presented in Sec. III and
by the comparison made in Sec. IV with the work on ring
currents in aromatic molecules in magnetic fields.

We will consider periodic distortions which have the ef-
fect of splitting the tight-binding band. Such distortions
are common in quasi-one- and two-dimensional materials
where they often occur spontaneously because of the
Peierls mechanism.® Perhaps the simplest system of this
kind is polyacetylene (CH), and we will use it as the pro-
totype for the structures to be considered in this paper.
Polyacetylene is based on a chain of carbon atoms linked
by alternating slightly longer and shorter bonds. This “di-
merization” splits in half the highest electronic band
which is half filled with 7 electrons, resulting in a gap at
the Fermi energy. Of course, the dimerization is itself
driven by the reduction in electronic energy which accom-
panies the opening of this gap.

As a further simplification we will consider only com-
pletely linear structures with the axis and all bonds
aligned parallel to the direction of 4. The Hamiltonian
(7) for nearest-neighbor hopping then becomes

H = (tn 4 1,nexplige A (a +uup 11— ty) /Aley 110
n

+tn,n +1exp[ "iqu (d +un +1 —Up )/ﬁ]C;cn +1) ’

(17)
where 1, , =0 has been chosen, a is the average atomic
spacing along the chain, and u, is the displacement from
the undistorted position at the nth site. Following Ref. 7,
we will take ¢, , to be real and expand it to leading or-
der in the displacements. Then,

tn+1,n=tn,n+15_[tn+a(un+l—'un)] ’ (18)

where the minus sign is inserted for convenience. Like-
wise, the electric current operator becomes

S (tn 4 1,0(@ +tty 41—t Jexplige A (@ + 1ty 1 —un)]es 4 16

_tn,n +1(an +up 1 —uy )exp[ _iqu(a +Upp1—Un )]C:C,, +1) ’ 19)
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where L is the length of the chain.
In a perfectly dimerized chain, the displacements u,
take the form

u,=(—1"u . (20)

In polyacetylene in the absence of external fields, the am-
plitude u is determined by a competition between the en-
ergy of the 7 electrons described by the Hamiltonian H
(which favors dimerization) and the o-bond energy which
favors a uniform chain. In Ref. 7 the latter contribution
is modeled by a harmonic term

Eaz% ZK(un+l_un)2 ’
n

and u is found by minimizing the total energy. In this pa-
per the u, will not be obtained in that way. Instead, u
will be regarded simply as a parameter whose value will
be chosen at will and which will be used to set the magni-
tude of the splitting of the tight-binding band of our
model system to any desired value.

The band structure described by the Hamiltonian (17)
for the distortion {u,} given by (20) in the absence of the
vector potential A4, and assuming periodic boundary con-
ditions, is as follows: The Brillouin zone for the two-
atom unit cell extends from —/2a to m/2a and there are
two bands, an upper band labeled + and a lower band la-

beled —. The eigenstates are Bloch states which can be
written in the form
\Ilict=—17v-2e”“’”b,,i(k) [n) s (1)

n

where for each k allowed by periodic boundary condi-
tions, b,,i(k) takes two values

bg*(k) if n is even,

b k)=
" bZ (k) if n is odd,

(22)

the coefficients b (k) and b7 (k) satisfy the secular equa-
tions

[(1—B)e™ 4 (14 Ble ~*]b, + & bo=0,
23)
Exbe +[(14Ble™ 4+ (1—Ble ~*]py=0,

where
=—2au/ty, , (24)

and the energy eigenvalues e*(k) corresponding to the
states Wi [Eq. (21)] are given by

€T (k)=toky - (25)
Explicitly,

|
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€ (k)= *{[2tocos(ka)]*+ [4au sin(ka)]*} 2. (26)

The band gap which occurs because of the lattice distor-
tion at k = *1/2a has a magnitude

A=8au , 27

which is proportional to the amplitude of lattice distor-
tion. When the electric field is switched on, the Hamil-
tonian (17) mixes the states Wi of the two bands but does
not mix states with different k values.

it should be noted that very recently Roy and Mahapa-
tra® used a two-band tight-binding approximation in their
study of Stark ladders in an electric field. Their approach
was to take two tight-binding bands (which are completely
noninteracting in the absence of the electric field), each
with a sinusoidal e(k), and to include the electric-field-
induced interband matrix elements using expressions
based on k'p theory. The present Hamiltonian is some-
what different and would seem to be appropriate for small
and moderate band gaps, and should thus be capable of
handling Zener tunneling. The fact that the two split
bands in the present formalism are not sinusoidal [as is
clear from Eq. (26) for e+ (k)] turns out to have very im-
portant consequences for the problem of electrical con-
duction in finite systems, as will be demonstrated below.
A Stark ladder analysis of the present system and a care-
ful comparison with the results, which were obtained by
Roy and Mahapatra? using the k-p approach, would be of
considerable interest, but will not be pursued here.

III. CALCULATIONS AND RESULTS

A. Equations of motion and boundary conditions

In this section the time evolution of systems containing
several electrons will be studied by solving numerically
the equations of motion of the electron-density matrix.
Single-particle density matrices are appropriate since
electron-electron interactions are not included in the cal-
culations. The representation used is that of the tight-
binding states |#,). This choice is convenient because
only nearest-neighbor hopping is contained in the Hamil-
tonian, resulting in relatively simple equations of motion
for the density matrix, even when impurity scattering of
the electrons is included in the calculation.

The density-matrix equation of motion is

i#p=[H,p] . (28)

" With the notation

pru={ b |p|d1) , (29)
(28) yields

pra=i{[ to+alux—ux_y)]expligeA(a +up —up _1)/#lpx 1,1

+[to +alug 41 —ui)Jexpl —ig, A(a +up 41 —uk) /Filpk 41,1

—[to+alu; 1 —up)lexplige A(a +uy 1 —u;) /#lpr 1 41

——[t0+a(u1 —u1_1)]exp[ —inA(a +u; —-u1+1)/ﬁ],0k,1—1 —(Uk "UI)PkI} . (30)



7956

In deriving (30) it was assumed that in addition to the
periodic (or nonperiodic) distortion {u,} described by the
Hamiltonian (17), impurity terms of the form v,c,c, have
been included in the Hamiltonian H.

The density matrices in this article will always be spin
diagonal. This can be assumed because the Hamiltonians
which are being considered are spin diagonal and we will
only consider states in which there are always as many
spin-up as spin-down electrons. Thus, the spin variables
have only a trivial role and are not written explicitly in
the above equations.

In the following calculations, p(0), the density matrix at
time ¢ =0, is taken to be that of the system in its ground
state. It is calculated by finding the eigenvalues and
eigenstates of the Hamiltonian for 4 =0. If the eigen-
states are of the form

V= 8un|dn) > (31)

then

Pon="8umEnn » (32)
u

where the sum extends over the one-electron eigenstates
which are occupied in the many-electron ground state. In
the cases where the lattice distortion is perfectly periodic
[Eq. (20)] and there are no impurities, it is straightforward
to find p,,, (0) analytically from Egs. (21)—(26). However,
in general, the initial density matrix was calculated from
the eigenvectors and eigenvalues of the Hamiltonian
which were found numerically.

Periodic boundary conditions are implemented for a
chain of N atoms by defining

PN +1,n=P1,n> PnN+1=Pn1> Po,n=PN,n >
(33)
Pn,0=PnnN, UN+1=U|, Uo=UN,

wherever the quantities on the left-hand side of (33) ap-
pear in the equations (30) or elsewhere in the calculations.
Similarly, we identify |dy,1)>=]|6¢1), |do)=|dn),
8uN+1=8u1, and g,o=g,y in defining the electronic
states involved.

Starting at t =0, the electric field was switched on
smoothly by varying the vector potential appropriately.
In the results to be presented, the actual choice of the time
dependence was

A=—E3/(t*+1}) . (34)

The electric field E = —0A /3t increases initially smooth-
ly from O (E < t? for small t) and approaches a steady
value E for large times. ¢, is a measure of the time which
it takes to switch the electric field on. The rational poly-
nomial form (34) switches the electric field on smoothly,
but it should be noted that the approach to the steady
state value E is not monotonic, and the electric field actu-
ally has a maximum value of +E which occurs at
t=V"3t,.

The density matrix for times ¢ >0 was calculated by in-
tegrating (30) numerically using a Runge-Kutta algo-
rithm. The electric current at time ¢ was found using
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(j)e=Tr(pj) . (35)

The form (19) for the current operator was used whether
impurity scattering was included in the Hamiltonian or
not. This is justified because in the split-band tight-
binding model described in Sec. II B, both the position
operator r and the scattering potential v,c,c, are con-
sidered to be diagonal in the representation { |¢,)}, so
that v, does not contribute to the commutator defining
the current operator.

B. Finite insulators

If we take a perfectly dimerized chain [u, =(—1)"u]
with one electron per atom, then in the ground state, the
lower (—) split band is completely filled with electrons
and the upper (+ ) band is empty. This is normally con-
sidered to be an insulator. We are not concerned with
soliton-type structures’ in this paper so that we will study
only cases where N, the number of atoms in the chain, is
even. The two cases N =4n and N =4n +2, with n an
integer, are somewhat different from each other.

We will consider the former case first, for N =32. The
band structure and occupied levels in the ground state in
the absence of fields for this case are shown in Fig. 1, for
to=2.5eV,a=4.1 eV/A, u =0.0404 A. (These parame-
ters have been used for polyacetylene in Ref. 7.) The
closed circles are the occupied one-electron states; the
open circles are the vacant one-electron states. The band
gap A at the Brillouin-zone boundary is 1.325 eV. The
response of this system to an electric field E =10’ V/m
switched on according to Eq. (34) with a rise time
t,=10"13 s is summarized in Fig, 2. The average atomic
spacing a was taken to be 1.22 A. The behavior of the
electric current is shown by the solid curves in Figs. 2(a)

N=32
5
4 —
3 —
2 —
14
ram)
>
L
ey L
_.." -
_2 -
_3_{
_4 -
-5 e :
—11/2a . 0 m/2a
k

FIG. 1. Energy bands e*(k) of a perfectly dimerized 32-atom
chain with one electron per atom. t;=2.5 eV, a=4.1 eV/;\,
u =0.0404 A. Closed circles represent the filled electron states,
each containing two electrons, in the ground state of this sys-
tem. Open circles represent empty one-electron states. The
band gap A at k =+7/2ais 1.325eV.



32 THEORETICAL STUDY OF ELECTRICAL CONDUCTION IN . ..

o 108 /am)

T T T T
0 0.25 0.50 0.75 1 125 150
2T
15 -
N
/E\ 0.5 ‘ !
Q 04 - ,T, 8 | -
o]
9 -0.5 N
e
S 1
-5 U
-2
-25 — oy ]
0 5 10 1B 20
8
[+
4 %
3 |
)i |
e ° !
& ‘1
|
] !
\ dp K
\/\AA/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\‘
-8 T T T 1
0 5 10 15 20
t 1073

FIG. 2. (a) Time-dependent conductivity o versus time for a
32-atom perfectly dimerized chain with one electron per atom in
an electric field £=10" V/m switched on with a rise time ¢, of
10~Y s. The electronic structure of the system in its ground
state is that shown in Fig. 1. The solid line is the result of the
numerical integration of the density-matrix equations of motion.
The dashed line is the prediction of the single-band acceleration
theorem for electrons in the lower split band. a =1.22 A. (b)
As for Fig. 2(a) but showing the behavior over a longer time in-
terval. The dashed line and the solid line are indistinguishable
on this scale except at very short times. (c) The net charge on
atoms 1 and 2 as a function of time for the same system as in
Figs. 2(a) and 2(b).

and 2(b). The quantity o(z), which is plotted, is a time-
dependent “conductivity” defined by

o(t)= . (36)

The quantity X in the denominator is a scale factor
chosen to have units of area and a magnitude of 10 A 2. If
X is interpreted as the cross-sectional area of the atomic
chain, then some feeling for the magnitude of the currents
flowing in the chain can be obtained by comparing o(z)
with the conductivities of bulk. materials. Initially, the
current begins to flow in the direction of the electric field,
but then peaks and reverses direction at t~4Xx10~15 s
[Fig. 2(a)] and then begins to oscillate, the oscillations
becoming very regular as the electric field approaches its
asymptotic value E [Fig. 2(b)]. By the above criterion, the
amplitude of the oscillating current is quite large. Also,
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the oscillations show no indication of damping with time.

"The time dependence of the net charge g; on atom i is

shown in Fig. 2(c) for i =1,2. g; is defined by

q9i= 2 (pi'r],i‘q_ l)g, , (37)
n .

where 77 stands for spin. As the field is switched on, the
chain becomes polarized, alternate atoms becoming posi-
tively and negatively charged. The magnitude of the net
charge |g; | is the same for all atoms i. The polarization
charge oscillates with time as can be seen from Fig. 2(c).
The period of the charge oscillations is the same as that of
the current oscillations, but there is a 7 /2 phase shift rela-
tive to the current.

The presence of such undamped current oscillations in
a system with a completely filled band is, at first sight,
surprising. However, this behavior can be understood in a
simple way as will be explained below.

Let us calculate the current which would be predicted
for this system on the basis of the single-band acceleration
theorem as applied only to the lower ( —) split band which
contains all of the electrons at ¢ =0. In this single-band
(SB) model the current is given by

(sp(t)) = 2

k.

g 1
L #

de(q)
dg

g=k+#~'q, [IEGar
(38)

where the sum is over the occupied one-electron electron
states with wave vectors k (as represented in Fig. 1) and
spins 1. (Eq. 38) is a direct application of Eq. (15) to the
lower split band. The conductivity

osg=(jsp(t))/E(1)X ,

which corresponds to this current, is represented by the
dashed curve in Fig. 2(a). At very short times
(t<2X 107! y), there is a significant discrepancy between
osg and o, the conductivity which was obtained by the
numerical integration of the equations of motion of the
density matrix. However, for longer times this discrepan-
cy becomes progressively smaller, typically <0.1% for
t>1071s

The meaning of these results is as follows. The equa-
tion of motion of the density matrix which is solved nu-
merically contains the physics of both the upper and
lower split bands and of the transitions between the two
bands which can be induced by an electric field. Al-
though the electric field is switched on reasonably
smoothly, there is nevertheless a transient response at very
short times associated with the switching on process, and
virtual transitions to the upper band dominate the very
early behavior of the system. This results in the initial
small peak which occurs in o(f) at t~10"1 s. Since
these interband transitions do not conserve energy, their
influence on the current soon becomes relatively very
small, and then intraband processes which are confined to
the lower split band dominate the electrical conduction
process; hence, the excellent agreement between the pre-
dictions of the single-band acceleration theorem (38) and
the results of the full numerical calculation which is
found at later times.
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The current oscillations which are shown in Fig. 2(b)
occur because of the finite size of the system, which re-
sults in the finite separation in k space between the one-
electron states in Fig. 1. The sum over k in expression
(38) for the single-band current vanishes at ¢ =0 because
of the symmetry

e (q) _ e (q) (39)
aq g=k aq g=—k
and because
de (q) _ e (q) -0, 40)
aq q=0 aq q———_1r/2a

However, for general values of ¢ there is no such cancella-
tion, with the exception of times ¢ such that

t
#-lg, fOE(z')dr'zmI—:;;, (41)
where m is an integer and N is the number of atoms in
the chain. Thus, the period T of the oscillations is the
time which it takes for the wave vector g in expression
(38) to travel between the wave vectors of two adjacent
one-electron eigenstates shown in Fig. 1. In the limit
when E —E, we have

h

=—=. (42)
|g | ENa

Thus, the period of the oscillations is inversely propor-
tional to the chain length and to the electric field. The
amplitude of the oscillations also decreases with increas-
ing chain length, and in the limit of an infinite chain,
when the one-electron states form a continuum in k space,
(38) yields zero for the single-band current as expected.

It is clear that the oscillations which have been
described above for a finite insulator are closely related to
the Zener oscillations which are predicted for a perfect
metal in a strong electric field. They should be a common
feature of finite insulators with a wide variety of band
structures. It is easy to show, however, that if the filled
band under consideration has an energy dispersion which
is exactly sinusoidal in k space, then (jgg(2)) =0 for all z.
For this reason the two-band tight-binding model used by
Roy and Mahapatra?® in their recent study of Stark ladders
will not exhibit such current oscillations if the lower band
is completely filled with electrons. The excellent agree-
ment between the predictions of the single-band accelera-
tion theorem and the numerical calculations of the electric
current in the two-band system for long times provides
strong support for the validity of the single-band accelera-
tion theorem under the present conditions.

The calculations described above for the N =32 system
were repeated for chains of 16, 8, and 4 atoms using the
same parameters as for the 32-atom chain. The results
were qualitatively quite similar to those obtained for the
32-atom chain. For sufficiently long times ¢ after the
field was switched on, excellent agreement was obtained
between the numerical calculations and the predictions. of
“the single-band acceleration theorem. The period of the
current oscillations was inversely proportional to the
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FIG. 3. Energy bands of a perfectly dimerized 30-atom chain
in its ground state. 7,=2.5 eV, a=4.1¢eV, u =0.0385 A. No-
tation as in Fig. 1.

chain length as expected, and the amplitude of the oscilla-
tions increased with decreasing chain length.

The case N =4n +2 is somewhat different from that of
N =4n because of the different arrangement of the one-
electron states near the top of the lower split band. This
is illustrated in Fig. 3 for the case N =30. The essential
qualitative difference between this case and that of N =32
(Fig. 1) is that here the highest occupied one-electron state
is located not at the top of the lower split band (as in Fig.
1) but somewhat below it. The response of this system to
the same electric field as that which was applied to the
32-atom chain above is shown in Fig. 4. o(¢) again exhib-
its a small transient peak for ¢t ~10~!% s. Excellent agree-
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FIG. 4. Time-dependent conductivity for a perfectly dimer-
ized 30-atom chain. E =107 V/m, t,=10"'s. Structural and
electronic parameters as in Fig. 3. Notation as in Fig. 2.
a=122A.
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ment is again found with the predictions of the single-
band acceleration theorem at later times. An interesting
feature is that the initial phase of the current oscillations
is shifted by 7 from that in the 32-atom case. This initial
phase difference is always found between the current os-
cillations in the dimerized chains of length 4N and
4N +2, and it will be discussed further in Sec. IV.

Results consistent with the above were found also for
weaker electric fields E. However, while the period of the
current oscillations increases as the electric field de-
creases, the smallest time step which could be used in the
numerical integration of the density-matrix equations of
motion was found to be less sensitive to the size of E for
small fields. This limited the calculations which were car-
ried out for weak fields to times which were relatively
short on the scale of the period of the current oscillations.

C. Zener breakdown

If the value of the electric field E is increased substan-
tially beyond the values discussed in Sec. III B while keep-
ing the other system parameters unchanged, the agree-
ment between the predictions of the single-band accelera-
tion theorem and the numerical calculations begins to
deteriorate. In Fig. 5 the results are shown for the same
32-atom chain which was considered above (Figs. 1 and 2)
but with a value of the electric field ten times larger,
E=10® V/m. It is apparent that the very short-time
transient response associated with the switching on of the
field has become considerably stronger relative to the
long-time oscillatory response. Also, the discrepancy be-
tween the single-band acceleration theorem and the calcu-
lated current at long times is much larger ( ~10%). How-
ever, the current oscillations are quite stable and no ten-
dency for the magnitude of the discrepancy to change
with time was found at later times, although times up to
1012 5 were studied. Thus, under these conditions, al-
though the presence of the upper split band does have a
significant influence on the response of the system, Zener
breakdown does not appear to be taking place.

Increasing the field still further to E=10° V/m in the
same system brings marked qualitative changes in the

o (106/0 )

t (107 Bs)
FIG. 5. Time-dependent conductivity for a perfectly dimer-
ized 32-atom chain. Notation and parameters are the same as in
Figs. 1 and 2, except that E =10° V/m.
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FIG. 6. Time-dependent conductivity for a perfectly dimer-
ized 32-atom chain. Notation and parameters are the same as in
Figs. 1 and 2, except that E=10° V/m. The onset of Zener
breakdown is seen as the strength of the electric field increases
with time.

behavior. The early stages of the time evolution for the
same 32-atom chain as above for E =10° V/m with a rise
time t,==10"'% s are shown in Fig. 6. Initially, there is
the usual transient response associated with the switching
on of the electric field. Then, while the field is still rela-
tively weak, the single-band-model current (dashed curve)
follows the numerically calculated current (solid curve)
fairly closely for a few cycles, although the agreement is
not as good as for the weaker-field case shown in Fig. 5.
As the electric field grows further, the amplitude of
the current oscillations grows dramatically, and for
t>4x10~'* s the single-band model fails to provide even
a qualitative description of the system. The amplitude of
the calculated current oscillations becomes much larger
than in the single-band model, and the current oscillations
become rather irregular with pronounced higher-
frequency compounds. The calculated current at later
times is shown in Fig. 7. For #>1.5x 107" s, a new pat-
tern emerges. There are current oscillations with both
high- and low-frequency components. Particularly strik-

t (107 Bs)
FIG. 7. Time-dependent conductivity for the same case in

Fig. 6, but followed over a longer period of time. The current
predicted by the single-band model is not shown.
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ing is the strong, although somewhat unstable, component
oscillation with a period 7~1.7X 10715, This should be
compared with the Zener period (the time which it takes a
Bloch electron to traverse the Brillouin zone), whiclLfor
this dimerized chain for the limiting electric field E, is
given by

T,=—"
"2a|q. |E

For the present system with a =1.22 1&, E=10° V/m,
(43), yields T,=1.70% 10~!*s. Because the current oscil-
lations greatly exceed the predictions of the single-band
model in amplitude and because of the good agreement
between 7 and T, it is reasonable to suppose that Zener
breakdown is taking place, that transitions between the
upper and lower bands are occurring, and that the calcu-
lated current is due primarily to electrons which are being
excited into the upper band and the holes which are left in
the lower band.

It is interesting to compare these results thh the simple
standard expression for the probability of tunneling across
the band gap by an electron in a strong electric field, as it
passes the Brillouin zone boundary where the gap between
the upper and lower bands is smallest.” For the present
band structure, this probability is given approximately by

w? A?
E fo lqe IEa

(43)

Peexp | — (44)

Setting E=E, this yields P~4Xx10~' for the case
E=10% V/m considered above, which is consistent with
our interpretation that Zener breakdown is not occurring
in Fig. 5. However, for the case E =10° V/m (Figs. 6 and
7), P~3X10~% Such a tunneling probability would im-
ply that the transfer of an electron between the two split
bands occurs on the average on a time scale of several
Zener periods T,, (43). This is qualitatively consistent
with the occurrence of somewhat irregular large-
amplitude current oscillations with a period close to the
Zener period, such as those which are seen in Fig. 7.

A case in which the Zener tunneling is even more
favored is shown in Figs. 8 and 9, where the system is a
14-atom perfectly dimerized chain, but the distortion am-
plitude u =0.001 A is substantially smaller than in the
cases considered above, The other band parameters
tp=2.5eV,a=4.1eV/A, a =1.22 A are, as above, yield-
ing a small band gap A=3.28x 1072 eV at the Brillouin-
zone boundary. Note, however, that since N =14 belongs
to the class N =4n +2, the electronic structure is qualita-
tively similar to that of the N =30 chain shown in Fig. 3,
in that there is no one-electron state with a wave vector
exactly at the zone boundary where the band gap is small-
est. The electric field is switched on with a rise time
t,=10"1 s to a limiting value of E=3X10" V/m. For
this limiting electric field, the Zener tunneling probability
given by the simple expression (44) is P~0.93.

The early behavior of this system is shown in Fig. 8.
The solid curve is the calculated response. The dashed
curve is the prediction of the single-band acceleration
theorem for the lower band. The dashed-dotted curve is
the prediction of the single-band acceleration theorem for
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FIG. 8. Time-dependent conductivity for a 14-atom weakly
dimerized chain with strong Zener tunneling. u =0.001 A,
t0=2.5 eV, a=4.1eV/A, a=1.22 A, 1,=10""s, E=3x10’
V/m. The solid curve is the calculated result. The dashed curve
is the prediction of the single-band acceleration theorem for the
lower band only. The dashed-dotted curve is the predlctlon of
the single-band acceleration theorem for u =0.

the case u =0, where there is no distortion of the chain at
all and only a single band is present. This corresponds to
a perfect metal with no gap at the Fermi level.

The single-band acceleration theorem for the lower
band does not allow for any Zener tunneling to the upper
band. It predicts the simple saw-tooth current shown in
Fig. 8 for the following reason. If tunneling to the upper
band is not allowed, then, when the g vector [Eq. (15)] of
any electron reaches the Brillouin-zone boundary it is
Bragg reflected and the sign of the current carried by that
electron changes. For such a small lattice distortion,
€ (q) differs appreciably from e(g) (the electron energy
for the undistorted chain) only in a very narrow range
near the zone boundary. This means that the current
predicted by the single-band acceleration theorem for the
lower band reverses almost discontinuously when the
Bragg reflection occurs, resulting in the saw-tooth form.

o (108/0m)

t (0™ R%s) -

FIG. 9. Time-dependent conductivity for the same system as
in Fig. 8 but extending over a longer period of time. The predic-
tion of the single-band acceleration theorem for the lower band
is not shown.
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Until the g vector of the first electron reaches the im-
mediate vicinity of the Brillouin-zone boundary (this is
signaled in Fig. 8 by the abrupt reversal of the current
predicted by the lower-band acceleration theorem), all
three curves agree very well. Immediately afterwards, the
calculated current follows fairly closely the dashed-dotted
curve representing the prediction of the acceleration
theorem for the undistorted chain. The dashed-dotted
curve can be thought of as representing the limit of per-
fect Zener tunneling (P =1). In the present case, Zener
breakdown is still not complete, however, since P~0.93.
This means that when an electron approaches the
Brillouin-zone boundary there is a small probability that
instead of tunneling to the upper band, it will be Bragg re-
flected within the lower band and make a negative contri-
bution to the current. This effect is clearly visible in Fig.
8, where each tunneling event is' accompanied by an
abrupt (but small) increase in the discrepancy between the
calculated current and that predicted by the acceleration
theorem for the undistorted chain. Notice also the rapidly
damped high-frequency transient oscillations in the
current which follow every tunneling event. It is clear
that after a large number of such incomplete tunneling
events between the lower and upper bands, the picture
must become more complex since both bands will become
appreciably populated by electrons of every allowed k
state. As can be seen in Fig. 9, at later times the dom-
inant frequency of the current is equal to that correspond-
ing to the Zener period of the undistorted chain. - (This is
twice the period given by expression (43), which describes
correctly the dominant period for the case of weak Zener
tunneling shown in Fig. 7.) However, the current also has
strong higher- and lower-frequency components.

The above examples show that the present two-band
model is capable of describing Zener tunneling and that
its predictions are quite reasonable physically, at least in
simple cases which are readily accessible of semiquantita-
tive analysis. It is also apparent that a multiplicity of oth-
er interesting tunneling regimes is yet to be explored.

D. Imperfect crystals

Until now we have considered crystals which, although
dimerized, are perfectly periodic. Since Zener oscillations
in metals are effectively damped out by scattering by im-
purities or other imperfections, it is interesting to consider
the effect of deviations from perfect periodicity on the
present class of systems. To this end we consider a per-
fectly dimerized chain with u,=(—1)"u as above, but
with one of the atoms being an “isoelectronic” impurity
which is represented by adding a term vjcjc; to the Ham-
iltonian (17) where j is the site of the impurity atom. The
electron-density matrix at time ¢z =0 is set up and its time
evolution calculated as described in Sec. IIT A.

In Fig. 10 the response is shown of a dimerized 32-
atom chain with one electron per atom without impurities
(solid curve), and with two different isoelectronic impuri-
ties on site 1: vy;=35 eV (dashed curve) and v;=10 eV
(dashed-dotted curve). The system parameters u, f;, a,
and a, the limiting electric field E, and the rise time ¢, are
the same as for the 32-atom chain considered in Sec. III B

o (108 am)
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FIG. 10. Response of the same 32-atom chain as in Fig. 2 to
the same electric field (solid curve); the same chain but with
vi=>5 eV (dashed curve); the same chain but with v;=10 eV
(dashed-dotted curve).

so that we are in the insulator regime, far from Zener
breakdown. In contrast to the case of Zener oscillations
in a metal, the effect of the impurities on the current os-
cillations in the finite insulator is remarkably mild. The
oscillations are still present, the period is the same, and
there is no noticeable damping of the oscillations with
time. Only the amplitude is reduced somewhat from the
perfectly periodic case, by about 13% for the 5-eV impur-
ity and 32% for the 10-eV impurity. The results for at-
tractive impurities (negative v;) were quite similar. Other
static defects, which were produced by displacing a few
atoms of the chain from their ideal positions given by
u, =(—1)"u, were also studied and their effect on the
current was similar to that of the isoelectronic impurities.

These results can be understood qualitatively if one re-
gards the defects as perturbations which scatter electrons.
Since in the finite insulator all of the one-electron states in
the lower band are occupied, there are no empty states in
the range of energies to which the electrons can be scat-
tered by the imperfections. Thus, the influence of defects
on the electron dynamics is minimal and the current oscil-
lations which characterize electrical conduction in the fin-
ite insulator are very stable.

For comparision, the response of a 14-atom chain with
one electron per atom and u =0 (a finite metal with a
half-filled band) is shown in Fig. 11. The chosen parame-
ters are tp=2.5¢eV, a=1.22 A, t,=10"" s, and E=10"
V/m. The dashed-dotted curve is the response of this sys-
tem in the absence of impurities, for times extending up to
and slightly beyond one-quarter of the first Zener oscilla-
tion. Since u =0, we are not dealing here with a split
band and the numerical calculation agrees with the pre-
diction of the single-band acceleration theorem. The solid
curve is the response of the same system but with an im-
purity located at atom 1 of the chain (v; =1 eV). In this
case the behavior is quite complex. Initially, the current
follows very closely the results of the calculation for the
system without impurities, but then a new regime is en-
tered, characterized by abrupt near reversals of the
current to negative values, each time followed by a rela-
tively slow, oscillatory buildup of the current in the posi-
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FIG. 11. Response of a metallic 14-atom chain with one elec-
tron per atom. u =0, to=2.5 eV, a=1.22 A, £,=10"1 s
E=10" V/m. Dashed-dotted curve: perfect structure with no
impurities. ‘Solid curve: isoelectronic impurity on site 1; v,=1
eV. Closed circles mark the times at which one-electron states
at g come into resonance with those at —gq.

tive direction. The details of each such cycle differ from
those of the preceding one. One can understand physical-
ly what is happening as follows.

The impurity breaks the perfect periodicity of the sys-
tem and can scatter electrons from one “unperturbed”
single-particle state to another. However, this scattering
is not very noticeable unless the two single-particle states
are in resonance with each other. In practice, the reso-
nance condition occurs when for two different one-
electron states i and j, the g vectors, as defined in Eq.
(15), obey g;=—gq;. The times at which this condition is
satisfied, as predicted by the single-band acceleration
theorem, are indicated by the closed circles in Fig. 11.
These times correlate very well with the abrupt reversals
of the current. Thus, one can associate these current re-
versals with the scattering of an electron from g to —¢q by
the impurity when an occupied state at g comes into reso-
nance with a nearly vacant one at —gq. The high-
frequency oscillations are then the signature of the tran-
sient associated with the scattering process. This interpre-
tation is very close in spirit to the usual view of the role
which elastic scattering plays in the Boltzmann equation
describing electrical conduction in metals, and is con-
sistent with the interpretation given above to the very dif-
ferent behavior of the oscillating currents in finite insula-
tors.

IV. CONNECTION WITH THE LONDON THEORY
OF RING CURRENTS

In the preceding sections we have considered conduc-
tion in linear chains of atoms with periodic boundary con-
ditions in a uniform time-dependent vector potential. The
problem of a closed ring of atoms in a magnetic field is a
closely related one which has received much attention in
the literature, although the emphasis has been on calculat-
ing magnetic susceptibilities and NMR chemical shifts
which are due to the induced ring currents rather than the
currents themselves. A comparison of the two approaches
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is clearly of interest.

The quantum theory for ring molecules in magnetic
fields was first formulated by London® and developed fur-
ther by a number of authors, notably by Pople!® and
McWeeny.!! The basic formulation which has been used
can be summarized briefly as follows.

The molecular orbitals in a static magnetic field are
eigenfunctions of the Hamiltonian

H,=(p—gq.A)?*/2m +V(r), (45)
where
B=VXA.

London chose basis functions of the form
Xs(r)=d¢,(r)explig, A; 1 /#) , (46)

where ¢, is a modified tight-binding orbital of atom s and
A, is the vector potential at the center of atom s. Then
the molecular orbitals are taken to be of the form

v,=cX,, 47
s

where the energy eigenvalues and coefficients ¢, are deter-
mined using matrix elements of the Hamiltonian (45) in
the basis (46). These matrix elements are given by

Hst=<Xs ]HA |Xt>
= [ d’rexp[ —iq.(A,— A,)1/A]$? (r)
X{[pP—ge(A—A)P/2m +V(D)}d,(r) .  (48)

Taking the ¢, to be eigenstates of the intra-atomic part of
the Hamiltonian in the curly brackets in (48) and approxi-
mating r in the exponent by

r=+(R,+R,), (49)

where R;+R, are the positions of atoms s and ¢, yields
the London Hamiltonian

H,, =Bgexp] — vig. (A, — A, ) (R, +R,)] , (50)
where
Ba= [ d*r ¢X(1){[p —q.(A—A,)]*/2m +V (1)}, (r) .
(51)

For the purpose of calculating the effects of interatomic
currents and for small fields, B, is in practice usually ap-
proximated by its value for 4 =0, and only nearest-
neighbor terms are considered. The eigenvalues of H,,
and hence the magnetic susceptibility, which is due to cir-
culating ring currents, and other quantities of interest are
then calculated.

If a simple planar ring molecule is considered in a uni-
form magnetic field B perpendicular to the basal plane,
then choosing A= —3rXB, the similarity between the
London Hamiltonian (50) for the ring molecule and the
forms (7) and (17) obtained in Sec. II for a linear chain in
a uniform vector potential is striking. In fact, if we iden-
tify 4 in (7) and (17) with | 4; | = | 4, | in (50), then it is
easy to show that the Hamiltonians obtained in Sec. II are
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the same as the London Hamiltonian (50) in the limit of
large rings, except that the precise definitions of the ma-
trix elements ¢ and B are somewhat different. The simi-
larity between the results obtained for the two different
geometries can yield interesting insights into both situa-
tions.

While the London theory has been widely accepted as
being substantially correct, it has also been criticized by
some authors who have questioned the physical reality of
the London ring currents.!?> Thus, an alternative deriva-
tion of the London Hamiltonian, such as has been given
in Sec. 11, is desirable, particularly since the simpler linear
geometry which we have used avoids the need to make the
somewhat crude approximation (49). Furthermore, the
derivation in Sec. II shows clearly the importance of
choosing a very special set of “tight-binding” basis func-
tions ¢; for the theory, an aspect which appears to have
received little recognition in the literature.

In comparing the work on ring currents with the
present calculations, it should be noticed that the strength
of the magnetic field in the case of magnetic susceptibility
experiments corresponds roughly to the time variable in
the results of Sec. III, although the magnetic fields used in
practice correspond to extremely short times in the
present work. Of course, the early transient behavior as-
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sociated with the switching on of the field [for example,
in Fig. 2(a)] is not reflected in the susceptibility measure-
ments which are carried out in very slowly varying or
steady magnetic fields. A positive current at short times
(but after the decay of the initial transient) in the present
calculations, corresponds to a diamagnetic susceptibility
of the appropriate ring molecule; a negative current to a
paramagnetic susceptibility. The annulenes (ring mole-
cules of the type CyHy which are finite cyclic analogs of
polyacetylene) are found experimentally to exhibit di-
amagnetic ring currents for N =4n +2 and paramagnetic
ring currents for N =4n.'*® This has previously been
shown to be a direct consequence of the London
theory,!%®»12() and is in agreement with the initial phases
of the currents found in Sec. III for perfectly dimerized
chains of the corresponding lengths (Figs. 4 and 2, respec-
tively).
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