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Generalized relativistic cubic harmonics are constructed by methods based on purely group-
theoretical considerations. Noncentered states localized either at primitive cubic or fcc or bcc sites
or fractions thereof are symmetry adapted simultaneously to the full cubic point group Oq. The
noncentered states are needed, for example, to define off-diagonal Green s functions describing fully
relativistic scattering in real space.

I. INTRODUCTION

Relativistic effects play an important role in solid-state
physics, not only because there are quite a few systems of
considerable interest containing heavy elements, but also
because some physical properties do require a relativistic
description, such as, for example, transitions to core levels
or nuclear-spin relaxation. In particular, with the help of
the fully relativistic versions of the Korringa-Kohn-
Rostoker (KKR) method (Onodera and Okazaki'), the
KKR Green's-function (GF) method (Holzwarth, Wein-
berger ), and the KKR coherent-potential approximation
(CPA) (Staunton et al. ), it is possible to solve the band-
structure problem not only for pure systems, but also for
single isolated impurities such as Ni in a Au host (Wein-
berger ) and for concentrated alloys with 5d metal com-
ponents such as Ni„Pt, „(Staunton et al. "). In the
KKR GF, as well as in the KKR-CPA method, only the
site-diagonal greens function in real space is required,
from which not only the density of states, charge densi-
ties„etc. can be calculated, but also the Bloch spectral
functions (Faulkner, Faulkner and Stocks, Weinberger
et al. ).

In all these applications it is sufficient to use the
central-site double-group symmetrization given by Ono-
dera and Okazaki. However, there are rather important
problems for which the off-diagonal Green's functions are
needed, most prominently the problem of short-range or-
der in disordered alloys. Here one must consider a cluster
embedded in the CPA effective medium. By studying dif-
ferent configurations of atoms at the sites of the cluster,
important insights are gained into short-range ordering.
A similar problem must be solved when the cluster-
variation method (de Fontaine ) is applied to calculate
parameter-free phase diagrams.

In a different context, off-diagonal Green's functions

are also needed whenever the local environment is of im-
portance for a physical property or when the case of delo-
calized atoms is studied (Gonis et al. ' ). Obviously, in all
these different cases the off-diagonal Green's functions
must calculated relativistically, whenever heavy elements
are involved, but what is meant by "heavy" in this context
depends slightly on the physical property studied. In
some cases, 4d elements already have to be studied rela-
tivistically. For systems involving 4f, Sd, and 5f ele-
ments, however, a fully relativistic description is of cru-
cial importance.

Turning to the most intriguing problem, namely to the
question of short-range order, one can easily check that
the consideration of systems of d-only elements requires a
matrix for the relativistic Green's function of order
18)&(N + 1), where X is the number of neighboring sites
included. For an octahedral cluster this implies the calcu-
lation of a matrix of order 126 in terms of 8001
Brillouin-zone integrals for each energy point on an ap-
propriate energy scale, which is prohibitive. Use of sym-
metry, however, can bring the work into manageable lim-
its.

In the present paper, methods are discussed and applied
to produce tables such that, independently of the highest
angular momentum used and of the number of shells of
neighbors considered, the appropriate site symmetry can
be taken into account. It should be kept in mind that
without this symmetrization a discussion of short-range
order in such prominent systems as, for example, Cu3Au,
is virtually impossible, even with the most powerful
supercomputers available.

Onodera and Okazaki have obtained spinors centered
on a single site that are symmetry-adapted to the double
group corresponding to the full cubic point group Ot, .
The problem that we must handle is, starting from these
centered spinors, to obtain spinors that are centered
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around bcc or fcc crystal sites or any fraction thereof and
that are correctly symmetrized. A method to do this
work has recently been given by Altmann and Dirl, " and
it will be used here. Because of the widespread use of the
Onodera-Okazaki expansions, we shall use precisely the
definitions for the operations and representations of the
point group OI, used by these authors.
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and, hence, verify (2.5). However, one must be aware that
the states (2.6) are either given by Table I of Ref. 8 or they
do not exist. For convenience, we give some examples:

II. OI, -SYMMETRIZED CENTERED
DIRAC STATES

We follow closely the notation and definitions of Alt-
mann and Dirl" as well as of Onodera and Okazaki. In
particular, we use exactly the same OI, -symmetrized spi-
nors that have been calculated and tabulated by Onodera
and Okazaki. We denote these states as follows:
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A, =J+(—1)' (c5/2),

(2.2)
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where R~ is a radial function,
I

A, ) is a two-spinor, and c3
is the eigenvalue of the four-inversion operator I [defined
in Eq. (3.5) of Ref. 11]. On account of (4.1)—(4.3) of Ref.
11, we define

(2.4)

in order to achieve the following transformation law of
(2.2) under a function-space operator W(R), for R H Ol„

w'(R)
I
(J)co+;rcra ) =QDI, ' (R)

I
(J)co+;I ob), (2.5)

because of the specific form of the four-inversion operator
[see (3.4) and (3.3) of Ref. 11]. However, any other basis
is equally well suited for our purposes. For instance, the
states

I
(coJ)ro.a;A. ) =R~

I
(XJ)t aga )

I
A, ) (2.6)

transform according to

8'(R)
I
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. (R)
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(2.7)

where Mo is the set of labels defining irreducible projec-
tive representations of the octahedral group 0, a is the
parity, and a is the row index of the projective irreducible
representation D" of O. These are well-defined linear
combinations of the spinors (3.9) which have been intro-
duced in Ref. 11. Following Altmann and Dirl" or Mes-
siah, ' the centered OI, -adapted spinors are of the form

I
(J)a+;ra ) =g (+&)'

Henceforward, we shall use the states (2.6).

III. CUBIC ORBITS, SHIFTED STATES,
AND PERMUTATIONAL REPRESENTATIONS OF Og,

Given the centered O~-adapted spinors, we must con-
struct from them shifted states, as defined in Ref. 11,
under translations that belong to the fcc Bravais lattice or
that are well-defined fractions of such translations. How-
ever, as fcc lattices and bcc lattices —being associated with
a given lattice constant —can be embedded in a primitive
cubic lattice having a lattice constant of half of the form-
er, we can do our job for the three different cubic lattices
simultaneously. Moreover, we assume that our point
group is the full cubic point group O~. According to our
approach, ' we prefer to use vector and projective repre-
sentations of .the point group OI„depending on whether
the states belong to integral or half-integral quantum
numbers of the angular momentum, instead of vector rep-
resentations of the corresponding double point group Of, .

We note that in a crystal, as in a molecular system,
identical atoms must occupy equivalent sites, i.e., posi-
tions that can be transformed among themselves by means
of space-group operations, if the space group is the sym-
metry group of the given crystal structure. However, as
we are only interested in the neighbors of a given atom
(being located at a specific position that need not be the
origin), we admit positions that can be reached by pure
point-group operations of O~. Hence we assume that our
crystal structure is invariant under a symmorphic space
group having O~ as its point group. The point-group
operations are assumed to be assigned to a well-defined
origin.

A set of equivalent sites is called an orbit (star) and the
group of configuration-space operations that leaves a site
invariant is called the stabilizer or little group. We ac-
cordingly write the little group G(t) corresponding to the
site denoted by t as follows,
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G(t) = {RF01, i
Rt=tj, (3.1) m& )mz)m3&0. (3.13)

where t&R need not necessarily belong to the Bravais
lattice. Let

(3.2)

p=g mj pj, mj E Z, {pJji =(Q/2)5JI, (3.3)

where the pj are the basic translations. In order to distin-
guish translations with different lattice constants, we
denote by capital letters translations that belong to Bra-
vais lattices having a as lattice constant. %e accordingly
denote

Pj ——2pj, j= 1,2, 3 (3.4)

as basic translations of a primitive-cubic lattice with a as
lattice constant. Face-centered and body-centered (basic)
translations are indicated by the symbols F and B, respec-
tively. As is well known from textbooks, we have

FJ ———,
' g (1 5JI)Pi, —

I

(3.5)

(3.6)

(3.7)

be a set of left coset representatives that decompose 01,
with respect to G(t). Whenever possible, we choose K(t)
to be also a subgroup of Oi, . Fortunately, for all the cases
that occur we are able to choose K(t) to be a subgroup of

Since fcc lattices, Tr„(a), as well as bcc lattices,
Tb„(a), associated with a given lattice constant a, can be
embedded in a primitive-cubic (pc) lattice, T„,(a/2), that
has a lattice constant which is half of the former, we con-
fine our considerations to the latter. For convenience, we
denote the primitive cubic translations as follows:

Hence for K~ to be an integer, we must require that
m~+mz+m3 be an even integer. For MJ to be an in-
teger, likewise, we must require that m;+mj (i and j
cyclically permuted) be even integers. In Table I we give
the first 30 integer linear combinations of the p~'s and
also write the corresponding FE Tf„(a) and/or
BETb„(a) if they are integer linear combinations of the
Fj and Bj, respectively.

Now we easily infer from Table I that in taking (3.13)
into account, only six different cases may occur. Clearly,
at this stage we are allowed to skip the constraint that
mz E Z (j= 1,2, 3), since the corresponding G (p) are not
affected whether the mz are integers or not. The follow-
ing cases occur:

Case 1: mi ——m)0, mz ——m3 ——0, mE Z

Case 2: mi ——mz ——m &0, m3 —0 m'E Z

Case 3: mi ——mz ——m3 ——m)0, mH Z

(3.14)

(3.15)

(3.16)

Case 4: mi ——m )m2 n) 0, m—
3———0, m, n E Z (3.17)

Case 5: m~ ——m &mz ——m3 ——n &0, m, n E Z

Case 5': m~ ——mz ——m &m3 ——n &0, m, n E Z

Case 6: m&)mz&m3&0, mjEZ

(3.18)

(3.19)

(3.20)

Clearly, cases 5 and 5' are equivalent; nevertheless, we dis-
cuss them separately and show later that they are correlat-
ed in a simple manner.

The next task is to define, for a given case, the shifted
states by means of appropriately defined translation
operators. Before doing this, we list G(p) and K(p) for
the various cases:

Case 1: G(m 00)= {E,C4+„,C2„,C4„j{E, cr, j =C4, ,

(3.21)

PI ——g (1 5' )BJ, — K(m 00)= {E,Cpi, Cgi j X {E,I j -=C3;,
(3.8)

Case 2: G(m m 0) = {E,C25 j )& {E,o.,j,
(3.22)

(3.23)

which shows that any FJ or Bj is an integral linear com-
bination of pi because of (3.4). Hence not every

p&T~, (a/2) belongs to Tf„(a) and/or Tb„(a), respec-
tively. Therefore,

K(m m 0)=T (tetrahedral point group), (3 24)

Case 3: G(m m m)= {E,C3] C3$ j {E, o22j =C3U,
p=+NiF/ with NzE Z

j
p =+MJ Bf with Ml. E Z

(3.9)

(3.10)

(3.25)

K(m m m)={E,C4+„C2„Cq, j X {E,I j =C4;,

constrains the mj H Z . Inserting (3.3), (3.6), (3.8), and
(3.4) into (3.9) and (3.10), respectively, we obtain

Ng ——
2 g( —1) "m (3.11)

l

(3.26)

Case 4: G(m n 0)= {E,o, j, (3.27)

K(m n 0)=0 (octahedral point group), (3.28)

MJ = —,g (1—5JI)mi,
I

(3.12)

where we additionally demand Xj E Z and Mj E' Z
This imposes constraints on the possible mj values. For
obvious reasons we restrict the mj values as follows:

Case 5: G(m n n)= {E,cr22j,

K(m n n)=O,

Case 5': G(m m n) = {E,crz6j,

K(m m n)=O,

(3.29)

(3.30)

(3.31)

(3.32)
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pc( a /2)
m2

fcc(a)

TABLE I. "Cubic" neighbors.

bcc( a)
M2 d(p, o) Star of t vector

1

1

1

2
2
2
2
2
3
3
3
2
3
3
4
3
4
3

3
4
4
3
4
4
5
4
5
3
5

0
1

1

0
1

1

2

0
1

1

2
0
2

3
1

3

2
3
2
3
0
3
1

3
1

0
0
1

0
0
1

0
1

0
0
1

2
0
1

0
2
0
0
1

1

0
1

2
2
0
0
1

0
3
1

0
—1

0
—2

1/2
1/v 2
v 3/2

v 5/2
v 6/2
V2
3/2
3/2

v 10/2
v 11/2

v3
v 13/2
V 14/2

v i7/2
V 17/2
3/v 2
3/v 2
19/2
v5

v 21/2
v' 1 1 /2

v6
5/2
5/2

v 13/2
v 13/2
3v 3/2
3v 3/2

6
12
8
6

24
24
12
24

6

24
8

24
48

6
24
24
12
24
24
24
48
24
24
24

6
48
24

8
24

1

2
3
1

5
2
5t

1

5
3
4
6
1

5

4
2
5
5I

4
6
5l

5
4
1

6
4
3
5

Case 6: G(m n 0)= IEI,
K(m n 0) =Oi, ——0 X I E,I I

(3.33) W(R
~

0)%',".
q (p;Z)

=y P, ,(p;R) g D.".'(R)e.'", "(p;Z'),
(full octahedral point group) . (3.34)

Z' a'

R HO& and Z,Z'HK(p) (3.36)

Regarding the notation of point-group elements, we fol-
low Ref. 11, which differs from Ref. 14. The point-group
element R of Onodera and Okazaki is defined in their
Table II by the action of R on the components of a posi-
tion vector r, a point that must be borne in mind since it
can easily lead into error.

It should be noted that Ol, can be written for each case
as a product of K(m n 0) times G(m n 0), but only in
cases 2, 4, 5, 5', and 6 is it a semidirect product, whereas
in the other cases we are confronted with more general
products.

As in Ref. 11, we define, as shifted states,

where the transformation law of the basis vectors pz,
j= 1,2, 3, is defined by

R pj QDij (R )p(. ——
I

(3.37)

Pz z(p; Y)=5z rz for all YGK(p),

1 if Z' 'HZH6(p)
0 otherwise

(3.38)

The 3~3 matrix D(R),RHO&, are the so-called Jones
symbols. '

The
~
K(p)

~

-dimensional representation P(p) of Oi, is
given by

(p;Z)= ~(E
~
Zp)

~

(coJ)l oa;A, ), ZeK(p) for all H E.G (p) . (3.39)

(3.35)

where W(E
~
Zp) acts in a nontrivial way on the spatial

part of (2.6) by transforming xH 8 into x —Zp&R
Exploiting the definitions (3.35) we obtain Pz' z(p H) =5, z~ &

if K(p) 4 Oq (3.40)

In those cases where K(p) is a normal subgroup of Oi„
P (p;H), for H E G (p), specializes to
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The property of P (p) to be factorized into (3.38) and
(3.39) will be exploited later,

P(p; YH)=P(p; Y)P(p;H), YHIC(p), HUG(p) .

(3.41)

It is important to note that the orthogonal permutation-
al representation (3.41) is defined by linear independent,
but not orthogonal, states. Besides this, our only task is to
decompose P(p) into a direct sum of its irreducible con-
stituents. Hence we must compute for each of the six
cases an appropriate (unitary) similarity transformation
satisfying

S(p) P(p;R)S(p)= e mp;r D ' (R), R ~Op .
r, ~

(3.42)

The quantity mz. r is called multiplicity and indicates
how often D is contained in P(p).

IV. REDUCTION OF THE PERMUTATIONAL
REPRESENTATIONS

As already pointed out in the preceding section, we
must determine appropriate unitary similarity transforma-
tions S(p) satisfying (3.42). Following closely the method
described in Ref. 15, (3.42) can be rewritten as

P(p;R)S," ' (p)=QDI,"' (R)S~" ' (p),
I

I CAo, m =1,2, . . . , m&.r~, j=1,2, . . . , nr

(4.1)

where Ao is the set of labels defining irreducible vector
representations of the octahedral point group 0, and m
denotes the multiplicity index, which is necessary if an ir-
reducible representation D ' of O~ occurs more than
once. To clarify our notation, we write

ISJ" ' (p) jr=ISJ" jr=Sr;r~m~

where

YE:IC(p),

for the row index of S(p) =S, and

I &~o o=+, m=1, 2, . . . ~p;r j=1,2, . . . , nr

(4 2)

for the column index of S, where the label p is
suppressed. Accordingly, the vectors SJ ' distinguish
the various columns of the

~
K(p)

~

-dimensional subduc-
tion matrix S. The lexicographical sequence of the
columns is fixed by conventions which must always be re-
tained. Any change of the sequence would lead to errone-
ous results.

Regarding the irreducible representations, we use
henceforward the projective representations of Onodera
and Okazaki given in Table II. For convenience the ir-
reducible projective representations of the octahedral

point group 0 are listed in Table III. On account of the
fact that the irreducible representations of the point group
OI, factorize into the irreducible representations of the
point group 0 and of S2 ( C; ), we only tabulate the vector
and projective representations of the point group 0. Al-
though the form of tabulation we prefer is uncommon, it
is compact and informative and will be very useful in
what follows. Because of the relation R =XS, with XEO
and SCS2 ——IE,I j (I being the inversion), we have

D ' (R)=D"(X)D (S), I EAg U~g, g=+ .

(4.3)

P(p, R)=D' (R)D (R)eD —'"(R) . (4 4)

Because of
~

E (p)
~

=6 we have to compute a 6-
dimensional unitary matrix S satisfying (4.1). This was
performed by means of a computer employing the
projection-operator technique. Our result reads

Accordingly, the irreducible representations of the octahe-
dral point group 0 must be multiplied by +1 if an im-
proper rotation, XI with XHO, is taken, depending on the
parity we want to consider. The notation we use is as fol-
lows. The columns are lexicographically enumerated by
I HAg U Wg, U=1,2, . . . , nr and j=1,2, . . . , nr. The
rows are indexed by the group elements XEO in consecu-
tive order. Moreover, it should be noted that the irreduci-
ble vector representations of the point group 0 are chain-
adapted to the tetrahedral point group T, i.e., they sub-
duce the irreducible representations in block-diagonal
form.

The next step in our method is to carry out the decom-
positions of the various cases that we have listed in Sec.
III. Clearly, since every P (p) is a vector representation of
the point group O~, we only need Table II. However, as
the Clebsch-Gordan coefficients for OI„which can easily
be obtained from the Clebsch-Gordan coefficients of 0
(see, e.g., Ref 16), are representation dependent, one must
be very cautious when using tables of Clebsch-Gordan
coefficients given in the literature. Accordingly, the only
task is to decompose properly the various permutation
representations. We shall try to avoid as much as possible
a computer calculation since, apart from two cases, the
decompositions can be carried out elegantly without using
a computer. The reason for doing this is to provide a
method that can be generally applied in similar problems.
A brief outline of the present approach is also given in
Ref. 17. The task of decomposing a permutational repre-
sentation is, of course, a special case of the reduction of
reducible representations.

Case 1: (m, o, o) H Z (or Q if fractions of integers
are admitted; Z denotes the set of integers, Q the set of
rationals). First of all one must determine P(p;R),
R EOI„ for this case. Taking (3.21), (3.22) and (3.38),
(3.39) into account, one readily obtains a six-dimensional
permutational representation of the point group O~. The
row and column indices are enumerated by the Y&X(p)
in the same sequence as they occur in (3.22).

The following decomposition is readily verified:
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TABLE II. Irreducible vector representations of the octahedral point group of O. (D,"")z=D,„(X),XF0; co=e' ~ .

AI A2

I I I 2 I
,

'2 3

T2

0 II I I 0 0 I I 0 0 0 I 0 0 0 I I 0 0 0 I 0 0
0 0

I 0 0
I I 0 0 I 1 0 0 0 I 0 0 0 I I 0 0 0 0 IC2

2p I

C2 I

C+ I4x
4x I

c+
4y

C I
4y

c+
4z

C4 I

C21

C22

23
24
25

C26 I

C+31 I

C3I I

C32 I

C+32 I

C33 I

C33 I

C34 I

34

0 I0 0 I

0 0 I

I 0 0 0 1 0 0 0 I I 0 0 0
I 0 0 0 I 0 0 0 I I 0 0 0 I 0 0 0 I

I 0 u) u) 0 0 i 0 i 0 0 0 0 I 0 i 0 i 0 0 0 0 I

0 I0 i 0 0 00 I 00 u)~ u) 0, 0 i 0 i 0 0 0
0 v e~ 0
0 e e~ 0

I 0 I 0 0 0 0 I 0 I 0I 0 0 0 0 I 0
I 0 0 0 0 I 0 I 0 I 0 0 0 0 I 0 I 0

0 I I 0 0 0 i 0 I 0 i 0 0 0 0 i 0 I 0 i 0 0
0 0 10I 0 i 0 0i 00 0 i, 0 I 0 i

0 i 0 i 0 0 0
0 0
0 I

0 I I 0
0 e~ (a 0 0 i 0 i 0 0 0 0 I

0 u) + u) 0 0 i 0 i 0 0 0 0 I 0 i 0 i 0 0 0 0 I

130
I 0

I 0 u) u) ~ 0 I 0 0 0 0 I 0 I 0 I 0 0 0 0 I 0
I 0 ~ u)~ 0 I 0 0 0 0 I 0 I 0 I 0 0 0 0 I 0

0 i 0 0i 0I 0 I I 0 0 0 i 0 I 0 i 0 0 0 0
0 0 i 0 I 0 i 0 0 0 0 i 0 I 0 i 0 0I 0 I I 0 16

17
18

I v~ 0 0 g 0 i 0 0 0 I i
I u) 0 0 u) + 0 0 i i 0 0 0
I u) 0 0 (o~ 0 0 i i 0 0 0

0 00 i 0 00 0
I 0

0

0 I i
0 0 0 I 00 0

0 0 0 0 0 I 0 I9
0 0 20I u) + 0 0 u) 0 i 0 0 0 I i 0 0 0 i 0 0 0 1 i

0 0 i i 0 0 0I e 0 0 0 0 0 I 0 21I 0
0 0

0 0
0 iI u) + 0 0 (o 0 i 0 0 0 I i 0 0 0 I i 0 0 22

230 I iI e~ 0 0 0 i 0 0 0 I i 0 0 0 i 0 0 0 0
I o) 0 0 u) ~ 0 0 i i 0 0 0 I 0 0 0 0 0 0 I 0 24

I I I 2 I 2 I 2 3 I 2 3 I 2 3 I 2 3 I 2 3 I 2 3

5
5

S= 5
5
5

, 5

0

0
0

0

Tlu
2

0
0

lCX

0
0

l CX

LCX

0
0

l CX

0
0

C+
C
I

5=1/v'6, co=exp(iver/3), and a= I/v 2.
Case 2. (m, m, o)E Z (or Q ). As in case 1 the first

task is to compute P (p;R), R HO~. Again we take (3.38)
and (3.39), but now we must insert (3.23) and (3.24). The
subduction matrix can now be determined by induction
rather than by a computer calculation. As already point-
ed out, the point group Oy, can be written as a semidirect
product of K(p) times G(p), i.e.,

Op, =K(p)G(p), K(p)~Op, . (4.6)

(4.5)

where the columns of S are enumerated by (I,o. )

=A&g, Eg, T» and j=1,2, . . . , n~ in lexicographical or-
der. The rows are indexed (by E, C3+„C», I, S&&, S&& ) in
the same manner as they occur in K(p). Since each ir-
reducible vector representation of the point group O~ that
occurs appears only once, we suppress the multiplicity in-
dex. It should be noted that the column vectors assigned
to a particular irreducible representation of the point
group O~ are uniquely defined up to an arbitrary phase
factor. The abbreviations used in (4.5) are defined as

We reorder this semidirect product as follows, for con-
venience,

Op, ——[K(p) ( E,C2g ] ]X j(E,I ) . (4.7)

Because of (3.38), P (p; 1'), for YHK (p) =T, is the regular
matrix representation of T (see Ref. 18). The first task
now is to decompose the regular representation of T into
its irreducible constituents, i.e., to bring the matrix into
block-diagonal form. Hence we want to find a

~

T ~-

dimensional matrix B whose columns satisfy
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TABLE III. Irreducible projective representations of the octahedral point group of O. ID, "jt =Dr(X), &&0; @=1/Vp,
3 =a(1+i), and 2 =2/+2; b ='(/3/8 and c='(/2/4; D =(1+i)/4 and E='(/3l 1+i)/4

1/2 5/2 3/2

1 2 1 2 1 2 1 2 1 2 3 4

0 0 1 1 0 0 'I 'l 0 0 0 0
2 3- 4 1 2 3 4 1 2 3 4

1 0 0 0 0 1 0 0 0 0 1

2x
2p

C2

4x
C4
C+

4y
C4y
C+

4z
4z

24
C25

26
C+

31
C32

C32

33
C33
C34

34

0 i
0 1

i 0
a ia
a ia
a a

0 0 0 0 i 0 0 i 0 0 i 0 0 i 0 0 0i 0 0
0 0 1 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0

0 0 i i 0 0 0 0 i 0 0 0 0 i 0 0 0 0 i0 i i
ia a a ib ic b

ib ic b

ib c 5

ib c 6

ia ia b ic
b 1c
b a

iba a ib
a c ib

3.C Cic
ibia a . a ja ja &c c

a a a c b b c b b c 7c c b b

a a a a a a a c c b b a c
A~ 0, 0 A A~ 0 0 A A 0 0 0 0 A~ 0 0 0 0 A

b a b

0 0 0
b c 8

0 A 9

ia a
ia a
ia ia
ia ia

ia ia
1,a 3.a

a l a
a a

la ia ia ia ia
ia ia ia ia ia

ia ic b

ia ia b

ia ic ib
ia ic ib

ib c b ic c
ib a b

ibib ic
ib ic ib

ic a
ic 1c
ic ic

ib ib
ib ib
ib ib
ib ib

ac
c 1c
&c &c

1c 3c

b c ib b ic 11
b c ib
ib ic ib
ib ic ib

b ic 12
ib ic 13
ib ic 14

0 A~ A 0 0 A+ A 0 0 0 0 A 0 0 A~ 0 0 A 0 0 A~ 0 0 0 15
A~ 0 0 0 0 0

D E

D%

D E+

D%

D E

DI

0 A~ 0 0 A 0 0 A~ 0 0 A 0 0 0 16
E% E Qe Ee Ee DD DE D

Q

E D

D%

D Q~ E Q~ E E~ D 18
D+ D E~ D E~ E Q+ 19

E E+

D% Q

DQ QQ

D+ D

E+ D 'E E D 20
D E+ E D+ 21

E~ D E E D 22

D D E E+

E% EE D+ E D+ D E

E D%

D D D% D%

E+ E D D E+ D+ 23Q

Q D% Q D% E% Q

A 0 0 A~ A 0 0 A~ A+ 0 0 0 0 A 0 0 0 0 A~ 0 0 0 0 A 10

P(p; Y)BJ =QD(J.(Y)Bt, YHT
I

(4.8)

I BJ. jr ——(n /12) / DJU(Y)*, YHT . (4.9)

Hence the multiplicity index u can be chosen as the
column index of D ( Y), YH T. It is readily verified that
(4.8) holds. One must only specify BJ by (4.9) and insert
(3.38) by taking the multiplication law of the irreducible
matrix representations into account. The proof is

where the irreducible representation labels of the
tetrahedral point group T are denoted by ~. Firstly, one
must note that, due to Burnside's theorem, ' each irredu-
cible representation occurs n times, when n, =dimD'. It
has been shown' that this task can easily be implemented
if a complete set of irreducible representations of X(p) is
known. Since this is the case, we define the column vec-
tors BJ, &EAT, v =1 2, . . . , n, j=1 2, . . . , n, as fol-
lows:

straightforward and need not be given here. The irreduci-
ble vector representations of T are easily extracted from
the vector representations of 0 by deleting, in Table II,
the rows associated with the group elements 5—16 and by
confining oneself to the columns assigned to IAt, l, lj,
IE, l, l j, IE,2,2j, and IT&,uj j, with u =1,2, 3 and

j=1,2, 3. This can be done because the irreducible vector
representations of the octahedral point group 0 are
T&] 0 chain-adapted. This means that the irreducible
vector representations of the point group 0 decompose
into the block-diagonal form without any further similari-
ty transformation, if restricted to the group elements of
1(.(p)=T. Although, in principle, the irreducible repre-
sentations of the tetrahedral point group T can be taken
from Table II, we give them separately in Table IV.

Clearly, the next step is to determine 0-adapted states
that are appropriate linear combinations of the vectors,

Bj ~HAT, v =1,2, . . . , n and j=1,2, . . . , n . Before
doing this, it is useful to determine the irreducible constit-
uents of P (p;R ), R H Oi, . We obtain
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P(p;R)=D ' (R)eD (R)eD '"(R)

eD "(R)eD '"(R), R eO„ (4.10)

A simple manipulation yields

C25(r) =r if r=E, T,

Pz', z(p C25) 8z', c zc, Z,Z'EK(p)= T

which leads to

(4.12)

I P(p'C25)BJ Iz =(n, j12)' DJ'. (C25ZC25) (4.13)

We must hence, distinguish two different cases. Either
the outer automorphism C25 maps ~ onto ~, i.e.,

C25 (r) =r C AT, (4.14)

which indicates that P(p;X), X&O, contains T2 twice,
whereas the other irreducible representations of the octa-
hedral point group 0 occur only once. Even though this
might cause some trouble when decomposing the repre-
sentation P(p;X), XEO, into the irreducible representa-
tions of the point group 0, it turns out to be handled easi-
ly,

P(p;X)=-D~(X)eD~(X)eD '(X)e2D '(X), XeO.
(4.11)

To obtain 0-adapted vectors it suffices to know, in ac-
cordance with the chain (4.7), the action of P(p;C25) on
the vectors BJ . Because of (3.40), we have

C25(E1) E2 C25(+2) El
(4.18)

P(C25)B '=B ',
P(C25)B '=B ',

(4.21)

(4.22)

which is in agreement with the irreducible representations
subduced from 0, D "lT. But, irrespective of which case
of (4.18) is realized, we have the transformation property

P(p;C25)BJ =+A(~(C25)A ~(C25)B(" . (4.19)
m, l

In deriving this formula, we utilized A'(C25) =3.„,since"T'
P(p;C25)P(p;C25)=P(p;E) must be satisfied. We see
that the action of P(p;C25) on BJ affects j as well as the
multiplicity index U. On the other hand, we know that
0-adapted vectors can only be linear combinations of the
BJ concerning only the multiplicity index U, since we
want to retain their transformation law (4.8) with respect
to the tetrahedral point group T. This, of course, drasti-
cally limits the possible transformations. We determine
(4.19) for every case by direct manipulations. In detail,
(4.19) turns out to be

P(C )BA BA (4.20)

or it maps ~ onto an inequivalent ~', i.e.,

C25(r) =v'&r. (4.15)

Since we assume the actual form of the irreducible vector
representations of the tetrahedral point group T (Table
IV) in both situations we must expect nontrivial similarity
transformations (i.e., n;dimensional unitary matrices)
satisfying

C25(r)=r: D'(C25ZC25)=A'(C25)D'(Z)[A'(C25)]t,

(4.16)

C25(r)=r': D (C25ZC25)=A (C25)D'(Z)[A (C25)] .

(4.17)

P (C25 )B( ' ———i Bs'T2= T2

P (C25 )82' ——B2'

P(C25)B5' ——iB)'

P (C2s )Bi' ——Bs',
P(C25)B2' ——i82'

P(C25»5" = —Bi '

P(C25)B)' ———Bs',
P (C25 )B2' ———iB2',
P(C25)Bp' ——B)',

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

TABLE IV. Irreducible vector representations of the tetrahedral point group T. I DJ") r DJ„(Y), YHT——; co=e' ~3.

C2

C2y

C2,

1

1

1

1.

1

1

1

1

3

T
2
2

1

1

1

1

C+

C32
C+

C~4

0
l

0
0

1

0
0
1

0
1

1

0

0
0
I

0
l

0

0
1

1

0
1

0
0
1

0
0
0
0
0
0
0
0

17
18
19
20
21
22
23
24
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0 1

0 F(C25)——. (4.32)

where again we omit the index p of the matrices P(p;X),
XEO. Note that the multiplicity and row indices are om-
itted where they can take only one value. Equations
(4.29)—(4.31) are an immediate consequence of
(4.26)—(4.28), because of P(C2&) =I, and are therefore
redundant.

From (4.20)—(4.31), we infer that with respect to the
basis B the permutational representation P (X), XH 0,
decomposes into three irreducible representations, and a
reducible representation, of O. The group element C25 is
represented with respect to B by the unity [see (4.20)].

jV

With respect to B ' and 8 ', we obtain the following ma-
trix:

dex of the B's is affected, since the C's must satisfy (4.8)
simultaneously. From (4.20), we may infer that

C~ —B~ (4.39)

However, since F (C25)= —D (C25) (see Table II), we
are forced to take

C) ——8 ' andC2 ———8 ' (4.40)

in order to achieve the desired transformation law (4.38).
Of course, the vectors CJ, j = 1,2, are unique up to an ar-
bitrary overall phase factor. We choose this factor to be
unity, but any other choice is equally well suited to satisfy
(4.38). Because of

Analogously, we have
F (C25)=D '(C25), (4.41)

0 0
C25 —+ 0 1 0 =F (C25),

i 0 0

00000 1

0000 l 0'
000 1 00
001000
0 i 0000
100000

(4.33)

(4.34)

the vectors Bj j:1,2, 3, are already O-adapted, i.e.,

(4.42)

It must be noted that a multiplicity index must be added
since T2 occurs twice in P (p;X), X HO.

The next task consists of the. decomposition of (4.34)
into its irreducible constituents T] and T2, which are two
inequivalent irreducible representations of the point group
O. We immediately infer this result from (4.11). A sim-
ple manipulation shows that the following states,

(4.43)

when taking into account (4.23)—(4.25) and
(4.26)—(4.31) respectively. It is worth noting that the
specific form of the matrices F (C25) and E (C25) is
achieved by means of the defimtions

(4.44)

P(C )B J=QFk. (C )B ",
k

P(c»)B,"=gFk, (c»)B„",
k

P(C25)Bj g Eg~ J (cU)B25&', U, w =1,3 .
k, w

(4.3S)

(4.36)

(4.37)

transform properly under the action of P(p;X), XHO.
Note that we have suppressed in (4.44) a multiplicity in-
dex, since T& occurs only once.

Finally, the remaining problem is to construct OI, -

adapted vectors out of the C's [Eqs. (4.40)—(4.44)]. We
only need to know for this purpose the action of P(I) on
the C's, i.e., on the 8's. Using I =C2,o.„we obtain, from
(3.38) and (3.40), the following matrix for I:

When adopting now the notation CJ, I H Ao,
w=1, 2, 3, . . . , m~. r (equal to the multiplicity of I ),
j =1,2, . . . , n~ for 0-adapted vectors, they satisfy the
definition

Pz, z(I) =&z',zc„»Z'& T .

We thus obtain, from (4.9),

P(I')Btv g D1 (C )sB~
W

(4.45)

(4.46)

P(X)C,". ' =QDIJ(X)C,"", XKO .
I

(4.38)

As already pointed out, the C's must be appropriate linear
combinations of the B's. Hence, we must take linear
transformations of the 8 s where only the multiplicity in- P(I)C '=+C ', (4.47)

which means that only the multiplicity index is con-
cerned. This is in total agreement with our assumptions.
Taking D (C2, ) from Table IV, we immediately obtain
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P(I)CJ =+CJ, j=1,2

P(I)CJ '= —CJ ', j=1,2, 3

(4.48)

(4.49)

vectors satisfying (4.1) are unique up to an arbitrary phase
factor within every irreducible representation. The corre-
sponding subduction matrix has been calculated by means
of a computer by using projection-operator techniques:

T2', 1 T2, 1

P (I)C)
' ———CJ ', j= 1,2, 3

T2'2 T2'2
P (I)CJ

' ——+CJ ', j= 1,2, 3

(4.50)

(4.51)

A1g
1

A2u

1

1Q

2
T2g
2

which implies that the C's are already eigenvectors of the
parity operator P(I). Thus, no further similarity
transformation is necessary to achieve the initial con-
straint, namely (4.1). Hence our subduction matrix S is
composed of the column vectors C that are given by
(4.39), (4.40), and (4.42)—(4.44). We summarize, for con-
venience, our results in Table V. It is worth noting that
the structure of (4.47)—(4.49) is immediate, since the ir-
reducible representations A1, E, and T1 occur once in
(4.11). However, the irreducible representation Tz ap-
pears twice in (4.11), which means that the action of P(I)

T2;m
on CJ could be, in the most general case, a 2&&2 ma-
trix. The matrix then would have to be diagonalized in
order to fulfill (4.1). Fortunately, such a transformation
is not necessary. The columns of S are unique up to arbi-
trary phase factors within every irreducible representation
of OI, . As a precaution, we also calculated S by means of
computer and gained total agreement up to the phase fac-
tors previously mentioned.

Case 3. (m, m, m)H Z (or Q ). As in the preceding
case, one must determine P(p;R), R HOI, . This situation
is completely comparable with case 1, since K(p) does not
form a normal subgroup of O~. Hence it requires the use
of (3.39) instead of (3.40) apart from (3.38). Character
theory yields

S=

ig
ig
ig
i(
i(
i(
i(
ig

ig'

ig
i(
ig
i(
i(
igi('

ig
i(
i(
ig
ig
i(
i(
ig

ig
i(
ig
i(
ig
i(
ig
ig

C+
C2,
C4z
I

IC4+

IC2,
IC4,

(4.53)

Here, g= 1/v 8 is a normalization factor, and the
columns of S are enumerated by (I,cr)=A ~g, Az„, T~„,
T2g, and Z =1,2, . . . , n& in lexicographical order. The
rows are labeled in the same manner as the group ele-
ments occur in K(p). Obviously any change of the se-
quence would lead to erroneous subduction matrices.
Hence the introduced sequences must be retained without
any change. One peculiar property of (4.53) should be
noted, namely that each matrix element of S is different
from zero.

Case 4. (m, n, 0)E Z (or Q ). We determine the
columns of the corresponding subduction matrix by in-
duction as in case 2. For simplicity, we rearrange the
semidirect product so that it becomes a direct-product
group,

P(p;R)—=D ' (R)eD '"(R)eD '"(R)sD ' (R),
Oi,

——K(p) G(p) =K(p) X IF-,I I . (4.54)
R &Og (4.52)

i.e., the irreducible vector representations of O~ appear
only once. This implies that the corresponding column

Because of IC(p)=O, the permutational representation
P(p;X), XHO=IC(p), represents the regular representa-
tion of the point group O. Hence we start to decompose

TABLE V. Subduction matrix S(m, m, 0); ~=e'

+1@
2

T2g
2

1

1

1

1

1

1

1

1

1

0
0
1

0
1

1

0

0
0
0
0
0
l

0
L

0
0

1

1

1

1

0
0
0
0
0
0
0
0

0
0
0
0
1

0
0
1

0
1

1

0

1

1

1

1

1

0
0
1

0
1

1

0

C2„
C2y

C2,
C+
C

C

C+
C3+4

C34
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it into a direct sum of its irreducible constituents. Ex-
ploiting our general result, ' we make the ansatz

{BJ".'I y (—n—r /24)' [DJ",( I')]',

Case 5: (m, n, n)H X (or Q ). Again we start with
the corresponding semidirect product of O~ in terms of
IC(p) and G(p) and simplify the task by rearranging this
product to a direct product,

I EAO, U=12, . . . , n~, j=12, . . . , nz, YEO
0& ——&(p) G(p) =&(p) X I E,r (4.67)

which automatically satisfies

P(X)BJ~"=QD(j~(X)B("", XRO .
l

(4.55)

(4.56)

Before constructing Ol, -adapted vectors, we give the 01,
decomposition of P(p;R), R EO~,

P(p;R)=D ' (R)eD '(R)e2D '(R)eD ' (R)

e2D '"(R)e2D ' (R)eD '"(R), (4.57)

which shows that three inequivalent irreducible represen-
tations of the point group O~ occur twice. Hence the cor-
responding multiplicity problem seems to be nontrivial at
first glance.

All that remains, in fact, is to find systematically and,
in as simple as possible a manner, OI, -adapted vectors that
transform according to (4.1) and are linear combinations
of the B's, (4.55). Clearly, the similarity transformation
must not affect the index j (because of Schur's lemma
with respect to 0) any may only concern the multiplicity
index U assigned to the B's. Again, because of I =C2,o.„
we obtain, from (3.38) and (3.40), the following matrix for
I.

(4.68)

Hence two irreducible representations of the point group
O~ occur twice, whereas all the others appear only once.
It is worth mentioning that (4.68) differs from (4.57) even
though we start from the same normal subgroup.

Our task is to determine 01, -adapted vectors SJ ' out
of the B's. By a plication of Schur's lemma to 0, the
desired vectors SJ ' are linear combinations of the B's
where the transformation coefficients only may concern
the multiplicity index being associated with the B s. Be-
cause of I =C22o2z [o22&G(p)], we obtain from (3.38)
and (3.40),

Pz', z(I) =5z,zG„, Z, Z'EO . (4.69)

By virtue of K(p)=0, the permutational representation
P(p;X), XEO, forms the regular representation of this
group. Accordingly, we can start from the same bases,
Bi", as in the preceding case. The O~ decomposition of
P(p;R), R HO~, is given by

P(p;R)=D ' (R)eD '"(R)eD (R)eD "(R)

eD ' (R)e2D '"(R)e2D ' (R)eD '"(R) .

Pz'z(p'I) =~z', zc, Z, Z'CO . (4.58
Together with (4.55), we arrive at the result

P(I)BJ.'=g [D~„(Cpp)]*BJ." . (4.70)
Together with (4.55), we arrive at the result

P (I)B,"=g [D.'„(C„)]*8,"" (4.59)

which is again in agreement with Schur's lemma with
respect to 0. Owing to the fact that D (Cz, ) is diagonal
(with diagonal matrix elements +I), the B's already de-
fine S.

How the columns associated with the parity must be
identified follows in an obvious manner from the irreduci-
ble representations D "(C2,) of 0. We have

D '(Cgp) =1,

D '(Cu)= —1,
(4.71)

(4.72)

However, in contrast to case 4, the irreducible representa-
tions D (C22) of the point group 0, in general, are not di-
agonal, so that nontrivial similarity transformations must
be carried out. In the following we list all D"(C22),
r e~o:

S"=B' (4.60)
DE(C») = 0 co

0 (4.73)

2g B 2

E;V
Sig ——Bi ',

Tl T] y2

Sj g ——Bj
Tl, v T)', v

Si =Bi

U=1,2, j =1,2

j=1,2, 3

U= 1~3 ~ j = 1,2~3

Sj Bj U 1 2 j:1 2 3

(4.61)

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)

0
D '(Cqq) = i

0

i 0
0 0
0 1

(4.74)

0 i 0
D '(Cq2)= i 0 0

001
(4.75)

In the cases of (4.73)—(4.75), we need similarity transfor-
mations V that satisfy

Finally, the columns of s are indexed in lexicographical
order by (l,o)=A&g, A2g, T,g, T~„, Tzg, T2„, the corre-
sponding multiplicity index U, and j=1,2, . . . , n~. The
rows are labeled by X HO in consecutive order.

( yl )t[DI'(C )P yI' ID1(( ) I
diag (4.76)

where the superscript (diag) on the right-hand side indi-
cates a diagonal matrix. Obviously, the eigenvalues of
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D (Cz2) can only be +1. Hence the desired Oi, -adapted
vectors SJ ' are defined by

SJ"' =X~', (4.77)

where o defines the parity and w is the multiplicity index.
We always ignore this index if the corresponding irreduci-
ble representation of the point group Ol, occurs only once.
Accordingly, only in two cases this additional index is
needed. The first two situations (4.71)—(4.72), are obvi-
ous:

E
S~g=( —co)SJ~, j=1,2

E EuS~"=(—co)S;", j=1,2

T; 1 T),'2
SJ

'"' ——( i—)S~ '", j=1,2, 3

T1u', 2 T)„', 1Sj:Sj & j = 1,2, 3

(4.93)

(4.94)

(4.95)

(4.96)

(4.97)

(4.98)

S '=8
Zu B 2

(4.78)

(4.79)

T2, 2 T2 .,2
SJ

'g' ——( i)S—
&
'g, j=1,2, 3

2u S 2u j 1 2 3

(4.99)

(4.100)

(4.80)

(4.81)

T 1 T ;1 T ;2
SJ 'g= (BJ ' —iBJ ' ), j=1,2, 3

&2
T)„,'1 1 T), 1 T&,'2

SJ
'" —— (B~

' +iBJ ' ), j= 1,2, 3

(4.82)

(4.83)

For the remaining three cases, we arrive at the results The interchange of the multiplicity indices in (4.96) and
(4.97) is merely due to the enumeration of the states we
have introduced. As in all preceding cases, the columns
are indexed as the states are listed and the rows are labeled
in the same manner as the elements of the point group O.

Case 6. (m, n, 0)E Z (or Q ). Although this is the
most involved problem, it is the simplest case. Clearly,
P(p;R), R EOI„ forms the 48-dimensional regular repre-
sentation of Op, . Owing to our general result, ' we only
have to know the irreducible vector representations of the
point group O~. They are given by

1u' 1'
Sj '" ——Bj ', j=1,2, 3

T2 '1 1 T2'1 ~ T22SJ'g —— (BJ' +iBJ' ), j=1,2, 3

(4.84)

(4.85)

D"' (R)=D"' (XS)=D"(X)D (S), XEO, SHIE,II,
(4.101)

T2,'2 T2'3S. 'g =B.', j =1,2, 3

T2u 1 T2' 1 T2', 2

&2 j =1,2, 3 .

(4.86)

(4.87)

where D (I)=(—1) . Using Table III, we introduce the
following enumeration in Table VI.

Therefore, the columns of S are given by

I SJ '"I~ ——(nr/48)'~ [DJ"„' (R)j', R =XSHOh

Again, the columns of S are labeled in consecutive order,
as listed in (4.78)—(4.87). Finally, it should be noted that
the symmetrized O~ states (4.60)—(4.66) are different
from those belonging to (4.78)—(4.87). What is common
to both is that we must start from the same B's.

Case 5': ( m, m, n ) G Z (or Q ). The situation here is
entirely equivalent to Case 5. The only difference is the
sequence of the components. This property can also be
seen from

P =C311 (4.88)

G(p) =Cz&G(p)C3i, (4.89)

which means nothing else than that they belong to the
same orbit. Accordingly, the corresponding permutation-
al representations of the point group O~ are equivalent.
Without going into further details, we have verified that

(4.102)

and they automatically satisfy (4.1). Now all possible
cases are covered, so that the symmetry adaptation of the
Dirac states can be carried out immediately, irrespective
of whether equivalent atoms occupy lattice sites or frac-
tions thereof. In the latter case, one merely has to replace
(m, n, 0) C Z by (x,y,z) G Q

V. OI, -ADAPTED SHIFTED STATES

In our approach" the complete O~ adaptation of our
shifted states is achieved if the corresponding Clebsch-
Gordan coefficients of the point group O~ are known.
However, as they are well known and given for half a
dozen equivalent irreducible representations of OI„our
job is, in principle, done. The Clebsch-Gordan coeffi-

B""=y D" ( C3/ )B. (4.90) TABLE VI. Irreducible representations of the full cubic
point group OI„XPO.

S "=S 'g (4.91)

2u S» 4.92)

holds where the wavy underlined B's belong to P(p;X),
XH O. This has, as a consequence,

I,+

D „(X)
D „(X)

D,"„(X)
-D,'.(X)
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AzE&yz A z@E5/z

+It Esyz Eiyz

1

0
0
1

0
1

1

0

Az Gg/z

Gs/zGs/z

1

0
0
0

001

2
1

2

0
1

0
0

CX

0
0
0
0
1

0
0
1

0

1

2
3
4

0A

0 0
0

Eg Esyz

0l CX

0
CX

0
0ia

0
n
0

E Ggyz

GEsnE)

0 0

0

0
lg
0

lP
0

1

2
3
4
1

2
3
4

0 lg
0

lP
0

'Y

0
lg
0

0
lg
0

'V

0
lg
0

0
lP
0
'V

0

0 0
lg
0

0
lP
0

lg
0
'V

0
EP

0
lg
0

'Y

0
lf0 0 0

TABLE VII Glebsch Gordan matrices for the octahedral point group O. a=i/V'2, 0= I/V'3, and y= 1/2. 5=1/P6 and
e= 1 /V 12.
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TABJ F VII. (Cont&nued).

EI /2

TI EI/p

Gs/z

0

0
0

0
0

0

a
0
0
0
a
0

6
p/a

0
0
5

5
0
0

p/a
5
0

0
0
0

Esn

TI E5/p

G

0

0
0

0
0

0

5
0
0

p/a
5
0

0

0
0
0

0
0
0
A'

0

5
p/a

0

5

E1/2

TIG

Gs/z

1

2
3
4
1

2
3
4
1

2
3
4

'V

0

0
0

0
0
y
0

0

0
'V

0
0

0
0

0
'Y

0
7
0
0
0
0

0

0

0
0
0
0

0

0
y
0

0
0
0
0

0

y
0

0
0

0
0

0

0

0

0
'Y

0
0

0
0

0

0

0
0
0
0

0

0
0
0
p

0
0
0
0
0
0
p

0
0

0
0

0
0
0
0

0

0

0
0
0
0

0
0

0
0

0
0
0
0
0
0
p

0
0
0
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TABLE VII. (Continued).

hatt Esn

T2Ein

0

0

0
0

0

5

p/a
8
0

0
c7

0
0
0

A

0
0
0
CX

0

6
p/a

0
0
5

hatt +1 /2

T2 E5/2

0

0
0

0
0

0

0
0
0

0

0
5

p/a

0
5

5
0
0

p/a
5
0

0
a
0
0
0

hatt Eiy2 E5/2

~2 G3rz

1

1

1

2
2
2
2
3
3
3
3

1

2
3

1

2
3

1

2
3
4

0
/

y
0
0
0
0

0
y
0

0
y
0

0
0
0
0
y
0

y
0

0
0

0
0

0

0

0

0
y
0
0

0
0

0
y

0

0
y
0
0

0
0

0

0
y
0
0
0
0

0
y
0

0
y
0

0
0
0
0
y
0

0
0 P

0
0 0
0 0
P 0
0 P
0 0
y 0
0 P
e 0
0

~

0

0
0
0
0
0
0

p
0
0
0

0
0

0
0
0

0
0

0
0

0
0

0
0
0

0
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cients, however, are representation dependent and we need
those that are associated with the irreducible representa-
tions we use (see Tables III and IV). Since we wanted to
use the centered states precisely as computed by Onodera
and Okazaki, we were forced to recompute the Clebsch-
Gordan coefficients for the irreducible representations
used by them. We have done this by a computer routine
that exploits the projection-operator technique. Unfor-
tunately, some Clebsch-Gordan coefficients are complex.

For brevity, we only list the Clebsch-Gordan coeffi-
cients that belong to Kronecker products that are com-
posed of an irreducible vector representation and a projec-
tive representation of the point group 0 as it occurs for
our shifted states. This is so because the resulting states
must always belong to irreducible projective representa-
tions of Ot, . To extend the Clebsch-Gordan coefficients
from 0 to Oh is straightforward and hence omitted. One
merely has to take into account the parity selection rule.

One must proceed in detail as follows:
(1) Define the shifted states

by means of (3.35), (2) construct the linear combinations

c'. '!"~""= ~ s . e'.""' '(p;z),j;a;A, ~ Z;1 crmj a;A.
ZEK(p)

(5.2)

which, due to their definition, transform, for fixed k, ac-
cording to the Kronecker product (l,o)8(I ', rT') of 0»,
and (3) form the linear combinations

~(aJ)(r,~;m; r', & )r",~+~;&~1;I,

(5.3)

where the bracket symbol denotes the Clebsch-Gordan
coefficients of O. Since the parity selection rule is already
taken into account in the states on the left-hand side, only
the Clebsch-Gordan coefficients of 0 are necessary. The

rII(coJ)r'cr'( Z)

I"ego, rT'=+, a =1,2, . . . , nr, ZElt. (p)

(5.1)

states (5.3) transform by definition according to the ir-
reducible representations of Oh(l ",o+o'), where the par-
ity selection rule has to be understood modulo 2.

The states (5.3) are the desired states. To simplify the
use of (5.1)—(5.3} for practical calculations, let us recall
the definitions

Sz.r ——IS" ' (p) Iz, Z EK(p) (5.4)

rr', r-.= I ci ' ' "
I,.

j=1,2, . . . , nr ~ a=1~2. ~ ~ nr' (5.5)
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where the C's are the columns of the corresponding
Clebsch-Gordan matrices listed in Table VII. Thus we
can obtain all the information required from the various
S(p) and Clebsch-Gordan matrices.

As an example, we show our procedure for fcc( a }
nearest-neighbor states (case 2):

(1) Take the centered states of Table I of Onodera and
Okazaki. s The order of this set of states is 42. (I"6,+)
occurs three times, (I 6, —), (I 7, +), and (17,—) occur
twice, and (I s, + ) and (I s, —) occur three times, which is
in agreement with the order of the set.

(2) Shift all states by means of (5.1). We thus obtain a
total set of 12)&42=504 states.

(3) Implement step 2, i.e., construct the corresponding
vectors (5.2) by inserting the S matrix given in Table V.

(4) Finally, take (5.3) by utilizing Table VII. Thus we
obtain 504 states that are OI, -adapted and can be exploited
for practical calculations.
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