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Scattered impurity states in transition metals. I. Exploitation of the point-group symmetry
for the linear-combination-of-atomic-orbitals method
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Localized impurities in crystals break down the translational symmetry, but the point-group sym-
metry of the crystal may often be preserved. To describe this situation the linear-combination-of-
atomic-orbitals method is generalized to a scheme in which the wave functions of the unperturbed
crystal can be calculated as the basis functions of the crystal point group, while in the traditional
scheme they are the basis functions of the translational subgroup. In this new scheme the wave
functions have a standing-wave-like character. Thy coefficient functions building up both kinds of
the wave functions satisfy the same set of Wannier-Slater differential equations and the standing-
wave-like wave functions are obtained from the Bloch's traveling wave functions by means of the
projection-operator technique. In effect, the band structure of an ideal metal obtained when many
electron states are considered is identical in both approaches. It is shown that a substantial reduc-
tion of the number of parameters entering the Hamiltonian as well as the perturbation matrices can
be obtained providing the crystal point-group symmetry is exploited. Because of future applications,
the calculation of the projected standing-wave-like wave functions as well as the reduction of the
number of matrix parameters are illustrated for the example of cubic metals, in which several kinds
of the atomic states, viz. , s, p, and d, are taken into account.

I. INTRODUCTION

The linear-combination-of-atomic-orbitals (LCAO)
method, introduced for perfect crystals by Bloch' and re-
fined later by Slater and Koster, has turned out to be a
very useful tool for the calculation of the electronic struc-
ture of many crystals, including transition metals. ' A
predominant success of the LCAO method has been in the
description of perfect crystals; nevertheless —beginning
with the series of papers by Koster and Slater' —a
considerable effort has been applied toward a description
of the impurity states in metals with the aid of the LCAO
approximation. The difficulty for the impurity states was
the calculation of the perturbed wave function, which had
to be represented with the aid of a Csreen's function ex-
pressed in the basis of the wave functions obtained for the
perfect crystal. An exact calculation of a function of this
kind is usually a very tedious task. It has been fully ac-
complished only in one special case when (a) the metal lat-
tice is simple cubic, (b) the interaction between lattice
atoms is limited to the nearest atomic neighbors, (c) elec-
trons on the atoms are s type, and (d) the area of the im-
purity potential is extended over only one lattice site. '

For any other impurity states in metals only simplified
LCAO calculations have been done. One of the simplifi-
cations was based on a treatment of the Green's function
with the aid of a stationary-phase method. ' '-' This
method represented the electron wave function at large
distances from the impurity center as a combination of
the original LCAO wave function of the perfect metal and
the scattered part which, in its mathematical form, was
similar to the scattered free-electron wave function. Be-
sides difficulties connected with the calculation of the
coefficient multiplying the scattered part, this approxima-

tion could not be considered satisfactory because the scat-
tered part of the perturbed LCAO wave function had
coefficients at the atomic orbitals which did not satisfy
the difference equations dictated by the crystal potential.
Other LCAO methods applied to the treatment of the
problem of an isolated impurity, or an impurity area in a
metal, tried to exploit the point-group symmetry of the
matrix as well as that of the impurity problem. ' In
this case the idea was to combine, linearly, the orbitals of
the atoms equidistant from the impurity into the basis
functions of irreducible representations of the crystal
point group. This procedure, however, required a separate
construction of the basis functions for any coordination
sphere of the equidistant atoms. Another difficulty was
the combination of the functions calculated for separate
coordination spheres into one wave function representing
the electron state in the whole metal.

The purpose of the present paper is to formulate a
LCAO method for the treatment of metal impurities
which is simpler than the former methods of the same,
viz. , LCAO, kind. For the first step we suggest LCAO
wave functions for the perfect metal which are different
from the Bloch LCAO wave functions. This suggestion is
based on the observation that the Wannier-Slater (WS)
equation ' which has to be satisfied by the coefficient
functions of the LCAO wave functions can be fulfilled by
a larger class of the functions than the Bloch coefficient
functions. This allows us to construct —instead of the
traveling-wave functions of Bloch—a new set of wave
functions which have the character of standing waves.
These are no longer basis functions of the translational
subgroup, but transform according to irreducible repre-
sentations of the crystal point group. A step towards this
construction has been done before with the aid of diago-
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II. GENERALIZED LCAO METHOD

In this section we describe the LCAO approximation
for the one-electron problem, which is more general than
a traditional approach of this kind. Both an ideal crystal
and a crystal perturbed by an impurity are considered.
The trial wave function 4(r) is expressed as a linear com-
bination of atomic orbitals @z which are functions cen-
tered at each atomic site RL, .

%(r) = g ApL@p(r RL), — (2.1)

nalization of the WS operator. This calculation was
limited to s electrons only and was done with the lattice
(cubic) harmonics times the Bessel spherical functions
taken as trial functions. The calculation of the crystal
states required no information about the Brillouin zone,
but the diagonalization process turned out to be a tedious
task, especially because of the large size of the functional
basis that had to be taken into account. In effect, the con-
vergence of the method was satisfactory only in a limited
interval of the energy band, and the calculations which
considered the whole band, for example, the total electron
charge carried by the states within it, gave defective re-
sults.

We try to overcome this difficulty in the present paper.
After a review and generalization of the LCAO method
done in Sec. II, we, construct in Secs. III and V the
standing-wave-like LCAO wave functions with the aid of
the projection technique applied to the Bloch wave. func-
tions; at the same time it is shown in Sec. IV how the
basis of the atomic states considered can be extended arbi-
trarily. Since both kinds of crystal wave functions satisfy
the same set of WS equations, the spectrum of the
eigenenergies calculated within both approaches is the
same. This allows us to avoid the convergence difficulties
connected with certain areas of the energy spectrum and
considerably simplifies the calculation of the required
coefficient functions. In Sec. VI we use the point-group
symmetry of the problem, which is the same for both the
ideal and perturbed crystal. This allows us to relate the
matrix elements of the Hamiltonian calculated between
different pairs of the atomic orbitals. These matrix ele-
ments are often considered as adjustable parameters;
therefore a method is given which establishes a set of in-
dependent parameters. A convenient procedure, avoiding
summation over many site positions, is developed for the
calculation of the Bloch Hamiltonian matrix elements in
Sec. VII. The matrix elements of the perturbation calcu-
lated in the basis of the standing-wave-like coefficient
functions are expressed in a convenient form in Sec. VIII.
In the following paper, hereafter referred to as II, the
coefficient functions obtained in the present paper are
submitted to scattering processes and then applied to the
calculation of a crystal with impurities.

ApL =—A~(RL ) (2.3)

is called, henceforth, the coefficient function of the
lattice-site position RL. For simplicity we consider Bra-
vais lattices only. Subscript p labels the type of the atom-
ic orbital. In general, p is characterized by five indices
p= [b, l,a,P, gf; here, b is the principal quantum number,
l is the orbital quantum number, a is the label of the ir-
reducible representation of the crystal point group, P is
the partner index within a set of the basis functions for
the representation a, and g distinguishes between different
functions belonging to the same a and P. Very often it is
sufficient to abbreviate p as, for example,
p=3s, 4s,4x,4y, 4z, 3(x y—),3(3z r)—, . . ; . see Sec. IV
for details. A usual simplification of the LCAO method
is that a finite number o of atomic orbitals is used in the
calculations of (2.1). The choice of the set of atomic orbi-
tals depends on the band problem and the desired accura-
cy of its solution. We suppose that atomic orbitals are
normalized and orthogonal,

g H~L qL ApL EAqL, ——
J ',p'

(2.6)

where

HpL, p'L'=~@pL IH
I
@p'L'~=—J d "@p(r RL)H(r)—

XC&„(r—RL ) . (2.7)

A special case of the LCAO method is the tight-binding
approximation, in which the matrix elements (2.7) are as-
sumed negligible when the positions RL and RL are not
the same lattice site, nor the nearest neighbors (NN's) to
each other. No "range" of the interaction has to be speci-
fied in the present method.

As far as an ideal (periodic) crystal is considered, the
property H(r+ RL ) =H(r) implies that

~pL, p, 'L ' ~@0,p'(L ' —L) ~p(L —L '),p'0 (2.&)

Therefore Eq. (2.6) may be rewritten as a difference equa-
tion

~~pL I
@p'L'~= J d "~p(r RL)@p'(r RL') 5LL'~pp' ~

(2.4)

This requirement presents, in fact, no restriction because
any originally nonorthogonal set of functions can be made
orthogonal, with no change of symmetry. Using Eq.
(2.1) we reduce the one-electron Schrodinger equation

H(r)%(r) =ET(r)
to the matrix eigenequation

where HpQ p'L'Ap'(L +L') —
EASEL

L',p'
(2.9)

RL, ——L )a(+L2a2+L3a3,

L=(L„L,L ), L =0, +1,+2, . . . . (2.2).
aj are elementary translations, and

where, in practice, the summation over L, ' involves only a
very limited number of sites (e.g., 0 and NN's).

We may consider Az(R) as a continuous and infinitely
differentiable function of R, so
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Ap(r +r ') = Ap (Rr, +Rr, ')

a
Ap(R)+ —,Rr Ap(R)+

0

Hence the eigenequation (2.9) may be replaced by

+Wpp (R)Ap (R)=Earp(R) for R=Rr, .

R=RL

(2.10)

(2.11) g ~pr. ~ pL, =&~k4 ~
ok'A, '

kA,

L,p
(2.18)

It should be stressed that besides the functions (2.13),
other sets of solutions of (2.11) are possible. From this
point of view Eq. (2.11) represents a more general ap-
proach to the LCAO method than those based on the
Bloch LCAO wave functions. In the case of a one-
dimensional crystal the new solutions are discussed in Sec.
II of paper II, whereas the new solutions for three dimen-
sions are presented in the next section. The coefficient
functions given in the Bloch form (2.13) are orthonormal,

Here we introduced the so-called Wannier-Slater operator

R~,.(araR)
Wpp (R)= QHpp pr. e

L I

(2.12)

which is a differential operator in R space and a a)&a.
matrix in the space of the indices of the atomic orbitals.

One set of the solutions of (2.9) or (2.11) has the Bloch
form

ApL,
——Ap(Rr )= e ap

]k RL (2.13)

Hppap =E ap, p, A, =1,2, . . . , cT

p'=1

where the Bloch Hamiltonian matrix is

ik RL
Hpp ——Z, Hp() p Le

L

(2.14)

(2.15)

Comparing (2.12) and (2.15), we see that the Wannier-
Slater operator is

(N is the total number of atoms in the crystal). Then the
eigenvectors a„and eigenvalues E" [A, is the branch
(band) label] satisfy the equation

provided the Bloch eigenvectors for a given k are orthog-
onal and normalized, i.e.,

e kA,
' kkg ap ap ~A, 'i1, '

P
(2.19)

Hpr p'L 'A p'r ' —E A pr,
L',p'

We will call a perturbation matrix the difference

(2.20)

So far we have considered an ideal crystal, giving the
basic equations concerning it and introducing the corre-
sponding notation. Now we are going to consider the per-
turbed crystal, which is obtained from the perfect one by
the replacement of the host atom at the crystal center
(L =0) by an impurity atom; in general, a cluster of im-
purity atoms can be substituted for the atoms located
around the crystal center. In any case the atomic orbitals
of the impurity atoms are assumed to be of the same sym-
metry (although of different

I
r

I
dependence) as the host

atoms. We will denote all quantities pertaining to the per-
turbed crystal by the same symbols we use for the ideal
one, but with the superscript "per." In particular, the
eigenequation (2.6) in the case of a perturbed crystal is

Wp„(R) =Hp p (2.16)
~Pcl

~pL, p'L ' pL, p, 'L' HpL, p'L ' (2.21)

i.e., it can be obtained readily from the Bloch Hamiltoni-
an matrix H&& through the substitution

a
(2.17)

iBR

It should be noted that this matrix includes effects due to
the perturbation in the Hamiltonian as well as those due
to the differences in the atomic orbitals connected with

the substitution of the impurities. Denoting H ~'
=H+5H and C&p'r', ——Npr, +5@pr, , we have

I p.,p. =&~p. +~~: I
H+~H

I
~p'+&~p' & &~pL IH

I ..—&

=&@'pr.
I
~H

I
C'p'r. &+&&C'pr. IH

I
C'pr. &+ &~'pr. IH

I
&@pL, &+ (2.22)

Because of the short-range character of the interaction of
the impurity atoms and the small number (one or few) of
these atoms, the nonzero perturbation elements V„L„L
extend over a small number of positions RL,RL ~ close to
0. We call this the perturbed region. Outside this region
Hp'r'. ,p r. =Hpr. p r, , so the perturbed coefficient functions

AzL and the corresponding eigenenergies E""fulfill there
the unperturbed equation (2.9) or (2.11).

III. SOLUTIONS POSSESSING PARTICULAR
SYMMETRY PROPERTIES OBTAINED

FOR AN IDEAL CRYSTAL

When impurities are introduced into an ideal crystal,
they break its translational symmetry. But if this pertur-

I

bation is in the form of a substitution of one atom, or a
symmetric cluster of atoms, the point-group symmetry
may be preserved completely or, at least, may be limited
to a certain subgroup. Therefore, it is reasonable to classi-
fy the electron states of an unperturbed crystal according
to the representations of the crystal point group Sp.

This classification may be done in a systematic way us-

ing projection operator 6 . The superscript m denotes
the symmetry properties which are represented by three
indices, so co= [a,P, yJ; here, a labels the irreducible rep-
resentation of the crystal point group 9'p, the symbols /3

and y label, respectively, the row and column of this
representation. The crystal is invariant upon the

group of the point transformations, or rotations, T&,
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dg
Py =Copy Q D~py(TJ)PT

j=1
(3.1)

Here, D py(TJ) is the (P, y) element of the unitary matrix
of the ath representation of the point group, C~py is the
normalization factor, and PT is the operator whose ac-
tion "rotates" the function:

P T%'(r) =0'(T 'r) . (3.2)

Any wave function which transforms according to the Pth
row and yth column of the ath irreducible representation
can be obtained from an arbitrary wave function with the
aid of the projection

gs"(r) =soapy(r) =6 apyg/(r) . (3.3)

j=1,2, . . . , dg, so the projection operator may be written
in the form

corresponds to the wave vector k and branch (band) g:

(r)=C py g D*py(T~)D„~(TJ)

&(e ' a~ N„(r—RL) .
ik (TJ RL)

k (TJ 'Rl. )=(TJk) [tTJ(Ti 'Rl )]

=(TJk).RI ——Rl .TJk (3.8)

since the scalar product remains invariant upon rotation.
In effect, the projected wave function written in terms of
the standing-wave-like projected coefficients (SWLPCs)
A"„(Rr) is

(3.7)

The argument of the exponential function may be
transformed as

Because we are interested in the LCAO form (2.1) of the
wave functions, we first examine the transformation prop-
erties of the atomic orbitals:

(r) = gA", (Rl. )4„(r—Rl. ),
L,v

(3.9)

HT4„(r RL, )=—4„(T 'r —RL )

=Np(T '(r —TRL ))

= QD„q(T)4„(r—TRI ) . (3.4)

with

(3.10)

The last equality in (3.4) expresses the fact that any ro-
tated atomic orbital may be represented as a linear com-
bination of the unrotated orbitals, which leads to the
reducible —in general —representation D„&(T) (see exam-
ples given in Sec. IV):

PT@„(r)=QD„„(T)4„(r). (3.4a)

Because the atomic orbitals form an orthonormal set (2.4),
the induced representation D~„(T) is unitary. Now let us
rotate the LCAO function (2.1):

PT%'(r)= g A~(RL )HTC~(r RL)—
L,p

= gD„„(T)QA„(Rr )N, (r—TRL ) . (3.5)
V,P

We assume the crystal has the form of an enlarged
Wigner-Seitz cell which contains X atoms. When the
Born —von Karman conditions are used, the space is filled
up with these adjacent cells. We may change the order of
labeling of the atom positions L~L' in such a way that
RI ——TRL. The label I.' runs over all atoms belonging to
the large cell, as was true in the case of the label L.
Therefore we have, from (3.5),

PTV(r)= g gD„„(T)A„(T 'Rl ) 4„(r—Rl ),
L', v p,

(3.6)

since Rl. =T RL, .
As a final step we can perform a projection on the

Bloch LCAO function which has coefficients A„"I and

@Py(k, R) = g e J D~py(TJ )D~q(TJ )
j=i

The value of the normalization factor

(3.11)

H(r) P T =P T.H(r).
J J

Therefore, from (3.12),

H(r)@I')kx(r) @w@cokA(r)

(3.13)

(3.14)

so the eigenenergy E" is the same as for the Bloch solu-
tion (2.14) and does not depend on the label co. Applying
transformations (2.5)—(2.11) to the function (3.9), we ob-
tain, from (3.14), the following equation satisfied by the
SWLPC's:

g II'„„(R)A„(R)=E"~A„""(R) . (3.15)

C~py ——C =(d~/ds)'i (3.1 la)

will be justified below; d is the dimension of the repre-
sentation a. , The coefficients A"," (R) are the standing-
wave-like functions because, when calculated according to
the formula (3.11), they become linear combinations of
products of sine or cosine functions with arguments
k„R„,where n, n

' =x,y, z (see Sec. IV).
Now let us apply the Hamiltonian operator to the pro-

jected wave function (3.3) obtained with the aid of (3.1):

H(r)%~ (r) =C Q D* ( TJ )H(r) P T 4" (r) . (3.12)
J

Because the crystal is invariant under the rotation Tj, the
Hamiltonian must commute with the rotation operator
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The fact that the eigenenergy E" of Eqs. (3.14) or (3.15)
does not depend on co reflects a well-known property that
the band energy is the same for any member of the star of
the vector k, so this energy is dg-fold degenerate:

(3.16)

The subscript co runs over the dg different combinations
of a, P, and y, because, as shown in group theory,

=gd' . (3.17)

Therefore the number of electron states remains un-
I

I d3r 4'""~(r)%" (r)=g A*" (RL )A„(RI.)
L,v

changed if instead of Xo Bloch solutions A& (R), where
kE viz, we take d s(X/d z)cr projected solutions Az" (R),
where kE- v»z. Symbol v Bz denotes the region of the re-
ciprocal space known as the Brillouin zone (BZ), and v tBz
the irreducible part of it; v az and raz are related by

d

vBz=g TJvraz. (3.17a)
j=1

We conclude this section by the examination of the
orthogonality and normalization properties of SWLPC's;
use is made here of (3.9)—(3.11). We obtain

(d d )'~

g L V

(3.18)

The sum over L, given inside the first pair of large
parentheses leads to 5 - -, , which for kEv&az and

(T-k), (T k')'

k'ev»z, goes to 5jj6~~. So the sum over v in the second
pair of large parentheses has to be calculated for j'=j.
Taking into account that the matrices Dz are unitary and
form a representation, we have

I

The remaining sum over j is—owing to the orthogonality
relation of the irreducible representations [see Eq.
(5.2)]—equal to 5 ~ 5~+r r =5„„.Finally,

g A „*"""(Rl. )A"„(Rl.) =5„„5kg5gg . (3.21)
L,v

This proves that the SWLPC's are exactly orthonormal.

gD„'„(TJ)D„„(TJ.)=QD„(Tj)D „(TJ)

=g D„.(T,-')D.„(T,)

=D„„(T T )=5„,„. .(3.19)

(3.20)

Because of the 5&„and 5qq obtained above, the sum over

p taken for the last pair of parentheses in (3.18) gives 5~ ~
[see (2.19)]. Therefore, we have, for (3.18),

)
1/2

D pr (T, )D*pr(T/) 5v~4~.
dg

IV. SYMMETRY PROPERTIES OF ATOMIC
ORBITAI.S AND THEIR USE

The projection-operator technique considered in Sec. III
will be discussed here and in the next section in detail, and
will be illustrated with the example of Bravais crystals,
which are invariant under the operations of the point
group O~', these are the sc, fcc, and bcc lattices. The
group Op, consists of dz =48 elements (rotations). There
are ten irreducible representations for this group. In
Table I we list their symbols a as used by different au-
thors, their dimensions d~, and the basis functions P~~(r)
which generate the representations D pr(TJ ) according to
the formula

TABLE I. Basis functions P p(r) generating the irreducible representations D pr(T~) of the cubic point group OI, .

I )

I2
j-"~2

I is
I2s

Pl

y
Ql

A)g
A2g

Tjg
T2g

I"2

I3
I 4

Is

Our

$+
2+
3+
4+
5+

1

x(y z)+
(x' —y')/2
yz(y2z2)

yz

(3z —r )/V 12
zx(z —x ) xy(x —y )

xy

I l CX I ) 1

I2 p A2„ I p 2
I )2 y Eg I3 3=
I"is T(„14 4
I2s E T2„ I s 5

'Bouckaert, Smoluchowski, and Wigner (Ref. 35).
"Von der Lage and Bethe (Ref. 36).
'Molecular physics.
"Bethe (Ref. 37) and Overhauser (Ref. 38).

xyz[x4(y' —z2)~ . ]
xyz

xyz(3z —r )

x(y —z )

—xyz(x' —y )~3

y(z —x )

z
z(x —y )
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da

+z, P y(r)= g D py(TJ. )P p(r),
P=l

(4.1}

D,+p (TJ. ) =D,+„(TJ.)D~+p„(TJ ) .

It should be noted that the matrices of the representa-
tion a=4 coincide with the matrices of rotations,

y=1,2, . . . , da, j=1)2, . . . , ds .

The operator PT is defined through Eq. (3.2). The basis
functions, chosen in Table I, warrant all induced represen-
tations to be unitary and real. Tables of these represen-
tations may be found in Ref. 39, p. 231, for
a = 1

+—
,2

+—
, 3 +—

,4+—, while for a =5 —+ we have
Dq ~(T) =Db a'p', bap(T) =5b b5aaDap p(T) . (4.5)

Therefore the general formulas (3.9}—(3.11), defining the
SWLPC functions, may be simplified to

(r) = y Ab p (RL )eb p(r Rl )—, (4.6)
L,b', a', P'

into account, we use an abbreviation in which the index b
represents three indices (b, l, g), without losing generality.
Therefore, henceforth, p = I b, a,PI.

Owing to the choice of the atomic orbitals in the form
(4.4), the representation D„„(T)defined by Eq. (3.4) has a
block-diagonal form, being a direct sum of the corre-
sponding irreducible representations:

Ti yp=D4 p( TJ ), (4 2)
where

1/2

where

&ry ——(Tjr)y QTJy——prp .
J P

(4.3}
and

Ab" p(R}=
g

g M"
py (k,R)ab y

y'
(4.7)

I

=C'bi(r) g C'Pg1') (r/r) . (4.4)

Here, Yi~(r/r) is a spherical harmonic of orbital quan-
tum number / and magnetic quantum number m. Index b
represents the principal quantum number, a is the irredu-
cible representation, and its row is p. Index g distin-
guishes between different functions (4.4) belonging to the
same representation and the same row; this index occurs
for 1)5 only.

Some angular parts P~~p(r/r) of the functions (4.4) may
be found among the basis functions Pap(r) given in Table
I (normalization factors are omitted there). The value of 1

equals the degree of the polynomial in r. The functions
given in Table I represent a full set of the basis functions
Pap(r) for 1=0=s (see a=1+), 1=1=@(a=4 ), and
1=2=d (a=5+ and 3+), while for higher 1 other basis
functions are necessary.

It is convenient to use the functions @bi p~(r) given in
Eq. (4.4) as the atomic orbitals for the LCAO expansions,
instead of the original @bi(r)Yi (r/r) functions. In prac-
tice, the full index p= I b, l,a, p, gJ may be abbreviated to
b and the formula of the basis function, e.g. ,
p=I3, 2, 5+,2J is replaced by 3zx, I4, 1,4, 1I by 4x,
I4,0, 1+,1J by 4s, etc. Also, the principal quantum num-
ber may be omitted if only one value of b is used for a
given LCAO expansion. In the further formulas, where
the symmetry properties of the basis functions are taken

The property (4.2) follows from the fact that the basis of
the representation +=4 consists of the Cartesian coordi-
nates of the argument vector r=(ri, r2, r3)—= (x,y, z); cf.
also (4.1) and (3.2).

Atomic orbitals are—in general —the basis functions of
the rotational group. They can be easily transformed into
a set of the basis functions of the crystal point group, for
example, a cubic group. Then the angular part of the
atomic orbital is a lattice harmonic, for example, a cubic
harmonic; ' the transformed atomic orbitals are

C p(r ) —=C'bI pg(r ) =@bI(y)y' p(r/y)

~"(k,R)=~
~gy (k, R)

d iR.T k
Dapy ( TJ )Da'p'y'( TJ )e (4.8)

The properties and the form of the functions
~„"(k,R), Eq. (4.8), determining the SWLPC functions,
Eq. (4.7), are discussed in this section. In the case of
R=O, or k=O, the function ~"„(k,R) may be easily cal-
culated,

(k, O) =~ (O, R)= 5 „,dg

a
(5.1)

owing to the orthogonality relation of the irreducible rep-
resentations

dg dg
XD*py(TJ)D py(TJ)= '5 5w5yy . (5.2)

According to (4.7) and (5.1), the SWLPC function calcu-
lated at the position of the central atom is

' 1/2

Ab pa&p (0)=
a

kA,5 5PPa'a+b ' ya (5 3)

This expression is diagonal with respect to the representa-
tion indices a and a' and the row indices p and p'; it is
also independent of p. The corresponding contribution to
the electron number is

d
1

P' (0}= Q I
Aba)'p (0}l'= X I&bay I'.

(5.4)

The sum of (5.4) over all contributions due to different

We see that the dr Xdg matrix I~"„J,composed of the
functions dependent on k and R, is sufficient to obtain all
SWLPC functions based on an arbitrarily large set of the
atomic orbitals.

V. CONSTRUCTION OF THE STANDING-WAVE-LIKE
COEFFICIENT FUNCTIONS
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symmetry indices gives

~kk, (0) g apyk2, (0)
~pr

d
kA,=~ X I byl Xd =zv

b, a, y P=1 a

In the last step the normalization of the Bloch vector az
has been taken into account; see Eq. (2.19). The coeffi-
cient ds occurring in the result (5.5) renders the fact that
any state labeled by k&v 1Bz represents a contribution of
ds vectors (TJk)Cvaz, where j =1,2, . . . , ds. We note
that

(5.5)

kk(0) g I
g cuk1I. (0)

I

2

(k,R)=~"(k,R) . (5.7)

Further particular properties of this matrix for the cubic
group O~ follow from the fact that Oj, =OC;, where
group 0 includes all proper rotations TJ, j =1,2, . . . , 24,
and group C~ consists of the identity E and inversion I
operations. Let us denote the representation of the group
0 by D~j3y(T&), a=1,2, . . . , 5, j =1,2, . . . , 24. Among
ten representations of the group OI„ five of them, denoted
a+, are even with respect to inversion,

D +p (TJ)=Dippy(Tj), D +p (ITJ)=+D~fjy(Tj),

(5.8a)

whereas five representations 0, are odd,

D
p (Tj):D~py(T~ )D p (ITJ ) 'D~py(Tj )

is the expression which occurs in the denominators of
Eqs. (4.3) and (4.13) of the following paper (II).

For arbitrary k and R the functions ~„"(k,R) may be
readily calculated according to the formula (4.8) using the
known matrices D~j3y( Tj ). If representations are real,

D'(T)=D„(T), (5.6)

as it is chosen in the case of the group O~, then the ma-
trix I~„"I is symmetrical with respect to the interchange
of co and co:

24~ j3y, 'p'y'(k R)= y D py(Tj)D py (Tj)2f (R Tjk)

(5.11)
for f =cos,sin. Thus the full 48&&48 matrix I~" I is
partitioned into four 24 X24 submatrices,

(5.12)

each submatrix being symmetrical, according to (5.11),

~OKO ~07 OP

f f (5.13)

[D211(T )1 =D111(T )=1,
DSpy( Tj ) D211(Tj)D4py( T.j ),
D322( Tj ) 211(Tj )D311(Tj ) ~

D321(Tj) D211(Tj)D312(Tj) .

(5.14a)

(5.14b)

(5.14c)

Therefore the following relations between different matrix
elements hold:

~211,211 ~111,111
f f

from (5.14a),

- 4p'r', 5pr —"4pr. 5p'r'

' 4pr 4pr'

~211,4Pr —~11],5Py ~
f f

~211,5Py ~111,4Py ~
f f

from (5.14b) and (5.14a), and

(5.15a)

(5.15b)

(5.15c)

(5.15d)

(5.15e)

Therefore the matrix ~~ is defined by
24)&(24+1)/2=300 eletnents of the upper triangle of
~~'and the same number of elements of~~.

Owing to some properties of the representations
D~j3y(Tj) of the grouP 0 occurring in Eq. (5.11), the
number of independent elements is less than 600, men-
tioned above. By direct inspection of the tables of
D~j3y(T&) [see the inferences below Eq. (4.1)], the follow-
ing properties are established:

(5.8b)

It is evident from Table I that the parity of a representa-
tion coincides with the parity of its basis functions. Using
(5.8) for the evaluation of (4.8), we find that ~„"is purely
real when representations involved in its indices have the
same parity,

(5.9)

~211,311 ~111,322& ~211,321 ~111,312 ~
f f f f

~211,322 ~111,311~ ~211,312 ~111,321 &

f f f f

~322, 322 ~311,311~ ~321,322 ~311,312 ~
f f f f

~312,312 ~321,321& ~312,322 ~311,321
f f f f

~311,5py ~322,4py~ ~321,5py — ~~ 312,4py ~
f f f

~322, 5py ~311,4py~ ~312,Spy ~~ 321,4py ~
f f f

(5.15f)

(5.15g)

(5.1511)

where

(5.10)

and purely imaginary when representations have different
parities,

from (5.14c) and (5.14a).
Relations (5.15) reduce the number of independent ma-

trix elements ~"„(k,R) to 312.
Because of the factor cos(R Tjk) or sin(R. TJk) present

in (5.11), any function ~f„„(k,R) may be written in a
form of a linear combination of the functions P, (k, R)
with constant coefficients:
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~f„„(k,R) =g Cf„(t)P,(k, R) . (5.16) In the case of a= 1 and a'=4, 5, the functions
~~pr ~ p y (k,R) may be written explicitly as

A typical example of P, (k,R) is

Pcpyspy cp-y-(k, R) =cos(Rpkr)sin(Rp ky )cos(RP ky ) .

(5.17)

The letters C or S, occurring three times in the above no-
tation for t, represent a cosine or sine factor, respectively.
The sets of indices (p, p', p") and (y, y', y") are some per-
mutations of (1,2,3). Because the value of the function
(5.17) is independent of the order of its three factors, the
corresponding indices t are considered to be equivalent,
e.g., t1 ——C23S31S12 is equivalent to t2 ——S12C23S31,
etc. There are 48 inequivalent indices t, because there are
eight combinations of C and S and six permutations of
( y y' y ) for any fixed set (PP'P ), say (P P'P)
=(1,2, 3), taken as a standard one.

The coefficients C~~pr ~ py (t), calculated for the expan-
sions (5.16), are listed in the following tables: for
a,a'=1,2,3 in Table II; for a=3,a'=4 and f=cos in
Table III; and for a=3,a'=4 and f =sin in Table IV.

COS» i 48r PP'8" rr'r" ( cprsPYsP"r"

+8Pcprsp r-sir'r»

111,5Py 8+CPySP'y'SP" y" 8~CPySP'y "SP"y' ~

~111,4Py —+8~SPy CP'y'CP"y" +8~SPy CP'y" CP"y'

(5.18)

(5.19)

(5.20)

' apy, a'p'y ' apy, a'py'

~' 4pr 4pr 8I cpycpy'cp"y" +8I cpycp'y"cp"y' ~

(5.22)

(5.23)
g~ COS" 48r, spr ~pp 8" ry'r" (8PcPrcp y cp"y" 8Pcp—ycp'y "cp"y )

~~sin' 48r, 4pr =~pir 8 err''r'" ( 8Pspr—sp r'sp'r"

+8PsPyspr-sp'r')
sin

~4Py, 5Py 8~SPySP'y'SP"y" 8~SPySP'y"SP"y' ~

(5.24)

(5.25)

(5.26)

sin» i, spr PP'8" rr'y" (
. + sPy cP'r'cp" y"

8PsPrcP'r" cP"y') (5.21)
while in the case of a,a'=4, 5 as

TABLE II. Coefficients C~~~ ~ p~ (t) for a,a'=1,2, 3.

apy a'p'y
C 11C22C33 C 11C23C32

f =cos
C12C23C31 C12C21C33 C 13C21C32 C 13C22C 31

311

21

111
211
311

21
12
22

311
21
12
22
21
12

+8
+8
+8

0
0

+8
+8

0
0

+8

+8
—8

—4v3
—4v3

4

+2
—Zv3
—Zv3
—2

+6
+6

+8
+8

4
+4v3
—4v3

+2
—Zv 3
+Zv3
+2
+6
—6

+8
—8

—8
0
0

+8
+8

0
0

—8

4
—4v3
+4& 3

4

+2
+2v3
—2v3
+2

+4v 3
+4v 3

+2
~ ZW3
+Zv 3
—2

+6
+6

CO

a'p'y'

111
211

S 11S22S33 S 11S23S32

+8
—8

f =sin
S 12S23S31 S12S21S33 S 13S21S32 S 13S22S31

311

21

311
21
12
22

311
21
12
22
21
12

—8
0
0

—8

—8
0
0

—8

+4
—4v3
—4v3

+2
—Zv3
—Zv3
—2

+6
+6

+4
—4v3
+ 4v3

—2
+2v 3
—Zv3
—2

—8
0
0

+8
+8

0
0

—8

0
0

+4v 3

+4
—2
—ZV3
+Zv3
—2

—6
+6

+4
+ 4v3
+4v 3

4

+2
~Zv3

—2

+6
+6
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TABLE III. Coefficients C~p ~ p r (t) for a =3, a'=4.

311

21

12

22

CO

a'P'y'

411
12
13
11
12
13
1 1

12
13
1 1

12
13

C 11S22S33

—8
0
0

C 11S23S32

+4
0
0

—4v3
0
0

—4v3
0
0

—4
0
0

C 12S23S31

0
+4

0

0

0

0
+4v 3

0

0
+4

0

C 12S21S33

0
—8

0

0
+8

0

C13S21S32

0
0

+4v 3

0
0

—4v3

0
0

+4

C13S22S31

0
0

+4

0
+4v3

0
0

+4v3
0
0

311

12

CO

a'p'y'

421
22
23

21
22
23
21
22
23

S 11C22S33

0
—8

0

0
—8

0

S 11C23S32

0
0

+4
0
0

—4v3

0
0

—4V 3

0
0

—4

S 12C23S31

+4
0
0

—4v3

+4v 3

S 12C21S33

—8
0
0

+8
0
0

S 13C21S32

0
0

+ 4V3
0
0

—4v3
0
0

S 13C22S31

0

0

+4v 3

+4v3

0
—4

0

311

CO

a'P'y'

431
32
33
3 1

32
33
31
32
33
31
32
33

S 11S22C33

0
0

—8

0
0

—8

S 11S23C32

0
+4

0

0
—4v3

0

0
—4v 3

0

0

0

S 12S23C31

+4
0
0

—4v3
0
0

+4v 3
0
0

+4
0
0

S 12S21C33

0
0

—8

0
0

+8

S 13S21C32

0
+4

0

0
+4v3

0

0
—4v3

0

0

0

S13S22C31

+4

0

+4V3

0

+4v 3

—4
0
0

(5.27)

(5.28)

(5.29)

(5.30)

The sets (P,P', P") and (y, y', y" ) entering Eqs.

' 4pr, 4pr = —8&sprspr cp-r-
COS~4~r. 51ry ='e ~'yy y-( 8)Ps~ysjry cIr r—

~sm
4pr 4p'r' —pp'p" rr'r" cprcpr'~p r"

~~sin-: 4pr, 5pr =»~prcprsp r-.

(5.18)—(5.30) form some permutations of (1,2,3), whereas
e~~~-=+1 for (g', g', g") forming an even permutation of
(1,2,3), while e@'g-= —1 in the case of an odd permuta-
tion. Relations (5.9), (5.10), (5.13), (5.15), and (5.16), and
Tables II—IV, together with formulas (5.18)—(5.30), allow
us to write ~„"(k,R) in terms of P, (k, R) for any com-
bination of m and co'.

Several sum rules allowing a check on the correctness
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TABLE IV. Coeffigients C~pz ~ pz (t) for a =3, a'=4.

311

21

22

CO

a'P'r'

411
12
13
11
I 2
13
11
12
13
11
12
13

S 11C22C33

+8
0
0

0
0
0

+8
0
0

S 11C23C32

+4
0
0

—4v3
0
0

—4v3
0
0

4
0
0

S 12C23C31

0

0

+4+ 3

0
—4v3

0

0
4
0

S 12C21C33

0
—8

0

0
+8

0

S 13C21C32

0
0

—4

0
0

—4v3

0
0

+4v3
0
0.
4

S 13C22C31

0
"0

+4
0
0

~4v 3

0
+4v 3

0
0
4

311

12

22

Q)

a'P'y'

421
22
23
21
22
23
21
22
23
21
22
23

C 11S22C33

0
+8

0

0
0
0

0
+8

0

C11S23C32

0
0
4

0
0

—4v3

0
0

—4v3
0
0
4

C12S23C31

0
0
4

0
0

+4v 3

0 .

0
—4v3

0
0
4

C12S21C33

—8
0
0

+8
0
0

C 13S21C32

4
0
0

—4v3
0
0

0
0

—4
0
0

C 13S22C 31

0
+4

0

0
+4v3

0

0
+4v 3

0

0
4
0

311

21

12

N
a'13'X'

431
32
33
3 1

32
33
3 1

32
33
3 1

32
33

C 11C22S33

0
0

+8

0
0

+8

C 11C23S32

0
+4

0

0
—4v3

0

0
—4v3

0

0

0

C 12C23S31

—4
0
0

+4v3
0
0

—4v3
0
0

4
0
0

C 12C21S33

0
0

—8

0
0
0

0
0-

0
0

+8

C 13C21S32

0
4
0

0
—4v3

0

+ 4v3
0

0
—4

0

C 13C22S31

+4
0
0

+4v3
0
0

+4v 3
0
0

4
0
0

of Tables II—IV as well as Eqs. (5.18)—(5.30) can be estab-
lished. The definition (4.8) and arguments similar to
those applied in obtaining Eqs. (3.18) and (3.19) give

g ~„,'(k, Rr )~„'(k,Rr )
L

(5.31)

P2 [Xi

(5.32)

so (5.33)
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Using orthonormality relations for functions P, (k, RL ),

g P, (k, RL )P, (k, RL )= —,5„, (5.34)

(5.35)

Q C, ,p, ,(t)C, ,p (t)= 5„, ,5p,p
a&

(5.36)

and expressions (5.16), we obtain from (5.32) and (5.33)
the sum rules

In order to illustrate the application of the formalism
discussed above, we consider now an example of a transi-
'tion metal, say Ni, whose LCAO wave function is con-
structed of six types of atomic orbitals @z(r): one s-like
orbital, p =01+1—:s and five d-like orbitals,
p=25+1 =yz, 25+2=—zx, 25+3—=xy, forming the basis of
the representation a' =5+, and p =23+ 1 =—x —y,
23+2=—3z —r, forming the basis of a'=3+. Then the
wave function transforming according to the Pth row and
yth column of the irreducible representation a, i.e., the
function having the index co=aPy, is [see Eqs. (4.6) and
(4.7)]

(r) =g [ A,
""

(RL, )4,(r —RL ) g Ay",
"

(RL, )@y,(r—RL, ) +A~ (RL, )C ~ (r —RL )
L

+A„z (RL, )4„~(r—Rt )+A z z(RL )4, ,(r —RL )+A z, (RL, )4 z z(r —RL )], (5.37)

with
1/2

Ay", (R) =

(R)=

1/2

48K
[~" „(k,R)~~, +~" (k, R)u +~5 ~z(

1/2

48K
[~"~,(k, R)ay, ~~~~zz(k, R)a~ ~~~~zz(k, R)a„y ],

1/2 (5.38)

1/2

1/2

The Bloch eigenvector az, together with the corresponding eigenenergy E", is the member A, belonging to the set of
o =6 solutions of the secular eigenequation (2.14). Here it should be stressed that the general eigenproblem represented
by Eqs. (2.11)—(2.12) leads to the same secular equation for an a& represented by Eq. (2.14) irrespective of the fact
whether we use the Bloch coefficient functions (2.13) or the standing-wave-like coefficient functions (3.10) at the starting
point. The explicit form of the 6&&6 Hamiltonian matrix H„&, for different cubic lattices and different types of interac-
tions between atomic neighbors, may be found, e.g., in Ref. 2, where the matrix elements are denoted by (p/p'). In Sec.
VII we develop a general procedure allowing a simplified evaluation of H&& and give some examples of it

To specify the example of the standing-wave-like LCAO function given above, we write some ~~ terms of the
SWLPC function which transform according to an odd one-dimensional representation, say a= 1 . From Table II we
obtain an element for an s-type orbital,

~&+,",(k,R)=i~&'i~ »&(k, R)=i8[ sin(R, k&)[sin(Rzkz)sin(R&kz) —sin(Rzkz)sin(R&k&)]

+sin(R &kz)[sin(Rzk& )sin(R&kz ) —sin(Rzkz )sin(R3k| )]

+sin(R
& kz )[sin(Rzkz )sin(R &k ~ ) —sin(R zk &

)sin(R 3kz )] J

From Table II we obtain a typical element for a d-type orbital of cx'=3+:

~&+',z(k, R) =i~|'» z&z(k, R) =i4~3[ —sin(R ik~ )sin(Rzkz)sin(R&kz)+sin(R &kz)sin(Rzkz)sin(Rzk( )

(5.39)

—sin(R&kq)[sin(Rzki )sin(R&kz) —sin(Rzkz)sin(R3k$)] J, (5.40)
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and from Eq. (5.21) a typical element for a d-type orbital of a'= 5+:

~ + (k,R)=i~'i'i) q3i(k, R) =i 8 sin(83k'}[cos(R(k3)cos(R2k) )—cos(R, k, }cos(R2k3)] . (5.41)

VI. INDEPENDENT PARAMETERS
FOR THE HAMII. TONIAN MATRIX

The matrix elements H&L z L of the unperturbed Ham-
iltonian, Eq. (2.7), and the elements V&L & L of the pertur-
bation matrix, Eq. (2.21), may be calculated directly ac-
cording to their definitions, providing the operators H(r)
and H~"(r) and the appropriate atomic orbitals 4&(r)
and 4&~'(r) are known. However, very often, particularly
for the impurity problem, these matrix elements are con-
sidered parameters whose values are obtained by fitting
the results of the LCAO calculations to some experimen-
tal data or to results of other calculations. ' In this case
the number of parameters should be as small as possible,
and a substantial reduction of this number may be ob-
tained by symmetry considerations.

Let M(r) denote an operator invariant under the opera-
tions of the point group $0 of the crystal:

~p,L', vL =ave vL, pL' (6.8)

Let us define group 3'0(RL, RL ) of the vectors RL and
RL, being a subgroup of the crystal point group 9'0, as a
set of such rotations T„„which leave these vectors un-
changed,

T„„RL——RL and T„„RI ——RL,

Mbap( TL), b'a'p'(TL') —g Dapy( )Da'p'y'( T}MbayL, b'a'y'L'
Y& V

(6.7)

This is an important equation since it allows us to calcu-
late the matrix elements connected with position vectors
TRL and TRL ~ from the elements connected with posi-
tions RL and RL. The property of hermicity of the
operator M allows us to find the matrix elements having a
reversed order of position vectors

p T M(r) =M(r}PT., j=1,2, . . . , dg .
J J

(6.1) n = 1,2, . . . , d~(RL, RL ) .

(6.9)
Examples of M(r) could be H(r) and H "(r). We are
going to establish the relations between different com-
ponents of the matrix

The order of this group is denoted by dg(RL, RI ). Then,
from (6.7) it follows that

MpL p L
——( @~L l

M@~L }
=f d r 4&„'(r—RL)M(r)C)„(r—RL, ) . (6.2)

baPL, b'a'P'L' g aPy( Tun ) a'P'y'( un }MbayL, b'a'y'L' ~

F& Y

(6.10)

Because a scalar product is invariant under the rotation
we have

(&bpL
l MNpL }= ( PT&5„L

l PTM@pL }

=&~TEL IM~T@„L & (6.3)

In the last step the commutation relation (6.1) was used.
The effect of the rotation operator on the atomic orbital
was already found in Eq. (3.4). Therefore, from (6.3) it
follows that

M~L ~L =QDvq(T)Dv~ (T)MgTL) v(TL ) ~

v, v

where we introduced the notation

This set of dg(RL, RL ) equations imposes restrictions on
the matrix elements of M having fixed indices baL and
b'o. '1.', and allows us to determine the independent matrix
elements.

In order to illustrate this possibility, let us first consider
the matrix elements with indices RL ——RL ——0. In this
case $0(0,0) coincides with the full point group of the
crystal S0, whose irreducible representations are
Dapy(T). After summing up both sides of Eq. (6.10) over
TJ and applying the orthogonality relation (5.2), we get

a
MbaPO, b'a'PO ~aa'~PP' g MbayO, b'ayO

Because the left-hand side does not depend on the value of
P, therefore the summation over y is trivial and we obtain
a known result

RTL ——TRL . (6.5) MbaPO, b'a'P'0 =~aa'~PP'~ "~ bb' (6.12a)

The relation (6.4) may be reversed using unitarity of the
representation Dv&( T):

where

Mbb' ~ba10, b'a10 Mba20, b'a20 (6.12b)
Mv(TL), v'(TL') Q Dvtj( )Dv'p'(T)MpL, p'L'

P~P

(6.6)

Choosing atomic orbitals whose angular parts transform
according to the irreducible representations of the point
group $0, Sec. IV, we have D & in the reduced form; cf.
Eq. (4.5). Then Eq. (6.6) may be rewritten as

So, for fixed quantum numbers b and b' characterizing
atomic orbitals, there is connected with each representa-
tion a only one parameter Mbb instead of possible (d )
parameters.

If one or both position vectors RL and RL are not
zero, then the group 80(RL, RL ) of the vectors RL and
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RL is a proper subgroup of $0. Therefore the represen-
tations D~pz(T) are, in general, reducible with respect to
8'o(RL, RL, ). Only after their reduction may the relations
similar to (6.12) be obtained. This procedure will be
shown on example of the group $0(RL, ,RL, ) for RL, ——0
and RL, ——(0,0,u), which are positions of the central atom
and its nearest neighbor in the sc lattice (or the second-
nearest neighbor in the fcc or bcc lattice). There are eight
operations T„„ leaving invariant these vectors: identity E,
rotation C4 through n /2 about the (0,0,1) axis, its powers
C4, C4, operation IC4~, the rotation through the angle
2&& (n./2) about the (1,0,0) axis followed by an inversion I,
operation IC4~, which is the previous one but about the
(0,1,0) axis, operation ICz, the rotation through n about
the (1,1,0) axis, followed by inversion, and operation IC2,
which is like the previous one but about the (1,—1,0)

axis. In Table V are given the representations D (T) with

a = 1+,4,5+,3+ for these operations. These representa-
tions define the symmetry properties of all s-, p-, and a-
like atomic orbitals entering the matrix elements. As
mentioned in Eq. (4.2), the representation D~ (T) coin-

cides with the operation matrix T. The bar under the
symbol of a representation, a transformation, etc. is intro-
duced to denote the matrix, e.g., D is a matrix composed

, of the elements D pz.
The group 9'0(0, (0,0,u)) is already known, since it is

identical with the group 9'o(k) of the wave vector
k =6= (0,0,u ). Its irreducible representations, called

Az, consist of four one-dimensional representations:
63—A2, and A4 ——b, ~, and one two-dimensional repre-

sentation, Aq. The characters of these representations,
given first by Bouckaert et al. , are presented also in

1

TABLE V. Representations D (T) of the group So(R~, RL, ) for the vectors RL, ——0, RL, ——h, =(0,0,u), and characters g of the ir-
reducible representations h~(T) of the group Ã0(k) for the wave vector k=5, =(0,0,u).

D, (T)

D (T)

D,+(T)

D, (T)

X(~)(T))

X(~2(T))

X(~3(T))

X(~4(T))

X(~5(T))

I 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

1 0,
0 1

—1

0
0

2

0 0
—1 0
0 1

0 0
—1 0
0 1

1 0
0 1

C4g

0 —1 0
1 0 0
0 0 1

0 1 0
—1 0 0
0 0 —1

—1 0
0 1

3C4,

0 —I

1 0
0 0

0
0

—1
T 'I

—1 0
0 1

0 1 0
—1 0 0
0 0 1

D, (T)

D, (T)

D +(T)

D,+(T)

X(~)(T))

X(~2(T))

X(~3(T))

X(~4(T))

X(~5(T))

IC4„

—1 0 0
0 1 0
0 0 1

0 —1

0 0

1 0
0 1

IC4y

0 —1

0 0
—1 0
0 1

0 0

1 0
0 1

0
—1

0

0

—1 0
0 0
0 1~

—1 0
0 0
0 1

—1 0
0 1

0 1 0
1 0 0
0 0 1

0 1 0
1 0 0
0 0 1

—1 0
0 1
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D, ~(&)=&i(&),

&5( &) 0

(6.13)

D~ (&)=

D ~(T)= 0

&i( &)

0

b, i( T)

(6.14)

(6.15)

Table V. The examination of D~ and X(hj) in Table V
allows us to conclude that some representations D are al-
ready in the reduced form:

mJJ hj( TUB/ )mjj Jljl( T„„) (6.22)

mjj are the submatrices (blocks) of m. Subscript j as-
sumes the values of the indices j of the irreducible repre-
sentations hJ and runs in the same order as these repre-
sentations occur in the reduced form of the representation
D~ [see Eqs. (6.13)—(6.16)], for example, j=5, 1 for
a=4; subscript j' has the same meaning, but concerns
D~. The number of rows and columns within the block,
mj~' equals the dimension of bz and hj, respectively. As
follows from (6.20), each block mJJ satisfies the equation

while the representation D + may be reduced to

0
S ~'D ~(T)S ~ = (6.16)

We may sum up both sides of Eq. (6.22) over all the
operations T„„and apply the orthogonality relation con-
cerning irreducible representations 6 (JT„„); we obtain a
result similar to that obtained in (6.12},namely

with the help of a similarity transformation

0 1 0
S~= 1 0 0

0 0 1

(6.17)

It is now convenient to rewrite Eq. (6.10) in the matrix
form

M~I, ~'I'=D~(T„„)M~L„~'r. D~ (T„„). (6.18)

The indices b and b', which are not influenced by the
symmetry operations, are henceforth omitted for the sake
of brevity. Note that L,L' and a, a' are fixed indices for
the both sides of Eq. (6.18). Equations (6.13)—(6.15) can
be written in the same form as Eq. (6.16), providing the
notation

S~ =I for a = 1+,4,3+ (6.19)

is introduced. By applying transformations S~ and S~ to
Eq. (6.18), we get

Sa 'M~L„a L, Sa = ISA 'D (&U. )Sa](Sa 'M L„a L, Sa }

&& lSa 'Da ('run)Sa ]

The property of unitarity S =S ' has been used. For
fixed indices L,a,L', a', let us denote by m the matrix
occurring on the left-hand side of Eq. (6.20):

mj)~ =5jym I (6.23}

i.e., each block mzz is either a zero matrix (for j&j') or is
proportional to a unit matrix (for j=j ) with its propor-
tionality coefficient (parameter) denoted by mj. There-
fore the block is characterized either by a single parameter
or no parameter at all. Having determined all blocks m~~'
according to Eq. (6.23), the matrix M L, I. may be found
by a reversal of the relation (6.21):

~al. a'1. ' =Sam Sa' (6.24)

m55 m53

m)5 m)~
(6.25)

where m 55 is a 2 X 2 submatrix and m ~z is a 1 & 1 subma-
trix, etc. Using (6.23) we get

m 0
0 m

0
0

(6.26)

0 0 0

The above considerations may be illustrated on an exam-
ple of a=4 and a'=5+. Since the reduced form of D
has blocks h5 and 5& and the reduced form of D + has h5
and hz, the structure of the matrix m is as follows:

m =Sa ~aL, al. Sa' i (6.21) where m =m 5, and from (6.24) we finally obtain

1 0 0 m 0 0 0 1 0 0 m 0
M4 p 5+& ——S4 mS5+ ——0 1 0 0 m 0 1 0 0 = m 0 0

0 0 1 0 0 0 0 0 1 0 0 0
(6.27)

For the case of a= 5+ and a'=3+, the result must be
zero, because the representations h5 and 5& entering the
reduced form of D +, see (6.16), are different then b, q and

b, i entering Dz+, see (6.15):

—5+O ~+a (6.28)

In the same way, any combination of o. and n' taken from
the set 1+,4,5+,3+ can be considered. All results ob-
tained for M&o & ~ are collected in Table VI. The matrix

I

elements for 5, replaced by the other neighbors of site 0,
say h, '=(u, 0,0) or 6"=(O,u, O), can be obtained accord-
ing to Eq. (6.7).

In order to determine the independent matrix elements
for the case of the central site Rl ——0 and the site
Rl ——(u, u, O) (which can be a nearest-neighbor position in
the fcc lattice or the second-nearest-neighbor position in
the sc lattice, or a third-nearest-neighbor position in the
bcc lattice), the group Po(0, (u, u, O)} must be considered;
this group is identical to the group So(k) for the wave
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TABLE VI. Matrix elements M„L,„L for RL, ——0 and RL ——5= (0,0, u ) in terms of 15 independent parameters M',
i =1,2, . . . , 15.

S
1+

1

P

2

y
1

yz zx
3

xy
1

x —y
2 2

3+
2

3z —r2 2

0 M 0

y
z

0
0

M
0
0

0
M
0

0
0

M

0

0
0
0

0
0
0

0
0

d 5+

3+

yz

xy

x —y
2 2

3z —r2 2

0
0
0

0
M 12

0
M'4

0

0
0

M'4
0
0

0
0

0
M'

M4

0
0

0
M4
0

0

0
0

M

0
0

0
0
0

0
0

M

S,+'D, +(T)S,+ =X)(T), (6.29)

vector k=X=(u, u, 0). There are four elements in the
group. The corresponding representations D ( T) are
given in Table VII, together with the characters X(XJ ) of
the irreducible representations, '

XJ ( T), j= 1,2, . . . , 5,
which are all one dimensional. The following reductions
are obtained from Table VII:

X3(T)

S ~'D +(T)S += 0

0

Xg(T)
S +'D +(T)S~+ ——

()

0 0

X)(T)

X2(T)

0 X)(T)

(6.31)

(6.32)

with the help of the similarity transformations

Xi( T)

S D (T)S = 0

0

0 0

X4(T) 0

0 X3(T)

(6.30)
S4 ——S5+ =

1/v 2

1/W2
0

—1/V2 0
1/v2 0

0 1

(6.33)

(6.34)

TABLE VII. Representations D (T) of the group So(RL, ,RL ) for the vectors RL, ——0 and RL ——X=(u, u, O), and characters g of
the irreducible representations X~(T) of the group So(k) for the wave vector k=X =(u, u, O).

D, (T)

D +(T)

X(Xl(T))
X(&2(T))
X{X3(T))
X(&4(T))

0

0

0

0 1

0 0
1 0
0 1

0
1

1

1 0 0
0 1 0

0 1

1 0
0 0

0 —1

0
00

—1 0
0 1

0

IC4

1 0 0

0
0

0 0
—1 0
0 1

1 0
0 1

1'
—1

—1

1

0 1 0
0 0 —1

IC2

1

0 1 0
1 0 0
0 0 1

0 1 0
1 0 0
0 0 1

—1 0
0 1

—1

1

—1
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As in the previous case [RL, ——(0,0,u)=h. ], for each pair
of indices a,a' the matrix m is constructed from the
blocks m&&, which are, in the present case, 1&& 1 matrices.
As an example, the matrix m for a=3+ and a'=4 is

my) Pl ~ m43
Pl =

Pl &) Pl )4, I )3

0 I 0
I) 0 0 (6.35)

the second step because of (6.23). Applying (6.24) together with (6.33) and (6.34), we arrive at a final result

1 0 0 m 0
M m' 0 0

1/W2 1/V 2 0 4 4

—1/V2 1/V2 0
m m 0

0 0 1

(6.36)

S)~'D, +(T)$,+ =A)(T),

S +'D +(T)S + =A3(T),

$4 'D4 (T)$4 S5+'D5+(——T)$-5+ 0

0

(6.37)

(6.38)

Similar considerations may be performed for any other
pair o.,u'. The results are collected in Table VIII.

Finally, the case of RL ——0 and RL, ——(u, u, u) can be
also considered; here, RL is the central site and RL is a
nearest-neighbor position in the bcc lattice (or the third-
nearest-neighbor position in the sc lattice). The corre-
sponding group So(RI,Rr ), identical with the group
$0(k) for k=A=(u, u, u), consists of six elements; its
three irreducible representations are called AJ(T), see
Table IX for details. Table X contains the matrix ele-
ments M&o& ~ obtained in the same way as in the previ-
ous cases, using the following reductions:

vZ
1

v2 0 2

(6.41)

H(r+Rg )=H(r), (6.42)

The above analysis of M&1 „~,based on the property
(6.1), is valid also for the perturbation matrix V&I. „L, ,
Eq. (2.21), because the property (6.1) is true both for the
operator H(r) and H~"(r), and because the atomic orbi-
tals N&L', (r) were assumed to have the same symmetry
properties as the orbitals @„I(r). No more constraints on
the structure and number of independent elements of the
perturbation matrix V&L & L may be imposed from sym-
metry considerations.

On the other hand, the Hamiltonian H(r) of the unper-
turbed crystal also possesses, besides the property (6.1),
translational symmetry,

where

S, =&, S, =I,

(6.39)

(6.40)
I

which leads to the relations (2.8). Using these relations
together with (6.8) and taking (6.7) for T =I, which is an
inversion operation, we perform a chain of transforma-
tions

HbapO, b'a'p'L Hbap(-L), b'a'p'Q ~b'a'p'O, bap( —L) =~ ~a'p'y'~~ &~apy~~ ~~~b'a'y'O, bayL
yf y

(6.43)

TABLE VIII.
i =1,2, . . . , 25.

Matrix elements M„L,„L for RI. ——0 and RL, ——X=(u, u, 0) in terms of 25 independent parameters M',

S
1+
1

X
2

y
1

yZ ZX

3
Xy

1

X —y
2 2

3+
2

3z —T2 2

1+ 1

X

Z

Xy

M '

0

0
0

M
M
0

0
0

M2

M13

M4
M
0

0
0

M

M
M

0

0
0

M 15

M
M
0

0
0

M"

M 14

M'4
0

0
0

M 16

—M'
0

0
0
0

0

0
0

3+ X 2 2

3z —T2 2

M'4 —M 0
0

0
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TABLE IX. Representations D ( T) of the group 9'0(RL, , RL ) for the vectors RL ——0 and
RL, ——A=(u, u, u), and characters g of the irreducible representations A~(T) of the group %0(k) for
the wave vector k =A = (u, u, u). Notation for coefficients: c = —z, s =V 3/2.

D, +(T)

D (T)=D (T)

D, (T)

X(A1(T))
X(A2(T))
g(A3(T))

1 0 0
0 1 0
0 0 1

1 0
0 1

C3

0 1 0
0 0 1

1 0 0

C2

0 0 1

1 0 0
0 1 0

—S C

D, +(T)

D (T)=D +(T)

D,,(T)

IC2

0 1 0

—c

1 0 0
0 0 1

IC2y

0 0 1

0 1 0
1 0 0

—C S

IC2,

0 1 0
1 0 0
0 0 1

—1 0
0 1

X(A, (T))
X(A (T))
y(A, (T))

—1

0

D pr(I)=D pr(I&)=+5pr, (6.44)

where the upper sign holds for even representations
(a = 1+,2+, . . . ), while the lower sign holds for odd repre-

This imposes additional constraints on the matrix ele-

ments of H. In the case of cubic crystals we may choose
these elements to be real. As follows from (5.8), the ma-
trix D~~&(I) is

sentations (a=1,2, . . . ). Therefore Eq. (6.43) may be
simplified for cubic crystals as

+baPO, b'a'P'L —~b'a'P'0, baPL (6.45)
with the upper sign in the case of a and a' having the
same parity and the lower sign in the opposite case.

The relation (6.45) reduces the number of the indepen-
dent parameters for H&1 „I as compared with those ob-
tained for M&I. &L, .

TABLE X. Matrix elements M„L,„I for RL, ——0 and Rl. ——A =,(u, u, u), in terms of 18 independent parameters M',
i =1,2, . . . , 18. Notation for coefficients: c = —2, s =V 3/2.

s
1+
1

P
4

2 1

yz

5+
2 3

Xy

1

X 2 2
2

3z —T

1+ 1

1

2
3

d 5+

y
Z

yZ
ZX

Xy

X 2 2

3z —P'2 2

M15

0
0

M
M
M

M 17

sM'
cM'8

M
M
M

—sM 18

CM'

M
M
M

M 17

0

M 11

M4

sM'4
cM'4

M4

M
—sM'
cM"

M4

0
M'4

SM 12

—sM 12

0

sM'
—sM 8

0

cM'
cM'2

cM'
cM'

0



32 SCAl IERED IMPURITY STATES IN TRANSITION. . . . I.

Consider the case of RL ——0 and RL ——h=(0, 0,u).
Matrix elements H„p & b can be expressed in terms of 11
independent parameters H', i = 1,2, . . . , 11, instead of 15
parameters M'. The table for H„p„b, can be obtained
readily with the help of M&o & ~ given in Table VI and the
following substitutions, based on (6.45):

M'=H' for i =1,2, . . . , 11,
~12 08
M'= —H' for i =13,14, 15 .

(6.46)

For the case of RL ——0 and RL ——X=(u, u, 0) there are
17 independent parameters 0', i =1,2, . . . , 17. The ma-
trix elements H&p&x can be obtained from Table VIII
with the aid of the substitutions

M'=H' for i = 1,2, . . . , 17,
M'=H' s for i =18,19,20,
M'= H' for—i =21,22, . . . , 25 .

(6.47)

M'=H' for i =1,2, . . . , 12,
M'=H' for i =13,14,
M'= H' for—i =15,16, 17, 18 .

(6 48),

Further use of the relation (6.7) for H&L &L ~ entering the
expressions for energy is made in the next two sections.

VII. POINT-GROUP ANALYSIS
OF THE BLOCH HAMILTONIAN

Finally, the matrix elements H&0& ~ can be expressed
in terms of 12 independent parameters H',
i = 1,2, . . . , 12. These matrix elements are obtained from
Table X with the aid of the substitutions

k
Hls)si(RL )—g Hlso )s'(T I )e

m=1

ik TsmRL,
S (7.3)

Here, RL denotes the position of a typical atom belong-

ing to the sth sphere, e.g., RL ——(a/2, a/2, 0) represents a
member of the first coordination sphere for the fcc lattice.
Operations T, , acting on the vector RL, transform it

S

into another member of the sth coordination sphere, Eq.
(6.5). The number of atoms belonging to the sth coordi-
nation sphere is denoted by n, (so n, =n1 ——12 in the
above example).

We are going to prove that the sum over the subset T,
of rotations in (7.3) may be replaced by the sum over all

TJ belonging to 9'p, divided by dz(s):
d

1 ik. T RL
H (RL )= g H p (TL )e ' (7.4)

'

here, dz(s) is the order of the group

Sp(RL )—:Ãp(0, RL )

Tj Tsm ~vsm' (7.5)

The number of cosets (operations T, ) is n, This .is
the number of the atoms in the coordination sphere. The
n, satisfies the relation

of the vector RL, see (6.9). The members of this group

are denoted T„, E9'p(RL ) I =1 2 . . . ds(s). Then

we decompose a group Sp into left cosets with respect to
its subgroup Ão(RL ). In this way we find the operations

T,m with the aid of which any TJ E Sp is represented in a
unique way as

In the calculation of the matrix elements H» of the
Bloch Hamiltonian, . Eq. (2.15), the advantage of the
point-group symmetry may be taken into account if the
sum over the atomic positions RL is arranged according
to the sets of the atomic neighbors equidistant from site 0;
these sets are called coordination spheres:

Hls)s' —g H)sP Is'Le —Hy)s'(0) +H)sls' (RL) )
L

dg=n, d (s )s.

Therefore Eq. (7.4) may be rewritten as
n d (s)

k
HIs)s' ( RL )— g g H)so )s'( T r,L )

g m =1m'=1

Sm USln' L
Xe

(7.6)

(7.7)

where

k ik0Hpp'(0) =Hpo, p oe

+H„"p (RL,)+, (7.1)

(7.2)
I

However, operators T„~ which occur in (7.7) may be
omitted because when they act on RL they do not change

S

it. This ends the proof that (7.4) and (7.3) are identical.
Expression (7.4) may be easily calculated if we recall the
property (6.7):

bap, b'a'p'(RL ) g g Dapy( Tg )Da'p'y'( TJ )e
yY

ik T'RI
S

~~ bayo, b'a'y'L (7.8)

The expression in large parentheses is very similar to (4.8).
If we change the order of summation there, replaciny TJ.

by TJ
' and make use of the unitarity of Dapy(TJ ) as

well as of Eq. (3.8), we finally obtain

aP
Hbay, b'a'y'(RL, )

d g ~a'gky'(~~RL )Hbapp, b'a'p'L

(7.9)

We see that the functions ~"„(k,R), introduced for
SWI.PC functions, Eqs. (4.6)—(4.8), are useful also for the
calculation of the elements of the Bloch Hamiltonian ma-
trix. Equation (7.9) is an important result because it
shows that the contribution of the sth coordination sphere
to the matrix element H&& may be calculated with the aid
of the Hamiltonian matrix elements H~ ~L taken for one
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H„"„(RI )=[H„"„(RI)]* . (7.10)
I

representative position RL ——RL only, instead of forming
S

a combination of such elements taken for n, different po-
sitions, as in the case of the original formula (7.3).

In practice, it is sufficient to calculate the matrix ele-
ments H&z (RL ) with the help of Eq. (7.9) applied in the
case of the subscripts belonging to the upper triangle of
the square matrix only. The remaining elements are ob-
tained from the property of hermiticity:

The relation (7.10) may be derived formally from (6.45)
and (5.13) together with (5.14).

As an example we calculate, according to (7.1) and
(7.9), some matrix'elements H&z of the Bloch Hamiltoni-
an for the fcc crystal in the ti~ght-binding approximation
(i.e., zeroth and first coordination spheres are only .as-
sumed). This is done using (6.12) and Table VIII together
with (6.47) for parameters H„I & I and Tables II—IV and
Eqs. (5.18)—(5.30) for the functions ~„(k,R). With the
notation k=(kl, k2, k3) and X=(a/2)(1, 1,0), we obtain

k k 1+11
I+1,1+1 1+10,1+10 4 1+11 ' 1+10,1+IX

1

HsO, sO+ 4 HsO, sX ( C I IC22C33+ C I IC23C32+ C12C23C31+PC12C21C33+ C13C21C32+ C13C22C31)

t
a a a a a a

Hsp sp+ Hsp sg COS —k2 COS —k3 +cos —k3 COS k 1 +COS k 1 COS k2 (7.11)

k k 3+Pi
H3+I 3+1 H3+10 3+10+ 4 ~~3+~1(ii ~)H3+pp 3+irx

PP'

~3+11 H3+10,3+10 4 3+11 3+10,3+ IX 3+21 3+20,3+2X

1

H(~2 y2)() (s2 2)() + 4 H(~2 y2)() (~2 y2)X(8PC IIC22C33+ 2PCI IC23C32+ 2PC12C23C31

+ PC12C21C33+ 2 C13C21C32+ C13C22C31)

1+ 4 H(3s2 &2)0 (3s2 &2)X( 6PC I IC23C32+ 6PC 12C23C31+6PC 13C21C32+6PC 13C22C31)

a a
H(~2 y2)p (X2 2)p +4H(~2 2)p ( 2 2)y COS k 1 COS k2

a a a+ (H(~2 y2)() (~2 y2)x +3H(3 2 2)0, (3 2 —2)x )cos k3 cos k I +cos k2 (7.12)

k k&~3+1 3+21
x —y sx 3+ 1 5+2 4 ~ 5+@'2 ' 3+)S0,5+P'X 4 5+32 3+20, 5+3X

P P'

1

4 H5+3() 3+2X( S I IS23C32+ S 13S2IC32)~

a . a=2v 3H, , sin —kl sin —k3(xy)0, (3z —r )X (7.13)

Matrix elements H&& obtained above are equivalent to the
(IM/p') calculated in Ref. 2.

VIII. EVALUATION OF THE MATRIX
ELEMENTS OF PERTURBATION

Solutions for the perturbed crystal obtained by means
of the perturbation theory applied in the SWLPC-function
representation, are expressed generally in terms of the fol-
lowing matrix elements:

sst) t'2, ', co+2, 4cook A, cookA,
V

' = g Ap
' (Rl )VL ALA„' (RL) .

L',p', L,p

(8.1)

cipok A, ,cil kA, cipokA
VL, ,L =+A„' (RI. )V„z ~LA„' (RL );

P sIJ (8.3)

the superscript 0 means a collection of the indices mpk'A, '

and o)okA, . The symmetry of the crystal may help to sim-

copkA,
Here, A& (Ri ) is the SWLPC function, see Eqs. (4.7)
and (4.6), while V&L, „I is the perturbation matrix, see
Eqs. (2.21), (2.22), and (2.7). It is convenient to separate,
in Eq. (8.1), the summation over position indices L and
I. from the summation over orbital indices p' and p:

VQ y VQ (8.2)
L', L

where
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plify the summation over all pairs of the lattice positions
entering (8.2). This is so because —as was done in the cal-
culation of H&& [Eqs. (7.1)—(7.3)]—the terms related by a
rotation of their position indices may be grouped together
into sets:

(8.4)

Tusm'RL =RL' and Tusm'RL =RL
s s s s (8.5)

I

Here notation (6.5) was used. Within the sth set of the
atomic pairs, let (R, ,RL ) be a typical pair. This pair

can be transformed by the operation T, H So into anoth-
er Pair (T,mRL, , TsmRL ); there are ns different Pairs in

the sth set. The pair of the vector (R, ,RL ) defines the

subgroup 9'0(RL, RL ) of the point group 9'0, as a set ofL

operations T„, , m'=1, 2, . . . , dg(s), which leaves R,L'
and RL unchanged, so

yQ=X
d ( ) & ~T,L,', T,.L., ' (8.7)

Notice that the second sum runs now over a11 the opera-
tions of the full point group Ã0. Further progress will be
possible if we express the element with the rotated posi-
tion indices in terms of the elements with the unrotated
position indices. Thus we are going to prove the follow-
ing relation, in which the group representations are in-

duced (for convenience, TJ =To and L,' =L', L, =L are
chosen):

Therefore each term occurring in Eq. (8.4) may be ex-
pressed as

yQ yQ
sm s ' sm s sm usm' s ' sm asm' s

dg{s)

y v"(S), sm usm' s ' sm usm' s
g m'=1

If we recall the decomposition of the group 9'0 into left
cosets with respect to the subgroup 9'0(KL RL ) Eq.

(7.5), we obtain, from Eq. (8.4) and (8.6),

' P' ' k'A. ' k)(,
1 I

y () oyo ' Ayo ~ D+ (T )D (T )y 0~0y0 ' &Oyo

To (L' T (L ~— a' g' P' 0 a&g&Po 0 L', L

p, g'

(8.8)

In order to prove (8.8), let us recall the definition of Az (R), Eq. (4.7), and apply it to (8.3), with the same indices as

were used on the left-hand side of (8.8):

(d, d )'"
a', P', y', a,P, y

I0sp A
1 sp ok'A, ' kk

MaPy(k, T() RL )M Py(ak, TO RL) gabay Vb, p(T (L, )b p(T, (L)abay . (8.9)
b, b'

The perturbation matrix with rotated position vectors must be calculated according to (6.7),

I

D*gp (To)M py(k, T0 'RL)
a', g', y', a, g', y P'

—1 e —1I
b a p(T —(L ) bap(T —(L) g a'P'f ( 0 ) aPf( 0 ) b'a'fL', bagL

Let us substitute (8.10) into (8.9), using also the property of unitarity Dap~(T0 ) =Damp(T0):

)(/2
ap p

o 'L', Tp 'L d X

(8.10)

~p ok'A, ' ki.g DIP( 0)~aPy(~~ 0 RL ) g+b'a'y'~b'a'gL', bagLubay
P b, b'

(8.11)

The term in the second pair of large parentheses can be now calculated with the help of (4.8),

gD gp(T0)~ py' '(k, T0 'RL) =gD ep(T0)D ~ y (T)D py(T)e
P P, T

A A

=g D*~ y ( T() 'T()T) 'g Da~p( T() )Dapy ( T)
'
e

T . P
A

=ggDa~g (To )Da g y (ToT)D ~y(T0T)e
T g'p

A. A

=QD,gp, (T0) QDa &,y (T0T)Da~y(T0T)e
T

=QDagg (To)~any' '(k, RL),
Cp

(8.12)
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since D~& ~ (Tp ) =D~ ~~ (Tp). In the last step, the summation over T was replaced by summation over TpT, with Tp
fixed. A similar expression can be obtained for the term in the first pair of large parentheses in (8.11). If we apply the

ao go yok A, ', agoyokk
definition of Vr, r, , which is analogous to (8.9), we obtain, from (8.11) and (8.12), the relation (8.8). After
substitution of (8.8) into (8.7), the summation over j is easily performed using the orthogonality relations (5.2) for repre-
sentations:

V
~oEoyok'~' ~Poyokk 1 S agoyok'A, ', aofpyokA5, 5 5, V,

d (s), d o o &o&o &o&o
(8.13)

From Eqs. (8.13) and (7.6) follows the final result

V"=g V"(R,„R,),
S

where

(8.14)

I ggr

Vn(R R )
V~o&oyok'k'~Boyd'(R R ) & &

n~ ~ V~Ayok'X'~Ayok'

ap
(8.15)

Owing to relations (8.14) and (8.15), the contribution coming from the sth set of atomic pairs needs a calculation of
Vr z for one pair of atomic positions only, instead of the calculation required for n, pairs belonging to this set, as in the
case of (8.4).

From (8.14) and (8.15) the usual selection rule may be easily obtained:

V&oPpyok ~ &(Joy~ g g
~o~ypk k ~o&y~

aoap pp po
(8.16)

This means the matrix element of the perturbation'is diagonal in the representation indices ap and ap and the row indices
Pp and Pp, and it does not depend on the value of the row index Pp.

As an example, for an application of (8.14), let us consider the perturbation of the tight-binding character in the fcc
crystal. There are three sets of pairs of position indices in (8.14): the one-member set (0,0), the twelve-member set with
a typical pair (O, X), and the twelve-member set with (X,o), where X =(a'/2)(1, 1,0) can be taken as a representative site.
Therefore,

v"= v"(o,o)+ v"(o,x)+ v"(x,o) . (8.17)

With the help of the definition of VL I given in (8.3), the value of A&" (0) in (5.3), Az (R) in (4.7), and Vzp~p ob-
tained from (6.12a), we find, from (8.15),

V
o~yokk ~o~yP (0 0) g ~ 4kX V 0 kk

b'b bapyp
ao b', b op

(8.18)

o yo"'~' ao yo~ 12 1
(O, X)= g g~ py (k, X) Q Qb, , Vy ~p b pxgb yapy ap pp

(8.19)

and

v"'""""'"(x,o)=[V""~'"'""'(o,x)]* . (8.20)

Here index 1 replaces any representation row index f3p. The form and dependence of the perturbation matrix V&p & x on
the independent parameters is the same as that of the matrix M„p „z given in Table VIII.

From (8.18) and (8.19) we see that V =0 for those ap which do not enter the indices of the atomic orbitals used for a
given model.

We specify further our example for a transition metal, whose LCAO functions are constructed of six atomic orbitals,
s-like and d-like, as they were introduced at the end of Sec. V. We notice immediately that V =0 for ap different than
1+, 5+, or 3+. Let us calculate, e.g., the matrix element between functions transforming according to the representation
a =1+

V'+"""'+ "kk(0 O)= 48 '""V
$ $0$0 $ (8.21)
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V
1+ 1 lk'k', 1+11kA,(0 y )

ek'1, '

V kk~l+11(k g )S SO, SX S 1+11

3 + 2

T12,1 g gg a a a a a a
2 2 2 2

a, V,o,~a, 16 cos —k2 cos —k3 +cos —k3 cos —k
~ +cos —k~ cos —k2

2 2'
kA, a . a a . a

VsO, (xy)Z16 ayz S1n k2 Sln k3 +am Sln k3 S n k12 2 2 2

+a sin —k sin —k
a . a

xy 2 1 2 2

a a a+v 2 2 8 a 2 2cos —k3 cos k2 cos k1sO, (3z —r )X & —y 2 2

a a a+a 2 2 cos —k1 cos —k2 —cos —k33Z —1' 2 2 '

a a a+cos —k2 eos —k —cos —k
2 2 ' 2

(8.22)

In the calculation of (8.22) we made use of Table VIII for independent V&0 z in the first step, and Table II, together
with Eq. (5.21), in the second step. The analogous matrix elements for ao ——5 and 3+ may be found.
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