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Scattered impurity states in transition metals. II. Approximate solutions using phase shifts
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To solve the problem of a transition metal with an impurity, the one-electron linear-combination-
of-atomic-orbitals wave functions are constructed in terms of spherical harmonics multiplied by
spherical Bessel or spherical Neumann functions. These solutions are approximated afterwards by
the standing-wave-like projected-coefficient (SWLPC) functions, calculated in the preceding paper,
and their modifications. At large distances from the impurity area the impurity wave function has
the form of a scattered wave. Any solution for an imperfect crystal differs from that obtained for a
perfect crystal by the presence of a phase shift. In each case the electron states can be quantized ac-
cording to the requirement that their wave functions vanish at the crystal boundary, which is as-
sumed to be spherical. This makes the analysis of the impurity problem in a crystal very similar to
that done by Friedel in the free-electron case. However, any present phase shift depends on the
symmetry index of the SWLPC function, the branch of the solution of the secular problem, and the
wave vector belonging to the irreducible part of the Brillouin zone. The phase shifts, which can be
expressed in terms of the perturbation matrix, are proportional to corresponding components of the
density of states of the unperturbed metal. An expression for the change in the number of metal
electrons due to scattering is obtained. In its derivation the phase shifts found in the present paper
enter into a modified Friedel s formula given originally for the free-electron case.

I. INTRODUCTION

In many dilute alloys of transition metals, e.g. ,
NiFe and Ni Co, the area of the perturbation potential
due to the impurity atom is limited to the neighborhood
of one lattice site. ' In other cases, e.g., NiCr, the per-
turbation potential is extended over more than one lattice
site, although the potential perturbation does not occupy
many lattice sites. Outside a certain area the perturbation
can be considered negligibly small. Nevertheless, the elec-
tronic structure of the matrix metal is modified by the im-
purity atoms also outside the area occupied by them.

Friedel considered metal as jellium and the perturba-
tion due to an impurity as a spherical potential on which
the jellium electrons were scattered. Providing the bound
states were neglected, the effects of the impurity were
phase shifts of the wave functions of the jellium. These
phase shifts took account of the change of the electron
structure at distances far from the impurity; they were
very useful in the calculation of such quantities of the
perturbed metal as electron density, density of states, and
residual resistivity.

Koster and Slater first gave a method for descrip-
tion of the impurity states in a metal in which the period-
'ic structure of the crystal potential of the matrix was tak-
en into account; cf. also Ref. 10 here. The electron wave
functions were given in the linear-combination-of-
atomic-orbitals (LCAO} representation. The difficulties
of this approach, based on the Bloch LCAO wave func-
tions, were discussed in the preceding paper, " hereafter
referred to as I. A different approach, based on the
standing-wave-like LCAO wave functions, was proposed
there. This approach seems to be more suitable for the
treatment of the impurity problem. In the present paper

this approach is applied to find the solution of the prob-
lem of a transition metal perturbed by the presence of an
impurity which can be a single substitutional atom or a
cluster of them. As the beginning the boundaries of the
metal block are chosen to be spherica1, so the electron
wave functions can be quantized in this spherical potentia1
box. This kind of quantization allows for an easy calcula-
tion of the change of the unperturbed wave functions of
the perfect metal due to the presence of an impurity at
large distances from the impurity position. The changes
are given, in the form of phase shifts of the original wave
functions; therefore a complicated Green's-function calcu-
lation is avoided. The phase shifts can be readily obtained
on condition that the impurity potential is a known quan-
tity. (In this paper we do not consider the bound states
which may be caused by the impurity potential. } This
makes the method very suitable for the calculation of
such quantities as the total change of the density of states
in a crystal, or the scattering effects at large distances
from the area occupied by impurities. From this point of
view the present method seems to be easier to handle than
much more refined approaches to the impurity problem
based on the Korringa-Kohn-Rostoker approxima-
tion. ' ' These methods are particularly well suited to a
local description of the impurity effect: they surround the
impurity atom, or a cluster of the impurity atoms, by a
sphere, and then take into account the effect of scattering
of an electron on one or many atoms by means of the
Green's-function technique.

In subsequent sections we present —as the first step-
how the standing-wave approach to the LCAO method
works in the case of a one-dimensional metal. As the next
step the boundary of the whole three-dimensional crystal
is changed to a sphere and the wave function for this crys-
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tal is expressed in the spherical coordinate system. This
allows us to approximate the coefficient functions of the
LCAO wave functions in terms of the combinations of
spherical harmonics multiplied by spherical Bessel func-
tions used for a perfect crystal. On the other hand, the
LCAO coefficient functions for a crystal with impurities
can be expressed in terms of combinations of spherical
harmonics multiplied by spherical Bessel functions and
spherical Neumann functions. In effect, at large distances
from the impurity area, the coefficient function of the
perturbed crystal differs from the coefficient function of
the perfect crystal by the presence of a phase shift. The
phase shifts can be easily estimated from the energy
difference between the perturbed and the unperturbed
electron states.

An approach of this kind to the impurity problem was
done earlier, but was limited solely to the s-electron
states. Moreover, it was based on the standing-wave
LCAO wave functions obtained from a tedious diagonali-
zation process which was accompanied by convergence
difficulties for certain areas of the spectrum of the energy
states. In the present paper we avoid these difficulties us-
ing the LCAO wave functions which have the standing-
wave-like projected-coefficient (SWLPC) functions ob-

tained in I. The method can be applied equally to any set
of s, p, d, and other atomic states, and the necessary coef-
ficient functions are obtained by a simple projection-
operator technique. It is shown also how the phase shifts
are related to the density of states of the perfect metal
and —in the last step —the phase shifts are applied to the

I

calculation of the change of the electron charge in the ma-
trix produced by the presence of impurities.

II. THE CASE OF ONE-DIMENSIONAL METAL

To give a better idea of our method, we present it at
first for a very simple example of a one-dimensional crys-
tal which has only two types of the atomic orbitals. These
are an orbital symmetric with respect to the nucleus,

@,( —x)=4,(x), (2.1)

labeled by s, and an antisymmetric one,

Nq( —x) = —Cq(x), (2.2)

labeled by p. The LCAO function in the present case is

(2.3)
L,p

p= Is,pI = I1,2I, I. =0, +1,+2, . . . , Xr, La (2——.3a)

where a is a lattice constant. The atomic orbitals 4& and
the matrix elements of H, Eq. (2.7) of I, may be chosen
real. Therefore

HpL p'L' 0 'L' L (2.4)

because H(x) is Hermitian. If the tight-binding approxi-
mation (the interaction between atoms limited to nearest
neighbors) is assumed, then the translational symmetry of
H, Eq. (2.8) of I, the symmetry properties of the atomic
orbitals (2.1) and (2.2), and the invariance of the Hamil-
tonian upon inversion, viz. , H( x)=H(x)—, give the fol-
lowing matrix elements:

~so, so~ ~po, po~ ~so, s( —1) ~so, s1~ Hpo, p( —1) ~po,p l~ ~so,p( —1) ~so,p1 ~po, s1 po, s( —1) ' (2.5)

~s(L +1) ~so, s1
+ ~so,p 1

~SO so O ~SL ~so, s 1 I so,p 1

+
~popo ~pL, ~sop1 ~pop1 ~p(L +1),

(2.6)
~po p1 ~p(L —1) pL

Other nonvanishing elements can be obtained from (2.5) by means of Eq. (2.4); the remaining matrix elements are zero.
The difference equation (2.9) of I is now

r

~so,p 1 ~s (L —1)

while its differential form, see (2.11) and (2.12) of I, is

( e a ( d ldX) +e
—a (d ldX)

)sO, sO sO, s1 e

sop1 e(ea(dldX) e
—a(dldX))

H (e'" ' —e '" " ') A (X) /1 (X)
(ea(dldX)+e —a(dldX)) g (X)

=
/I (X) (2.7)

g k(X) C ikx
P JM, P

—m./a &k &n./a . (2.8)

Then (2.7) is transformed into

Expression (2.7) is taken for X =Xr . One of the solutions
can be written in the Bloch form,

The eigenequation (2.9) has two solutions (called branches)
labeled by the index A, =1,2. They have, respectively, the
energies

(2.11)
k

Hss

~ok
sp

where

~k ' ki, '

Sp $

~k ki,
pp. . p

ki, '

s

kA.
p

(2 9)
where

h"=[(H H) +4 ~H"
~

]'—
The corresponding eigenvectors are

H,", =H, p, p+H, p, i2 cos(ka),
k

Hpp Hpp pp+Hpp p )2 cos(ka)

H,~ =H, p ~ (2i sin(ka) .

(2.10)

kA, Ekk,

kk =[(H" Ekk) 4
~

H"
~ ]

P sp

(2.12)
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note that a," is real, while az is imaginary because of
(2.10).

Each eigenvalue (2.11) is doubly degenerate since

E(—k)A, Ekk. (2.13)

Therefore we are free to choose alternative eigenvectors,
instead of (2.8). These can be any two combinations of
%'" (x) and (Il' "' (x). A particularly convenient choice is

qg+1kk(x) [qgkk(x)+111( —k)k(x)] (2.14)

To avoid repetition in the counting of the electron states,
the wave number k must be taken'as k &0, for the two
states (2.14) denoted by )Il"" (x), where p) =+ 1, —l.

With the help of Eqs. (2.3) and (2.8) and taking into ac-
count that a„' '"=a„'" on the basis of the equation
which is conjugate to Eq. (2.9), we find

A,+ ' (X) a, cos( kX)

2 +' (X) ia sin(kX)
(2.15a)

A, ' "(X) ia, sin(kX)

g —1k'.(X)
=M2C kA,

(kX) (2.15b)

It is evident from Eqs. (2.15), (2.3), (2.1), and (2.2) that
any combination 4" "(x) given in (2.14) exhibits a defin-
ite symmetry in respect to the reflection of the coordinate
axis at the point x =0, viz. , ql"k (x) is symmetric for
a)=+I and antisymmetric for co= —1.

The X dependence of the coefficient function A„(X)
taken in the Bloch form (2.8) represents a running wave,
whereas the coefficient functions given in (2.15) have the

I

form of standing waves. It follows from the construction
of /I& (Xl ) given above that these coefficient functions
form the eigenvector of Eq. (2.6) or (2.7) with the eigen-
value E =E independent of co.

An impurity can be introduced to the metal, replacing
the matrix atom at X =0. Then Eq. (2.7) is still valid out-
side the perturbed region, and the same is true for the
solutions (2.15), but to construct the general solutions,
which must be matched with the solutions valid in the
perturbed region, we need in the unperturbed region
another set of the solutions of (2.7), which are linearly in-
dependent of the solutions A& (X) given in Eqs. (2.15).
We find these solutions in the form

'8+1kk(X) '

8+1kb,(X)P

8 —)kk, (X)
'

8 —)kk, (X)P

a," sin(k ~X
~

)
=V 2C kk (X) (kX) ~ (2.16a)i' sgn

—ia, sgn(X)cos(kX)

a~ "sin(k /X
/

)

The functions Bz (X) have the same symmetry proper-
ties as the functions A&" (X). Functions (2.16) are relat-
ed to the solutions (2.15),in the sense that cosP in 3 is re-
placed by sing in 8, while sing is replaced by —cosP, for
positive phase P. The symmetry requirements are applied
to obtain the functions (2.16) for negative P. By a direct
substitution of 8& (X) instead of /I&" (X) into Eq. (2.7),
it may be easily checked that the 8&" (X) are eigenvec-
tors of Eq. (2.7) with eigenvalues E =E" given in (2.13).
As an example, let us check that 8„'" (X) fulfills the
second equation of the set (2.7) in the region of
P=kX &0:

(e a (d /dx) e —a (d/dx) )8—1k'(X) + [H +H (e g (d /dx) +e
—g (d/dx)

)]8—1k'(X)sop& e S pO, pO pO,p1 ~ P

=W2C( H, p z1( —ia,—) I cos [k (X +a ) ]—cos [k (X—a )] I +Hz p z pa& sin(kX)

+Hzpz)az Isin[k(X+a)]+sin[k(X —a)]I )

=V 2C sin(kX) I 2iH, p
—z)a," sin(ka)+ [H&p&p+H&p&12cos(ka)]a&

=V 2C sin(kX)(H, & a, +Hz&az )=v 2C sin(kX)E "az E" Bz (X) . ——

In this proof we used definitions (2.10) and the fact that
the a& fulfill Eq. (2.9).

Therefore a general solution for the perturbed crystal
may be written as

/I~'~ "=g" kcos(g~ k) —8""csin(g~ k) . (2.17pL pL Iji,L

The parameter k' is the wave number characterizing the
solution in the imperfect crystal This soluti. on is obtained
from that labeled by k for the perfect crystal as a result of
perturbation. In particular, the substitution of Eqs. (2.15)
and (2.16) into Eq. (2.17) gives
'gPg, + k '

kA, (k
~
X

~

+g+lkk)

&PAL'+' iaz "sin(k'
~
XL,

~

+5+' )sgn(XI. )r, +1kb, =~2C kk. i +)kk

(2.18a)

/1,1 ' '"" ',""sin(k' ~XL, ~
+5 '" )sgn(X )

(k

I

By comparison of (2.18) with (2.15), we see that the phase
k

~
X

~
of the ideal-crystal solution labeled by p)kA, is re-

placed by the phase k'~X
~

+5" in the case of the
perturbed-crystal solution.

The allowed values of the wave number k, or k', are to
be determined from the boundary conditions. We adopt
here the cyclic (Born—von Karman) conditions, according
to which a crystal of N =2M+ 1 atoms is bent into a cir-
cle, so the atom at the crystal end is now in the immediate
neighborhood of the atom at the crystal beginning. Then
the coefficient function which is symmetric with respect
to the central atom (the cosinelike function) must have. an
extremum at the crystal boundary at I=Rb ———,Xa, while
the antisym metric (sinelike) function must go there
through zero. Both requirements can be met with a single
condition that the phase at the crystal boundary before
and after the perturbation is the same:

(2.18b) kRb ——nm. =k'Rg+5 (2.19)
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so

k —k= —6 /Rb . (2.20)

Ekl,
ga)kA, dE kA,

R. dk+ (2.21)

On the other hand, the truncated expansion (2.21) may be
used for an approximate calculation of 5 provided the
energy shift due to the perturbation, viz. , b,Ep"'"~
=Ep"~ ~ —E ~, is a known quantity. This energy shift
can be approximated, for example, by the terms which are
linear in the perturbation matrix elements calculated ac-
cording to the first-order perturbation theory:

gEPer, cokl ~ g +loki y g loki (2 22)pL pL, p'L' p'L'
L,p, ,L',p'

So, finally, the phase shift is approximated by

6 = —Rb
dEki,

dk

+Alkyd, cokA.~ pL ~pL p'L'~ p'L'
Lip)L ~p

(2.23)

Because the perturbation is well localized, the summation
over L and L in (2.23) is limited to the position X=0
and, eventually, some of its neighbors. As an example, let
us suppose that the nonzero matrix elements of the local-
ized perturbation are V, p p and Vpp pp only. Then,

P

dEki, ki,
dk

g+ 1k',

(2.24)
dE

dk
kA, 2I;o,,ola,

where the square of the normalization constant C
=N '=al(2Rb), together with the condition

(2.25)

are taken into account. In the calculation of C we as-
sumed that C&„(x —Xl ) form an orthonormal set

f dx @q(x —Xl )C&„(x —XL )=511.5„„., (2.26)

and thus from (2.3) and (2.8) we have

+Rb1=f „dx
i

4" (x)
i

L,p
=CNQ/aq

/

=C N. (2.27)

Therefore, if the phase shift 5"" is known [e.g, from the
solution in the perturbed region matched with the solution
(2.17) outside this region], then the corresponding per-
turbed energy can be determined from the unperturbed
band energy according to the formula

per, cokA, k'A,
~ k'=k 5~"~/—Rb

A similar idea of the solution can be applied to an im-
purity problem in a real, three-dimensional crystal. Then
a11 the above-mentioned steps must be correspondingly
modified and extended. The construction of the
standing-wave-like solutions, similar to those given in Eq.
(2.14), was done in a systematic way in Sec. III of paper I.
Then, symmetry properties of the crystal are of consider-
able use; see Secs. IV and V of paper I. In order to guess
the second kind of solutions, which are necessary for the
impurity problem and are similar to those given in Eq.
(2.16), we are going to expand the coefficient functions
obtained for a perfect crystal in terms of spherical har-
monics and spherical Bessel functions (Sec. III). Finally,
the phase shifts like those given in (2.17) are used to
describe the solution for the perturbed crystal; see Eq.
(3.25) and Sec. IV.

III. APPROXIMATE SOLUTIONS EXPRESSED
IN TERMS OF SPHERICAL EXPANSIONS

0 l R ji(«)
l=0 m'= —l

pm m (3.1)

Practically, only a finite number, lo, of the Bessel func-
tions is used. The allowed values of the radial quantum
number ~ for each l are determined from zeros zl„, of the
Bessel function of this l through the relation «b ——zi„,
these a are limited by a (~,„. Originally we were in-
terested in the solutions of Eq. (2.11) of I at the discrete
points R=RI. Now —for the sake of simplicity —we
consider these solutions as continuous functions valid at

A well-known and simple approach to the impurity
problem is when the matrix metal is represented by the
free electrons enclosed in a spherical potential box.
The electrons are scattered by an impurity placed at the
center of the box, whereas the impurity potential is as-
sumed to have spherical symmetry. The scattered wave
functions are expressed in terms of phase shifts. We are
now going to generalize this approach for a metal
described in terms of the LCAO wave functions. To this
purpose we construct in this section an approximate solu-
tion that is as close as possible to the scattering picture for
free electrons mentioned above.

Let us modify the original Wigner-Seitz shape of the
crystal block to be a sphere of radius Rb, the sph'ere con-
tains N atoms. If U„ is the volume per atom, the relation
Nv„= ', @RE holds—. Obviously, the change of the crystal
shape does not influence the bulk properties of the crystal.
Consequently, the Wannier-Slater equation (2.11) of I,
which determines the energy spectrum and the corre-
sponding coefficient functions A„(R), has to be solved
with new boundary conditions. [These solutions A&(R)
will be denoted by W„(R).] Within a spherical box this
task can be done approximately in a variational way by
expanding the coefficient functions in the series of spheri-
cal harmonics (dependent on the angles) multiplied by the
spherical Bessel functions (dependent on the radial coordi-
nate). This means the expansion is done in terms of the
eigenfunctions of the kinetic-energy operator expressed in
a spherical coordinate system:
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any point R within the sphere. Moreover, in the calcula-
tion of the matrix elements of W&»(R) and the scalar
products of the functions dependent on R, we integrate
over d R within the volume of the sphere. These in-

Wp™p' lJ]~pc'i'm' E—— g Sp™p' " [j]~~i m
p', I', m', x'

where

tegrals replace the original summations over RL in N
atomic positions. Then we arrive at the following eigen-.
equation:

(3.2)

Rb"[jl= ~'«R/R) dR R +1m ji«R) W (R)Y( —ji (a'R)
4m' 0 m pp m (3.3a)

r

Rb
S "' ™K'[J']=f d «R/R) f dRR Fl jl(lcR)5pp'~l' ' jl'(IcR)

L L

(3.3b)

The symbol [j]on the left-hand sides of (3.3) points to the
fact that the matrix elements are calculated on the basis of
the spherical Bessel functions ji and ji .

A general treatment of Eq. (3.2) is a very complicated
task, but the problem may be much simplified if, instead
of solutions valid within the whole spherical crystal, we
consider the solutions in a restricted crystal, which has a
sphere of radius R, hollowed out from the crystal center.
This R, has to be large enough that the Bessel functions
entering Eq. (3.3) and integrated within the interval
R, &R &Rb can be approximated by the first term of
their asymptotic expansions. Let us note that within the
interval R, &R ~Rb the Wannier-Slater operator is not
affected by the perturbation due to impurities, since the
impurities are located close to the crystal center. There-
fore in the same interval we may look for A&(R)—the
second kind of solutions of the Wannier-Slater equation
(2.11) of I besides the solutions (3.1). These are the com-
binations of the products of the spherical Neumann func-
tions ni(aR) and the spherical harmonics Yi (R/R), be-
cause these products are the second kind of the eigenfunc-
tions of the kinetic-energy operator. Consequently, we try
the following form of the coefficient function:

sin(z) 1

Z Z2

ji(z)= '

cos(z) 1
+

Z Z2

for l =4k+1+1,

for l =4k+2+1,

(3.6)

Analogous asymptotic expressions hold for ni(z); they can
be easily obtained from (3.6) because for large z we have

1
ni(z) =J,+,(z)+ O

Z2
(3.7)

If fi denotes either ji or ni, and the, formulas (3.6) or (3.7)
are applied, we find, for the overlap integral (3.3b),

S„'„" "[f]=5„„5)i5 5„„K(a),

v(Rb —R, ) ))ir
for any a within the range of interest. The first condition
allows for the use of the following asymptotic expressions:

g/„"im &)m
—ni(~R) .

1=0 m= —I ]c
pm Nt (3.4) where

This function; when substituted into the Wannier-Slater
equation (2.11) of paper I in place of A„(R), leads to the
following matrix equation:

1m', I'm'a'
[ ]pa'

Rb
2

2 sin(aR )
R vR

2

RR = —(R —R )/
zR

(3.9)

The form of the matrix elements S' and S is the same as
given in (3.3), except that the functions ji are replaced by
the functions ni Because .the inner sphere within the
crystal is removed, the lower limit of the integrals over R
entering (3.3) must now be R, instead of the limit 0. The
radius R, must satisfy the following two conditions:

vR, ))l0

The result (3.8) has a diagonal form in the indices l and m
because the spherical harmonics Y~ are orthonormal
functions. For a'&x the integrand in the radial part of
the integration is a sum of two oscillating functions (sine
or cosine) with the arguments equal to (a' —a. )R and
(a'+x)R. These functions, when integrated over many of
their periods (see the second condition for R, ), give a re-
sult which is negligibly small in comparison to (3.9). In
the case of a'=a, the corresponding radial part of the in-
tegral is calculated in (3.9). To analyze in some detail the
matrix eleinents of W&z, Eqs. (3.3a), we need to examine
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X" 2R
~Im

l)l213

1),E2~l3

(3.10)
R R R

where

the structure of their components. A well-known fact is
that spherical harmonics may be expressed as the follow-
ing multiple sums:

r

can be expanded in the power series
r 'I

i23m„„.(R)= g h„„
S ),$2,$3

so the matrix element (3.3a) is

$3

s„=0, 1,2, . . . (3.1 1)

R=(X,Y~Z), 0&i)+l2+l3 &l, l„=0,1,2, . . . . W~™„": "[f]=g &l~h„'„3'l m m&~l ~ [f] ~
~ p

1,8, 1

(3.12)

- The exponent occurring in the operator (2.12) of paper &

I

r'

wl'„"l„[f]=f d'Q(R/R) f dR R~ — — — fl(pcR)

g r I

y I'2 Z '3

R R R

Xfl (a'R) . (3.13)

X 1
1

BX R R
(3.14)

The differentiation of the versor R/R component, e.g.,

B X
R

+ Ã(lr) for l —1"=4k —1+1,
" 0 for l —l"=2k+1,

k =0,+1, . . . . (3.20)

1+1fl«)=fl i(» fl(». —
dz z

(3.15)

This relation allows us to calculate the following deriva-
tive:

gives the result which is approximately R ' times smaller
then the original expression; since R is large results of this
kind can be neglected. The repetition of the differentia-
tions of this kind leave (3.13) with the differential opera-
tors acting only on the function fl (a'R). Let us recall the
exact relation which is valid for the spherical functions,
eithergI or nI, viz. ,

~lm~, l'm'a
[ ]gaA EaA @( )g~A

P~P

(3.2 la)

(3.21b)

The results obtained imply the following conclusions:
(i) Both the overlap integral (3.8) and the matrix ele-

ments of W given in Eq. (3.12) and calculated with the
aid of (3.17) and (3.20) are the quantities proportional to
5„„.Therefore, Eqs. (3.2) and (3.5) can be solved separate-
ly for each A. The eigenvalues and the eigenvectors can be
labeled by the quantum number ~ and the branch index A
and be determined from the equations

a X 1+1
BX R x'Rfl(lrR) =Ir — fl, (aR) — fl(~R ) (3.16)

181 l ] 2 3 ] ang[f]=(& ) Wl+8+1'

rad
&& wl~(l -s, -s, -s, )'[f]

where

(3.17)

The second term, as it is proportional to R, is negligi-
ble. The repetition of these steps finally gives

(ii) The values of the overlap integrals (3.8) and the ma-

trix elements (3.12) of 8' when calculated with the aid of
nl are the same as those calculated with the aid of jl.
Therefore the eigenvectors ~&l and S'il are the same—
this also holds for the eigenvalues corresponding to these
eigenvectors:

E]cA E]cA
a

This makes the following conclusion possible:
(iii) Two approximate solutions of the eigenequation

(2.11) of paper I, calculated for an ideal spherical crystal
in which some volume around the crystal center is re-
moved, are the following:

a11g 2 X F ' Z
W t = d Q(RyR)4e' R R R

(3.18)

~p (R)=y ~p/~ Y[~ —jl(«), -(3.22a)

Rb
wf~~pz[f] = fz dR R fl(lrR)fl-(a'R) . (3.19)

S

The radial integral (3.19) may be easily calculated apply-
ing (3.6), (3.7), and taking into account the arguments
which were used in the calculation of the overlap integral
(3.8). This gives

Ap (R)=g~„"g~Yl~ —nl(A.R) . (3.22b)

The coefficients ~&~~ which enter (3.22a) and (3.22b) may
be determined from Eq. (3.21a).
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(iv) Furthermore, the two solutions (3.22) are mutually
orthogonal [cf. here Eq. (3.18) of paper I ],

g I d3R Mp" (R)Ap (R)=0, (3.23)

X g ~P!m I Im R Jl(& R +5 ) .
m

(3.25)

This expression is fully analogous to the result obtained
for the case of a one-dimensional crystal, Eqs. (2.17) and
(2.18). The phase shifts 5" can be obtained, in principle,
from the information regarding the perturbation potential.

(vi) The radial quantum number z' of the perturbed
state is related to the corresponding parameter ~ of the
unperturbed state by the requirement that the phase at the
crystal boundary calculated either in the presence or the
absence of impurities must remain unchanged. This gives
the relation

a Rb =K'Rb+5"

and hence

(3.26)

i.e., they are linearly independent. This is so because the
radial integral occurring on the left-hand side of (3.23) is

Rb

J dR R j~(aR)n~(x'R)=0 . (3.24)

For ~&~' the result (3.24) follows immediately from (3.6),
(3.7), and the argument similar to that used in the calcula-
tion of (3.8}. In the case of K=K the integrand in (3.24} is
proportional to

sin(aR)cos(aR) = —,
' sin(2xR),

so it is an oscillating function which, when integrated,
leads to the result (3.24).

(v) Since the two solutions are linearly independent, the
general solution that must be used for a perturbed crystal
at positions R, which are far from the perturbation re-

gion, is

(R)=M„" (R)cos(5"")—A„" (R)sin(5"")

IV. APPLICATION OF THE APPROXIMATE
SOLUTIONS TO THE IMPURITY PROBLEM

The variational method for the calculation of the coef-
ficient functions M&(R) given in Sec. III seems impracti-
cal in its applications because of the very high rank of the
matrices involved. To circumvent this difficulty, we now
try to transform the SWLPC functions derived in Sec. III
of paper I into the solutions that have had all their quali-
tative properties established in the preceding section.

The SWLPC function depends on R through the com-
bination of e'"'; see Eqs. (3.10) and (3.11) of paper I.
Any plane-wave function has a well-known expansion in
the series of the spherical Bessel functions:

e'" ~= g i'(2l +1)PI jI(kR) .
1=0

(4.1)

Let us denote by e~" the series (4.1) truncated on some

term I =l0, so eh"' is a finite sum over l up to I0. This
0

truncated function is a good approximation to the original
plane-wave function,

Nevertheless, an equation similar to Eq. (3.21a) has
been solved before under certain simplifying assump-
tions. These were (i) only a single atomic orbital (s-like
one) present in the metal, and (ii) a very small number of
the Bessel functions were considered (lo & 20}. Taking the
advantage of the symmetry of the crystal, spherical har-
monics could be replaced by cubic harmonics. This re-
duced, for the I I representation, the size of the eigenequa-
tion to values not exceeding 14. In spite of this very lim-
ited basis, the density of states obtained in these calcula-
tions was quite accurate. Another conclusion which fol-
lowed from these papers concerned the energy dispersion
curves. They were obtained there as the plots of energy
versus x for fixed A; so E =E" . These curves resembled
well the dispersion curves of the Bloch solutions, E =E
calculated as the functions of k =

i
k

i
at fixed direction

k/k and for a given branch of solution A, . This
correspondence between the two kinds of dispersion
curves for energy will be exploited in the next section.

a'=v 5" /R—b . (3.27}

AV =m/Rb, (3.28)

which is the same as that obtained by Friedel in a free-
electron case.

In general, Eq. (3.21a) represents a system of equations
of a very high rank, so it is still too complicated for prac-
tical use. For this reason, in the next section we will con-
struct a different set of the approximate solutions which
rely, however, on the conclusions (i)—(vii) established
above.

(vii) The allowed values of the radial quantum number
~ are to be determined from the zeros of the Bessel func-
tion. In the region of large R considered, this function is
either a sine or cosine, Eq. (3.6). Therefore, vRb nm or-—
vRb ——nm. + —,m for l even or odd, respectively The nu.m-

ber n is a positive integer. In each case the two consecu-
tive allowed ~'s are separated by the interval

on the condition that the argument

kR &lo/2 .

The same approximation is true for AI"& (R), which is

the modified SWLPC function (3.10}of paper I construct-
ed according to Eq. (3.11) of I on the basis of the truncat-

i(Tk}.RI
ed plane waves ei taken instead of e . In a
limiting situation of very large I0, the approximate solu-
tions A~ & (R) are very close to the exact solutions

(R). The parameter k =
~

k
~

present in A~",„(R)
plays the same role as the argument ~ of the Bessel and
Neumann functions given in (3.22). In addition to the
symmetry index co and the branch index X, the approxi-
mate solution A~"„(R) is characterized also by

v=k/k —the direction of the wave vector.
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Now we will consider the function proportional to
A~"& (R) as an approximate solution to the Wannier-

Slater equation (2.11) of paper I, similar to the function

W& (R) discussed in Sec. III of the present paper. This
approximation is supported also by the correspondence
between the dispersion curves mentioned at the end of
Sec. III. In order to account properly for the number of
states represented by the approximate solutions, many dif-
ferent directions v; must be taken into account. Let their
number be denoted by i,„. We assume the directions are
uniformly distributed in the solid angle corresponding to
the irreducible part of the Brillouin zone [see Eq. (3.17a)
of paper I]:

1r' k'/k' k'EV IBZ ~ = 1 2 (4.2)

(4.3)
cokr. A, cokr .A,

Note that A~,&
' (0)=A& ' (0). The eigenenergy corre-

kr;A.
sponding to the function (4.3) is E

Let us now determine the factor SI" and the number of
directions i,„. First we note that the radial qua~turn
number ~ and the length k of the wave vector k are iden-
tical: ~=k. This is so because the eigenvalue k of the
kinetic-energy operator calculated in the Cartesian-
coordinate system and the eigenvalue a calculated in a
spherical coordinate system must be the same. As was
mentioned in Sec. III of paper I, index co runs over ds
values and index A, runs over o values, so the number of

sph, cokr,.A,

states represented by the solutions 2„' ' (R) taken for
a given k is

dg &max ~

The number of states represented by the solutions

W& (R) for a given z='k is equal to the number of
branches A „obtained in the diagonalization process;
therefore it must be equal to the number of possible sets
of the indices p, l, m which label the basis functions and
the coefficients entering Eqs. (3.21). Because p runs over
a- values, l is an integer from 0 to lo, and m has 2l+1
possible values for each l, the total number of solutions is

1O

A,„=o g(2l+1)=o(la+1)
l=o

(4.4)

The requirement that the number of states is the same for
the two kinds of solutions considered gives therefore

i,„=(10+1)/dg . (4.5)

The next step toward SI" is the calculation of the number

(IBZ denotes the irreducible Brillouin zone). The approxi-
mate wave function must be normalized. Because of the
mentioned proportionality, we postulate that the new
SWLPC function, which is quantized in a spherical box,
has the form

1/2
Sk

Cokr. A,

co kr. A,
Ai

' (R).
/A~

' (0)
/

CO, P

4kdk4mk dk gg ~

A~(0)
~

~ (46)
vszr&

The factor within large parentheses on the left-hand side
(lhs) of (4.6) represents the number of allowed values of
the radial quantum parameter k in the range [k, k+dk],
calculated with the help of Eq. (3.28). The factor within
large parentheses on the right-hand side of (4.6) represents
the number of the wave vectors k whose ends point to the
spherical shell of the radius k and the thickness dk. The
volume per vector point is (1/N)th of the Brillouin-zone
(BZ) volume, which is vBz ——(2~) /v„, where v„ is the
crystal volume per atom. The application of the defini-
tion (4.3) to the lhs of (4.6) and the substitution of (2.13)
of paper I, together with (2.19) of I, to the rhs of (4.6),
gives

4mkX ~ 1

i =1 1,=1 &Z &=1 +
which leads to the following expression for the normaliza-
tion factor:

Io
b BZ max

(4.7)

Sph, cokr,.A.

Similar to the function A
' ' (R), we may introduce

sph, cokr; A.

the function 8 ' ' (R) as a second solution of Eq.
(2.11) of paper I in the region far from the perturbation.

sph, cokr, A,

Since the SWLPC function A
' ' (R) is approximate-

ly equivalent to the function M& (R), it is reasonable to
sph, cok T.A,

assume that the function 8&
' ' (R) is approximately

equivalent to the function A'"„(R) given in (3.22b). Fol-
sph, coke A,

lowing Sec. III, the function 8„' ' (R) can be obtained
sph, cokT. A,

from the function A~
' ' (R) by means of replacement

of any ji(kR) by n~(kR). Therefore the general solution
in the crystal region far from impurities may be written as
[cf. Eq. (3.25)]

(4.8)

According to the second part of Eq. (3.25), expression
(4.8) should have the same form as the unperturbed solu-

sph, cokr,.i,
tion A„' (R), but the argument of each Bessel func-

cokr- k
tions ji is changed from kR to k'R+6 ' . The boun-
dary condition applied at the radius Rb of the spherical
crystal gives the following relation between the phase shift

CokT A,

6 ' and the change of the wave-vector length:

of all electron states characterized by the absolute value k
of the wave vector k from the range [k, k+dk]. This
can be done using the solutions (4.3) on one hand and the
Bloch solutions A& (R) given in Eq. (2.13) of paper I on
the other. In both cases the contributions obtained per
atomic site, say RL ——0, are taken into account. If both
results are set equal we obtain the equation

sph, mkr, , A,

Aq
' (0)

i
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k' —k= 5— ' /Rb (4.9)

[cf. Eq. (3.27)].
A rigorous way to obtain the phase shift is to solve the

eigenequation (2.20) of paper I for the perturbed crystal in
the region of impurities and then match this solution with
the solution (4.8) valid outside the perturbed region. In
the present paper we give a very simple, though very ap-
proximate, estimate of the phase shift. First, the eigenen-
ergy of the crystal with impurities is calculated by means
of the rigid-band approximation. This means that degen-
eracy among the states having different r;, co, etc. is
neglected. The energy is

* ph, a)k,.A,

LrP~L ~P

sPh, Q)kr .A,

)&V„L~L Aq
' (Ri ).

On the other hand, the perturbed crystal energy must be
the same as the eigenenergy of the unperturbed crystal
calculated at k shifted to k':

kr;A,

EPer, cuk~;A, k'r;A, k~, A. , (jE' =E '+ k —k)+ ~ ~ ~

ak

(4.11)

ekr, k. a)kr, i— .

10 b

kr;A,

(4.12)

Taking into account in (4.11) and (4.10) only the terms
linear in the perturbation potential and using (4.9) and
(4.3), we obtain

(4.10)
I

cokr] 7l cokr. A, cokr. A,

V ' = g Ap
' (Ri)V~L~L A„' ' (RL )

L,p, L',p'

where

'k A,g ~A„- '(0)~
Apkr A, ,ct)kr A,

p
' (0)

(4.13)

[cf. Eqs. (8.1) and (5.5) of paper I] is introduced to denote
the expression whose meaning is the average perturbation
energy over the state labeled by co, k, ~;, and A, . The sub-
script lo in the SWLPC functions has been omitted in
(4.13) because at the lattice positions R=RL, where the
perturbation is important (Rl close to R=O), the differ-
ence between Al &(R) and A&(R) is negligible. Expres-
sion (4.12) is the main result of the present paper: The
phase shift is expressed in terms of (i) the matrix elements
of the perturbation V„L „L, (ii) the eigenenergy

kr;A,E ' =E of the Bloch solution, and (iii) the combina-
tions of the corresponding eigenvectors A& (Ri ), which
form the SWLPC functions. (5.2)

V. RELATION BET%'EEN THE DENSITY OF STATES
AND THE PHASE SHIFT

To establish the relation between the density of states
and the phase shift, we recall several standard definitions.
The total number of electrons which are in the band I, and
have energy less than c is

. N, ( ) =2 f d'k e( —E"), (5.1)
UgZ sz

where e(x) is a Heaviside step function. If D~(a) is the
density of states of the A,th band calculated per one atom
and one kind of spin, then

N~(e) =2N f D~(e')dE' .

This gives

1 d 1 3 gg 1 BZD~(E)= N~(E)= f d k5(s —E )= f d 0 f dkk 5(E—E"' ) .2N d F UBz Bz UBz 4~ (5.3)

Here, kBz(r) is the distance from the center of the BZ to
the BZ surface taken along the direction v. Let
k =kj (a) be the jth solution of the equation

Eke, p (5.3a)

for k taken from the interval [0, kaz(v)]. (If e is outside
the band A, , there is no solution. ) Therefore the 5 function
occurring in (5.3) may be transformed

Dg(E) = f d Q~
UBz "iBZ

k

~

M""/&k
~

(5.5)

5(a—E '~)=g 5(k —kJ (a)) .
~

aE""/ak
~

(5.4)

Using (5.4) and the point symmetry of the crystal, we ob-
tain from (5.3),

Here the integral over the solid angle is performed over
4m /dg as it is hmited by v&uz. A connection with expres-
sion (4.12) derived for the phase shift can be obtained if
the solid-angle integral given in (5.5) is represented as a
Riemann sum calculated over the uniformly distributed
directions r;; see Eq. (4.2). Then,
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where

Finally,

4m

g max

max

Dq(a)=g QDq(a),
i=1 j

where

max kD,(a)= ' g an+
~

BE"'/Bk
~

(5.6)

(5.7)

where the ellipsis represents additional oscillatory terms.
This change is calculated per electron state labeled by the
quantum numbers k, l, m; the calculation has been done
for the simplest model of a metal, where the free electrons
enclosed in a spherical box are scattered on a spherically
symmetric potential. The approximate solution (4.8) is a
generalization of the Friedel solution since both functions

sph, sk 7 A sph, a)k'r. A.

(R) and B&
' (R) happen to be the eigen-

functions of the kinetic-energy operator with the same
eigenvalue (k') . At large

~

R
~

the unperturbed solution
sph~opkT A,

(R) and the perturbed solution (4.8) can be fac-
torized into an angular and a radial part, the last part go-
ing into

R 'sin[kR + (n /2)m. ]
k

~

BE""/Bk
~

(5.8) andD&(a)= .
l maxUBZ

Expression (5.8) is the contribution to the density of states
connected with the ith direction within vqqz and the jth
isoenergetic sheet of E within the kth band. Compar-
ing (5.8) with (4.12) and (4.7), we arrive at the relation

k~;A.k,.A, — k,.k; BE
(5.9)

R 'sin[k'R +(n/2)m+5 ' ],
ph, a)k,.A,

respectively. This allows us to consider A&
' and the

function (4.8) on the same footing as the free-electron
solutions as far as the reasoning given originally by
Friedel is applied. Therefore, in analogy with (6.1), we
postulate

VI. CHANGE OF THE ELECTRON
CHARGE DUE TO AN IMPURITY

Friedel has shown that the change of the electron num-
ber in a metal due to an impurity is

1
5n( ——

Rb

B5((k)
(6.1)

The energy c and index j are related to i and k through
Eq. (5.3a) taken for ~=a;, since k must be the jth solution
of this equation.

We see that the phase shift is represented as a product
cok7 i A

of two factors: (i) V ', which depends on the pertur-
bation matrix elements due to impurities and the proper-
ties of the state being perturbed according to Eq. (4.13);
and (ii) D&(E)whi, ch represents the properties of the A,th
band of the ideal crystal, namely its ( i,j)th contribution to
the density of states. This proportionality of the phase
shift to a component of the density of states can be com-
pared with a similar result obtained earlier for the free-
electron case. '

cipk'p A,

cokT X 1 B$

Rb Bk
(6.2)

(6.3)

In this expression, factor 2 accounts for the spin summa-
tion, whereas the summation over the allowed values of
the radial quantum number k is represented as an integral
weighted by the factor 1/b, x; see Eq. (3.28). The integral
limit ksz(r;) is defined below Eq (5.3). W. hen (6.2) is
substituted into (6.3), the integration done by parts gives

The oscillatory terms are discarded because we are in-
terested in the average change of charge and the averaging
process is performed over a set of crystals having slightly
different Rb.

The total number of electrons, characterized by symme-
try index co and band A, , changed by the presence of im-
purities, is obtained by a summation of (6.2) over all occu-
pied states, i.e., having their energy less than the Fermi
energy cz..

max kBz(v. } dI
b, N~(az)=2 g J e(a~ —E ' )5n

0 K/Rb

(6.4)

Nkt A,

The first term does not contribute at k =0 because 5
is zero there [see Eq. (4.12)], S"-k because of (6.7), and

kr;A,BE ' /Bk -k at small k. Furthermore, the term at
k =k~z(r;) may be disregarded for the following reason.
In the course of evaluation of Eq. (6.3), it is also possible
to extend the integration region to include a great number
of BZ's; simultaneously, the result is divided by the num-

ber of BZ's. In this case the point k =knez(r;) does not
contribute, because —as it belongs to the first BZ—it is
inner. The arising contribution at the surface of the last
BZ will be negligible compared to contributions coming
from many BZ's which are represented by the second term
in (6.4).

Now, in order to calculate the second term in (6.4), we
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must account for the fact that

kw;A,

Bk Bk
B kr,.r

~
kr,.r. BE

Together with Eq. (5.4) this gives

6)kT A,

b.Ng(s~)= ——g —5 ' sgn
~rJ

kr; A.

Bk r,.A.

Jk =k. ' (cF)

If Eq. (5.9) is substituted into the last equation, then it be-
comes

bN~(sF)= —2+D&(sF)(V '
)

$rJ~ ~ k=k. ' (.FiJ
(6.6)

The quantity V ' was defined by Eq. (4.13).
The expression obtained may be rewritten in a more

compact form if the sum over directions r; is represented
as an integral over a solid angle; finally an integral over
d k can be performed [compare the transformations from
(5.3) to (5.6) taken in reverse order]:

Vpz„q'I, ' = Vp5I.I.'5~~' (6.8)

where I. and I.' are any crystal sites. This perturbation
shifts all the eigenenergies of the crystal by an amount
Vp at the same time the eigenvectors remain unchanged.
Therefore the number of electrons occupying the states
below energy cF in the perturbed crystal is the same as in
an unperturbed crystal, but below the energy Ep —Vp.

g Nf'"(sp) =Q Ng (s~ —Vp) . (6.9)

The wave vector k is equivalent to the vector kv given
previously. The above example of the calculation done
for b,N~(cF) demonstrates that the formalism developed
in the present paper is a useful tool for the investigation
of the properties of transition metals with impurities.
Other applications will be published separately.

In conclusion, we would like to show that formula (6.7)
represents a meaningful expression not only for a local-
ized perturbation, which is due to an impurity, but that it
also holds for the perturbation which is spread out over
the entire crystal volume. Let us assume, for instance,
that

We may obtain the change of the electron number due to
hN f(sz) = —2 f d k $(sz —E~)V""~ . (6.7)

' the perturbation by expanding the right-hand side of (6.9)
UgZ Isz in the Taylor series with respect to small Vp. We get

I

dN~(E) dNq(s)g b Nr„( EF)=g . ( —Vp ) +0 ( Vp ) = —Vp = —V, f d3kg.,—Z~).
dc dE, p —g~ UBZ Bz

In the second step we used the relation

g N~(s) =N~(s),

(6.10)

g ~Ap" (0)
~

=VpN,
OP rP

and in the last step we used Eq. (5.3).
Now let us calculate the same change using formula (6.7). We apply the mean perturbation energy defined in (4.13).

For the perturbation matrix (6.8) it gives

gV" =Vpg +~A~ (Rl)~

because the contribution to the electron density at each
lattice site Rl is the same as that calculated at RL ——0.
Therefore formula (6.7) gives

g &Ng(sp)= —Vp2N . f d'k 5(sp E" ), (6—.11)
UgZ ~IBZ

which is exactly the same result as given in (6.10); the in-
tegral in (6.11) is confined to vtaz by symmetry. The
agreement obtained may be regarded as independent proof
that we were eorreet in our disregard of the contributions
which come at k =.ksz(r) in the course of the evaluation
of b,N~(sF); see Eq. (6A) and the inferences below it.

F. Gautier, Ann. Phys. (Paris) 10, 275 (1964).
F. Gautier, J. Phys. Chem. Solids 24, 387 (1963).
J. Kanamori, J. Appl. Phys. Suppl. 36, 929 (1965).

~J. Friedel, Adv. Phys. 3, 446 (1954);J. Phys. F 3, 784 (1973).
5J. Friedel, Philos. Mag. 43, 153 (1952).
6J. Friedel, Nuovo Cimento Suppl. 7, 287 (1958).
7G. F. Koster and J. C. Slater, Phys. Rev. 95, 1167 (1954).
G. F. Koster, Phys. Rev. 95, 1436 (1954).
G. F. Koster and J. C. Slater, Phys. Rev. 96, 1208 (1954).
J. Callaway, J. Math. Phys. 5, 783 (1964); D. A. Goodings and

B.Moxer, Phys. Rev. 136, A1093 (1964); R. E. Turner and D.
A. Goodings, Proc. Phys. Soc. London, Sect. A 86, 87 (1965);
G. J. Morgan, ibid. 89, 365 (1966); J. Callaway, Phys. Rev.
154, 515 (1967); J. Callaway and A. J. Hughes, ibid. 156, 860
(1967); E. Mann, Phys. .Status Solidi 13, 293 (1966); F. Bas-
sani, G. Iadonisi, and B. Preziosi, Phys. Rev. 186, 735 (1969);
M. Jaros and S. Brand, ibid. B 14, 4494 (1976); G-. A. Baraff
and M. Schliiter, Phys. Rev. Lett. 41, 892 (1978); N. 0 Lipari
and S. T. Pantelides, ibid. 41, 895 (1978).
A. Bolas, S. Olszewski, and A. Wierzbicki, preceding paper,



7924 A. BOLAS, S. OLSZEWSKI, AND A. WIERZBICKI 32

Phys. Rev. B 32, 7890 {1985).
J. L. Beeby, Proc. R. Soc. London, Ser. A 279, 82 (1964); 302,
113 (1967).

3R. Harris, J. Phys. C 3, 172 {1970};J. W. Blaker and R.
Harris, ibid. 4, 569 (1971).

~4N. A. W. Holzwarth, Phys. Rev. B 11, 3718 (1975).
~5R. Podloucky, R. Zeller, and P. H. Dederichs, Phys. Rev. B

22, 5777 (1980).
6P. H. Dederichs and R. Zeller, in Festkorperprobleme (Ad-

vances in Solid State Physics), edited by J. Treusch (Vieweg,
Braunschweig, 1981),Vol. 21, p. 243.

C. Koenig and E. Daniel, J. Phys. (Paris) Lett. 42, L193
(1981).
C. Koenig, P. Leonard, and E. Daniel, J. Phys. (Paris) 42,
1015 (1981).

O. Gunnarson, O. Jepsen, and O. K. Andersen, Phys. Rev. B
27, 7144 (1983).
S. Olszewski, Phys. Rev. B 24, 4515 (1981);P. Modrak and S.
Olszewski, ibid. 14, 2387 (1976); cf. also Refs. 30—32 in pa-
per I.
N. Fukuda and R. G. Newton, Phys. Rev. 103, 1558 (1956).

2 B.S. QeWitt, Phys. Rev. 103, 1565 (1956).


