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Mechanism of elastic shear coefficients of dilute copper alloys

K. M. Kesharwani
Department ofPhysics, University ofSaugar, Sagar 47003, Madhya Pradesh, India

(Received 18 January 1985)

With the use of the Green s-function method, explicit expressions for the exchange energy contri-
butions to elastic shear coefficients of o.-phase dilute alloys have been obtained in terms of local
changes of central and noncentral force constants around an impurity atom. The results are utilized
to compute the Fermi-energy contributions to the elastic constants of Cu —4.1 at. %%uoA l an dCu —2.8
at. % Au alloys.

I. INTRODUCTION

The elastic constants of a crystal are useful in under-
standing the mechanical and thermal properties of a solid.
The principal lattice energy contributions to the elastic
shear coefficients of copper and its dilute alloys are from
electrostatic energy, exchange interaction energy of
nearest-neighbor ion cores, and Fermi energy of conduc-
tion electrons. Actually, their sum does not give the com-
plete account of the internal energy of a solid because of
the exchange and correlation effects for the conduction
electrons, certain electrostatic terms, etc. However, their
effect on the total energy is considered to be small. One
can, therefore, write the total energy per atom as

8"= 8 p + 8'E + 8 g + 8 F,
where 8'p is the total energy of the lowest conduction-
electron state, 8'z is the electrostatic energy, 8'z is the
exchange energy between the ion cores, and O'F is the
Fermi energy of the conduction electrons.

The determination of the repulsive and Fermi-energy
contributions to shear elastic constants of copper and its
alloys is a difficult problem from a theoretical, as well as,
experimental point of view. An attempt to calculate the
Fermi-energy contribution to shear elastic constants of ct-
phase copper and silver based alloys was made by Collins'
by using a rigid-band model and measured Fermi-surface
parameters. However, the calculated results were found
to be in poor agreement with the measured elastic con-
stants because of the neglect of the ion-core contribution
and the serious approximations involved in the calculation
of the'Fermi-energy contribution. Even in the case of
pure copper, the Fermi-energy contributions calculated by
Collins exhibit a large difference from the results of
Sinha, obtained by using a local-pseudopotential ap-
proach, and it is difficult to say at the present state of
knowledge which of -the two results might be most accu-
rate. Another effort for the evaluation of the change in
Fermi-energy contribution to the shear elastic constants
due to alloying was made by Cain and Thomas. In their
calculations, the ion-core contribution was considered to
be directly proportional to the number of modified ion-
interaction pairs, and the value of the proportionality con-
stant was chosen in an arbitrary manner. However, the
effects due to force constant change around the solute

atoms were not taken into account in their calculations.
An alternative approach for estimating the Fermi-

energy contribution lies in the calculation of the ion-core
contribution by determining the pair potential after utiliz-
ing the pressure derivatives of second-order elastic con-
stants and measured third-order and calculated fourth-
order elastic constants. But the agreement between the
different calculations is generally poor for the pure met-
als. However, such calculations for the a-phase dilute al-
loys are not available. Due to this, a reasonable decompo-
sition of the shear elastic constants of the a-phase alloy
remained an intractable problem.

For the calculation of the ion-core contribution, the
present paper adopts a different approach, i.e., the
Green's-function method which takes into account in a
natural way the discreteness of the lattice structure and,
thus, has an added advantage over the pair-potential
method. The calculated ion-core contribution is finally
used to extract out the information about the change in
the Fermi-energy contribution to shear elastic constants of
dilute copper alloys. The only attempt so far to explain
the elastic constants of dilute Cu-Au alloys by utilizing
the Green's-function method was made by Taylor. How-
ever, they were unable to find any combination of
nearest-neighbor force constant changes to fit the experi-
mental results because of the neglect of the electrostatic
and Fermi-energy contributions. This paper represents
the first attempt to interpret the experimental results on
any dilute face-centered-cubic alloy by following the
Green's-function approach. The explicit expressions for
the ion-core contribution to the elastic constant of imper-
fect lattice have been derived in Sec. II and are utilized to
calculate the Fermi-energy contributions to the elastic
constants of Cu —4. 1 at. %%uoA 1 an dCu —2.8at. %Aual-
loys in Sec. III.

II. THEORY

For a solid containing a low concentration p of similar
substitutional defects, the averaged perturbed Green's
function may be written as

(G(z))=G (z) —G (z)&(G(z)),

where the self-energy X has the- same periodicity as the
perfect phonon propagator Go(z), and z =co +2itori+ is
the complex squared frequency in the limit g+~0. In
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writing Eq. (2), a statistical average over all the possible
configurations of defects has been taken.

In normal mode representation, the averaged perturbed
Green's function may be written as

( G(k)) =[cog,I+X(k,s) zI—] (3)

where coq, are the squared frequencies of the host lattice
corresponding to the wave vector k of the polarization
branch s.

If we consider only the scattering of phonons off single
impurities and neglect the scattering off clusters of impur-
ities, the self-energy X(k,s) may be written as

central and noncentral force constants are considered only
up to the nearest neighbors. The point-group symmetry
of the defect site is O~, and irreducible representations
occurring in the problem are F1„,F2„, F1g, F2g, Eg, E„,
A 2 c4 1g and A 2g The perturbation and Green's-
function matrices in different irreducible representations
have been determined by Agrawal for a diatomic fcc lat-
tice. For a monatomic fcc lattice, one can easily deduce
the necessary results. In the limit k0=2mk0a~0, where
a is the lattice parameter, various components of the sym-
metrized X(z) matrix in different irreducible representa-
tions appearing in Eq. (8) are

X(k,s)=(ks
~

X(z)
~
k,s),

with

(4) (k, s
i XF

i
k,s)= —p co k,s,AM

X(z)=pp(co')[I+(1 —p)g'(z)P(~') j (5)

Here P(co ) is the perturbation matrix due to a single de-
fect and g (z) is the Green's-function matrix in the sub-
space of a single defect (of dimension 3b X3b; b is the
number of atoms directly affected by the defect including
the defect itself). The real part of the self-energy X(k,s)
yields the information about the shift in the squared fre-
quencies which may be written as

rog, —rog g
——Re( k,s

~

X(z)
~
k, s ),

where coq, .is the perturbed phonon frequency.
The group velocities in an imperfect lattice are defined

BQ)k s
V.k, s k

and are related to host lattice group velocity vk, as
r

pu „,=pug, 1+ 2 Re(k, s
~

X(z)
~
k,s)

~ks

(8)

where p and p are the imperfect and host lattice densities
which are related as

AM
p=p 1 +p

Here, hM is the change of mass at the site of the impurity
and M is the mass of the host lattice atom.

For a cubic crystal, only three elastic constants C11,
C12, and C44 are needed to describe the group velocities in
any direction. The relations between the bulk elastic con-
stants and (vj, , )k 0, used in the present calculations, are
as follows:

/

~11 PU 100LA r

(k, LA
i
X ~ i

k, LA) = ko,3M 1+ 1 —p A/

(k, LA j XE
i
k, LA)= 5iz ko—

0

(k, LA
i Xp i

k, LA)= 525M 0

(koo, TA AX@, ~
koo, TA)= 525ko,

( k, TA
i
X ~, i

k, TA) =0,
(k~, TA~XE ~k~, TA)=o,

(k,s
i XF, ik, s)=0,

(k,s [XE [k,s)=0,

(k,s
i

X g, i
k,s) =0,

(ks iXA, ik, s)=0,
where c.p. denotes the cyclic permutations. In the above
calculation of the matrix elements, only terms up to the
order of ko have been considered. The matrix elements
associated with F1g irreducible representation have not
been included because the strains due to F1g irreducible
representation are asymmetric.

The quantities f~s, 5&z, and 525 are defined as

fis™(gi+2g3+2g4+g5—g6 —g7

+g9 2gto+4g12+2g)3)

&12= A, +3k, '+(1—p) (g~ —2v 3gs +3gE )
22 12 11

Ds (z) M g g

with

DE (z) = 1+ (kg@'+A, 'gp )M g

+(1—p)', [gE,'gE,
'

(gE,')'ll, —
C44 P U 100,TA &

C12=2P U 110,LA —C11 —2C

(10)

For a substitutional impurity in a fcc lattice, the pertur-
bation matrix is of dimension 39X39 if changes in the

&2S= 11 22 12

DF (z)
A. +A, +(1—p) (gF +gF 2gF )—M

2g
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ergy of the conduction electrons ACF. Therefore, one can
write

DF (z)=1+ (k'gF" +AgF )
ACI ——ACE+ACg +ACF . (16)

+(1—p), [g~„gF„—(g~„) ] .2 ~ 11 22 12 2 (12)

Here, A, and A,
' are the local changes of central and non-

central force constants, respectively. The different
Green's-function matrix elements appearing in Eq. (12)
are readily obtained from Ref. 6.

In deriving the various matrix elements [Eq. (11)], the
effects due to changed repulsive interaction between im-
purity and only its nearest neighbors have been taken into
account. Using Eqs. (8)—(11), one therefore obtains the
change in ion-core contributions to the elastic constants of
the imperfect lattice due to substitution of impurity atoms

8p 12

3a 1+(1 p)A, /f ~s
—2

sp 12

3a 1+(1 p)A, /f &s
—4

2p~ C44 ~25
Q

(13)

.and

2p
~CA ~25 ~

Q
(14)

p
a

The change in bulk modulus AEz and the change in
shear elastic constants ACED and 4C~ due to fractional
concentration of defects p is given by

8p A,

3a 1+( 1 p) A, /f ig—

In order to understand the mechanism of shear elastic
constants, the numerical calculations have been performed
in the case of Cu —2.8 at. % Au and Cu—4.1 at. %%uoA 1 al-
loys. The different Green's-function matrix elements ap-
pearing in Eq. (13) have been calculated by using the lat-
tice dynamics of copper in the model by Krebs. The
values of pressure derivatives of the elastic constants of
copper are taken from the work of Daniels and Smith
and the value of BT used in the calculations is
1.332&C10' dyn/cm .

The changes in the electrostatic contribution to shear
elastic constants of an e-phase alloy due to the addition of
the impurity atoms are determined by closely following
the results of Fuchs and are written as

2

6 CE ——1.8956(Z —1) a4 '

b. C~ ——0.2116(Z —1) a4 '

where Z = I+pq is the effective valence of the imperfect
lattice with q as the excess valence of the solute, and e is
the electronic charge.

The measurements of the elastic constants of Cu—
2.8 at %Au. alloy have been performed by 0'hara and
Marshall. ' The values of A, and k' for a Cu —3.0 at. %%uo

Au alloy have been determined by Kesharwani and
Agrawal" from the study of impurity induced phonon
shifts and widths in the alloy. ' These values of A, and A,

'

are not expected to be altered much for a Cu —2.8 at. %
Au alloy and are, therefore, used to calculate the ion-core
contribution. The results are summarized in Table I.

The elastic constants of the dilute Cu-Al alloys have

III. NUMERICAL CALCULATIONS AND RESULTS

The changes in shear elastic constants AC and AC'
upon alloying is assumed to. consist of two separate ef-
fects: (i) the change b, CI and b, CL due to modification of
the lattice parameter and (ii) the explicit change due to the
addition of the impurity in the expanded (or contracted)
lattice ACI and ACI. The values of bCI and ACI' are
determined from the following equation:

aC d(ina)
dp o d (lnp)

Cu —4.1

at. % Al
Cu —2.8

at. go Au

AC
Experiment
Lattice expansion correction
Electrostatic contribution
Ion-core contribution
Fermi contribution

0.12'
—0.28

0.44
0.13

—0.17

—0.15b
—0.04

0.17
—0.28

TABLE I. Impurity induced changes in different lattice ener-

gy contributions to shear elastic constants of dilute copper alloys
in units of 10" dyn/cm . For pure copper, C=7.54&10"
dyn/cm and C'=2. 37&(10"dyn/cm .

where BT is the isothermal bulk modulus and
(BC/BP)z 0 is the hydrostatic pressure derivative of the
elastic constant of the solvent. A similar equation can be
written for the change in shear elastic constant C'.

The explicit change due to the addition of impurity
ACI consists of three separate contributions, i.e., from (i)
electrostatic energy b,CE, (ii) exchange interaction energy
of the nearest-neighbor ion cores b Cq, and (iii) Fermi en-

AC'
Experiment
Lattice expansion correction
Electrostatic contribution
Ion-core contribution
Fermi contribution

'Reference 3.
bReference 10.

—0.08'
—0.07

0.02
0.06

—0.09

—0.10"
—0.01

0.08
—0.17
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been measured by Cain and Thomas for the different low
concentrations of Al. However, the value of A, is available
only for a Cu —4.1 at. %%uoA 1 alloy . Th evalu eha shee n
obtained by analyzing the phonon spectra' of the alloy

, which exhibits a localized vibrational mode at the fre-
quency 8.78 THz. The shear elastic . constants for a
Cu—4.1 at. % Al alloy have been determined by interpola-
tion of the experimental results. The calculated values are
again presented in Table I.

From Table I, one can observe that b,C+ and AC+ for
both types of alloys are negative. The results in the case
of a Cu —4.1 at. % Al alloy are quite different from those
of Cain and Thomas, because of the assumption that
b Cz and b.CR do not depend on the nature of the impuri-

ty and are directly proportional to Cz and Cz, respective-
ly (b,C& ——os and b, Ctt ——oCtt,' the value of cr has been
taken to be negative ). Due to this, b, C~ and b, Ct't in Ref.
3 turned out to be negative which, in turn, yielded the
positive values for b, CF and b, C~. For a Cu—2.8 at. %
Au alloy, the results from the other authors are not avail-

able' for comparison.
The effect of zone boundaries on 8'F is significant.

The energies of the various electron states are altered due
to the distortion of a filled zone in reciprocal space These
changes when averaged over the zone cancel to the first
order in strain but contribute positively in the second or-
der. For a partially filled zone, the first-order terms are
positive over some part of the Fermi surface and negative
over the others while second-order terms continue to
remain positive. This results in shifting of the electronic
population from the parts where the change is positive, to
the parts where it is negative. This shift lowers the stress
energy and the related elastic modulus.
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