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Quantum size and nonloca1 effects in the electromagnetic properties of small metallic spheres

P. de Andres, R. Monreal, and F. Flores

(Received 8 May 1985)

The electromagnetic properties of small spheres are analyzed by including quantum size effects
and nonlocal properties of the response function. Our model neglects the diffuseness of the surface
electron charge but includes effects associated with the surface roughness, which is assumed to ran-
domize the electrons scattering off the surface. Quantum size and roughness effects are discussed
and we analyze under what specific conditions they can appear.

I. INTRODUCTION

The electromagnetic properties of inhomogeneous sys-
tems is a fashionable topic. Thus, the response of a metal-
lic inhomogeneous surface has been the subject of many
different publications. ' In this case, the role of the
change in the metal electron density across the surface on
the optical reflectivity and the surface photoeffect, ' as
well as the effect of the surface roughness on the elec-
tromagnetic properties ' of the sample have received a
great attention. Similarly, a lot of work has been done on
films ' by considering the effect of interference between
the em waves reflected from the two planar surfaces. A
new effect may appear for very thin films: this is related
to the quantization of the electronic wave functions in the
direction perpendicular to the surface. A theoretical
analysis based on a random-phase-approximation Inethod
shows that a new structure may appear in the optical ab-
sorption of the film due to the electronic levels quantiza-
tion.

Recently, many different works have appeared on the
optical properties of small spheres. This has been partly
promoted by the good control achieved in the preparation
of samples with uniform size. Very small particles,
around 20 A in size, present, like thin films, the specific
effects associated with the quantization of the electronic
levels inside the sample. ' ' Most of the work on small
spheres have been addressed, however, to understand the
effect of the abrupt change in the electron density across
the surface on their optical properties. ' ' On small
spheres, only Wood and Ashcroft, ' and Gor'kov and
Eliashberg, 'o

up to our knowledge, have analyzed the ef-
fect of the discrete quantum levels on the optical proper-
ties of the sample. The interest of this analysis for
spheres is related not only to the interpretation of photo-
yield experiments, ' but to specific optical effects like the
blue shift' in the absorption peak associated with the ex-
citation of surface plasmons and the enhancement for the
absorption energy in the far infrared. ' ' Very recently,
Ekardt' has calculated the dynamical polarizability of
small spheres; this analysis, however, does not include the
effects associated with the coupling between the elec-
tromagnetic field and different surface modes and, ac-
cordingly, some specific optical effects cannot be sur-
mis d from it.

In this paper, we present a calculation of the elec-
tromagnetic response of small spheres, by introducing the
effect of the quantization of the electronic energy levels
inside the sample. In our analysis, instead of using a di-

pole approximation in order to calculate the dielectric
function inside the sphere, ' we have attempted to include
the electronic excitation up to any multipole order by in-

troducing an appropriate k-dependent dielectric function.
Our model neglects some specific effects related to the
diffuseness of the surface-electron-charge, ' ' effects that
must appear in a complete self-consistent calculation, '

and tries to focus on the important effects associated with
the quantization of the electronic levels. For very small
spheres these levels are very far apart in energy and we do
not expect that surface roughness can introduce any im-
portant electron surface scattering modifying the results
obtained for an ideal surface. ' One output of our calcu-
lation for complete specular surfaces is the minimum ra-
dius of a metallic sphere for which the different electronic
excitations start to overlap, allowing the electrons to
scatter from one level to another. For greater radii, most
sphere surfaces can be expected to behave with a high de-

gree of roughness, and to modify accordingly the optical
properties of the sphere. In this paper, we also present
calculations for the case of a complete rough surface: a
case for which electrons are assumed to scatter at random
from the sphere surface.

In Sec. II we present the model and introduce the
dielectric functions defining the sphere polarizability. In
Sec. III we present the method used to calculate the opti-
cal properties of the sphere, and finally, in Sec. IV we

present our results and their discussion.

II. THE MODEL

The model we follow to analyze the optical properties
of the metallic sphere is equivalent to the semiclassical
infinite-barrier (SCIB) model that people have been using
for the planar surface. ' In this model a step function is
assumed for the metallic electron density, and the elec-
tronic polarizability is calculated by neglecting the in-
terference quantum terms appearing near the surface.
This approximation has been shown ' ' to be more ap-
propriate for calculating the optical properties at frequen-
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cies higher than the plasmon frequency; at lower frequen-
cies, the optical properties seem to depend crucially on the
smooth electronic profile existing at the interface. These
effects can be introduced' in an ad hoc way by means of
two effective lengths associated with the variation of the
electric field across that interface. For the purposes of the
present paper, however, these effects are not so impor-
tant' as we are more interested in analyzing (i) the quan-
tum effects associated with the sphere size, and (ii) the ef-
fect of the surface roughness on the optical absorption.

Following the SCIB model we assume the sphere em-
bedded in an infinite metallic medium (see Fig. 1), and
calculate the electromagnetic field inside the sphere by in-
troducing (i) external stimuli in the region r &R, and by
defining (ii) a dielectric function e(k, co) associated with
the infinite metal.

As regards the external stimuli, we determine them by
imposing certain conditions on the field outside the
sphere. To be specific, consider the case of a surface with
such strong roughness that it randomizes all the electrons
coming from it. For this case, the induced dipole inside
the sphere can be written as follows:

P(r) = I g(r —r') E(r')dr', (1)

where g is the electronic polarizability of the metal, and
the integral only extends to the region inside the sphere.
Then, we can simulate Eq. (1) by means of the infinite ex-
tended medium if we impose on the electric field the fol-
lowing condition:

E(r) =0 for r &R . (2)

From a physical point of view this means that the in-
duced dipole at r is only due to direct effects between r
and r' (see Fig. 1), with no contribution coming from tra-
jectories reflecting specularly at the surface.

Equation (2) is the condition we have to impose on the
field to simulate the polarizability of the sphere by an in-
finite metal, when we have a complete randomizing sur-
face. Similar arguments can be given for a specular sur-
face, but a complete discussion of this case will be de-
ferred up to Sec. III.

As regards the dielectric function we introduce to
analyze the optical properties of the sphere, assumed to be
embedded in the infinite medium, we follow the work of
Apell and Ahlqvist for. thin films. In this work, the
dielectric response of a metal layer has been obtained
within a random-phase approximation by including the
electronic quantum levels associated with the direction
perpendicular to the surface, and by approximating the

f~(k)
eL(k, co)=1—A(k) g

ui —co (k)
(3)

where co; is the excitation energy defined by the initial
state k; of the quantized cube, and k is the momentum
transfer along a principal axis: —,

' (k;+k) ——,
'

k; (we use
atomic units). f(k) is the oscillator strength related to the
number of initial states having the same excitation energy
co;(k) (see Fig. 2). Note that k is taken along the principal
axis of the cube, this being the reason for writing a scalar
dependence on k for co; and A; moreover,
A (k) =co&/g, .f;, in such a way that

For a cube and the SCIB model, the dielectronic function
given by Eq. (3) is only defined for k =(2m. /L)m (m be-
ing an integer). In our approximation for the sphere, we
extend formally Eq. (3) to any value of k such that the fi-
nal state k;+k is above the Fermi level. For a spherical
specular surface, this means that the final states are quan-

kp

surface response by a SCIB scheme. The important result
coming out from this calculation is that the metal layer
can be simulated by embedding it in an infinite medium if
we introduce for this infinite system an adequate dielec-
tric function which includes properly the quantum size ef-
fects; Accordingly, we assume that the sphere response is
defined by a longitudinal, eL (k,co), and a transverse part,
eT(k, co); as regards eT(k, co), in this paper we follow the
usual simplification and take eT(k, co) =1—(co&/co )
=eT(co), while the quantum size effects are introduced in
el. (k, co). At this point, we introduce a further simplifica-
tion and follow Wood and Ashcroft' by assuming that
eL (k, ro) for the sphere is well approximated by the longi-
tudinal dielectric function of an equivalent cube as calcu-
lated along the direction of its principal axis. This dielec-
tric function can be straightforwardly calculated by using
a SCIB model for a cube of side I. (see Fig. 2). For this
case, we follow the discussion given by Apell and
Ahlqvist for thin films, embed the cube in an infinite
medium with appropriate symmetry conditions, and ob-
tain the following result:

X (r-r'}

E. =0

FIG. 1. The sphere embedded in a uniform electron gas. For
a rough surface we simulate the effect of the surface on the elec-
tron by taking E=O for r & R.

I
FIG. 2. Quantum states of a finite cube of side L in motnen-

tum space. k is the transfer of momentum associated with the
dielectric function eI(k, cu). States having the same initial z-
component momentum have the same excitation energy co;(k ).
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ei, (k, co) =
co —co~ —p k ——,k & —i co —y;k ——,k2 2 2 1 4 2 2 & 4

co (P') k ——'k;—=i co —y'k ——'k

Iized according to the allowed values of k as determined
by the conditions associated with the spherical symmetry
[see Eq. (28)]. Quantum size effects appear in Eq. (3)
through the number of zeros and poles for er, F.igure 3
shows the dispersion relation for the six zeros and six
poles of a case for which L =15.3 A and r, =4.86. These
results are similar to the ones found by Apell and
Ahlqvist for a thin film; it is of interest to notice that the
number of poles is related to X bare electron-hole modes,
while the zeros give the plasmon and X—1 dressed
electron-hole pairs. The number of bare modes X changes
with the cube size in such a way that for L —+ Oc there ap-
pear infinite bare modes and we recover the Lindhard
dielectric function (see Ref. 9 for more details).

In the calculations presented in this paper for a non-
specular surface, it is convenient to use, instead of Eq. (3),
a different dielectric function having a simpler depen-
dence on k. To this end we have approximated Eq. (3) by
the following expression:

p'+ g y; =(p )'+ g y,',

III. THE THEORY

In our method of calculation we follow Penn and Ren-
dell' and develop the electric field in the extended metal-
lic medium in a set of basis states, I;, m;, and n;, verify-
ing the wave equation:

V C+k C=O .

1;, m;, and n; are the spherical vector functions

(6)

I g~(k, r), m;i~(k, r), nd~(k, r), with i =e or o

this ensures that the f-sum rule is automatically satisfied.
The dielectric function given by Eq. (3) will be used to

analyze small-size spheres, a case for which we can as-
sume that electrons in the metal scatter off specularly at
the surface. Equation (4) will be used, however, to
analyze the effect of a strong roughness that randomizes
electrons at the surface on the optical properties of the
sphere.

where the number of poles is directly related to the bare
electron-hole pairs, and the zeros to the plasmon disper-
sion relation co =co&+p k + ~ k, and to the dressed
electron-hole modes. Note' that in all the modes of Eq. (4)
we have included a term behaving as 4

k": this yields the
correct limiting behavior, co—+ —,

' k, for co and k~ ao. On
the other hand, in Eq. (4) we assume the coefficients p,
(p'), y;, and y,' to be co dependent; (p'), y;, and y,' have
been adjusted to yielding, at each frequency, the same
pairs modes (zeros and poles) as Eq. (3), while P has been
chosen to verify the following relation:

where the three modes are represented by their quantum
numbers l and m, and by their parity (even or odd) with
respect to the azimuthal angle variable (m takes only posi-
tive values).

We shall discuss the case of an em plane wave being
diffracted by the metallic sphere. It is well known that
the plane wave E(r) =Eoexp( ikoz )x, where ko ——co/c,
with its polarization along x, can be written as follows:

.I 2l+1E(r)= g i' [m,ii(ko, r) —in, ii(ko, r)] .
l(l+ 1)

This equation suggests that only the modes with m =1
must be considered in our problem. The functions
m, ii(k, r) and n, ii(k, r) are given by

moii(k~1 )=1 (kI)r. PI (cos8)(cosf)I2
1

sin8

dPi'(cos8)
ji(kr) (sin—g)i3, (Sa)

n,ii(k, r) = l(i+1) .j&(kr)PI (cos8)(cosg)ii
r

dPI ( cos8)
+ [rji(kr)] (cosp)i2

kr dr

[rj &(kr) ]P& (cos8)(sing)i3,
1

kr dr

1 2 3
kI'kF

FIG. 3. Dispersion relation for the zeros ( ) and poles
( ———) of el. (q, co) for a cube of side I.=15.3 A and r, =4.86.
co and k are given in units of mF and kF, respectively
[kr nr(~/L ) and coF 2k——r, in the case sho——wn, nr =3].

where jI are the Bessel spherical functions, I'I' the usual
Legendre functions, and ii, iq, and i3 the unit vectors as-
sociated with the spherical coordinates.

The refraction of the em plane wave at the sphere mixes
the n,g1 mode with the longitudinal mode 1,11. This mode
is given by



32 QUANTUM SIZE AND NONLOCAL EFFECTS IN THE. . . 7881

1 ii(k, r) = [j i(kr)]Pi (cos8)(cosg)ii

j i(kr) dPi'(cos8)
+ (cosf )12

r

ji(kr)
Pi'(cos8)(sing}ii . (Sc)

(12a)

for transverse modes,

this field to be a combination of the different normal
modes excited in the infinite metal and be defined by the
following equations. For longitudinal modes,

ei(L;,co) =0,

In general, the field in the extended metallic medium
can be written as a combination of the different modes

l,», n,i„and m, ii as follows:

(12b)

Equations (12a) and (12b) define the different longitudi-
nal and transverse modes in the extended medium for a
given frequency co. Due to the local approximation we are
using for ez-, ei.(co)=l —(cd/co ), Eq. (12b) only yields
one solution for the transverse modes:

where

Ei(r) = f k [Ei '(k)leii(k, r)+Ei'"'(k)n, ii(k, r)

+EI '(k)m, ii(k, r}]dk .

pi(r)= f k Ei '(k)ji(kr)dk,

Ei"'(r)= f k Ei"'(kj)i(kr)dk,

Ei '(r)= f k Ei '(k)ji(kr)dk .

(1 la)

(1 lb)

(1 lc)

The factor i'[(21+1)/l(1+1)] in Eq. (9) is introduced
by convenience, while the coefficients EI' '(k), Ei"'(k),
and Ei '(k) [or Pi(r), Ei"'(r), , and Ei '(r)] measure the
amplitude of the different modes being excited in the me-
tallic medium. In order to determine completely the field
inside the sphere we have to calculate those coefficients.
This is accomplished by solving the wave equation and by
imposing the adequate conditions on the field for r &R
(see Sec. II).

A. Rough surface

Let us first consider the case of complete nonspecular
scattering at the sphere surface. According to the discus-
sion of Sec. II, this means that we must take E=O for
r ~R in the extended medium; this can be accomplished
with adequate external stimuli at r &R. These stimuli,
however, create a field inside the sphere r &R; we expect

I

It is convenient to introduce, at this point, the functions
Pi(r), Ei"'(r), and Ei' '(r), which are defined by means of
the following Bessel transform:

(12c)

+Ei 'm, ii(T, r), r &R (13)

(L, )
where EI ', EI"', and E~™are constants to be deter-
mined later on.

On the other hand, we need to introduce a singular
term in E at r =R. ' ' . The reason is that we have to
impose a condition associated with the induced current at
r =R, namely, the normal component of the current must
be zero:

J„(r=R)=0 . (14)

This condition can be achieved by introducing a singular
stimulus at r =R, or equivalently, a singular field at the
sphere surface. The l component of this singular term
takes the following form:

W i5(r —R )P('(cos8) (cosP )i, , (15)

where Wi is a constant to be determined later on.
Putting together the different pieces of the field, we

have the following expression in the extended metal medi-
um:

The field inside the sphere can be expected to be a com-
bination of the normal modes associated with Eqs. (12}.
Since the normal modes are the eigenfunctions of the
-operator —V'—:ki, we can write for the l component of
that field:

(I-,. ) („)yEi lel 1(Li r)+Ei nel 1( T r}

(L;)
Ei(r) =8(R r) g Ei ' l,i,(L;—,r)+E&'"'n, i,(T,r)+Ei 'm, i,(T,r) +&&5(r—R )Pz'(cos8)(cosg)ii —=E~ (r)+Ei(r),

L;

where E~ and EI are the regular and singular parts
of Ei(r) (Ei is associated with &i ).

It is convenient to express Ei(r) in the general form
given by Eq. (10) and to look for the different coefficients

I

appearing in that equation. Details of this calculation are
given in the Appendix. Here we collect the main results;
for the regular part of the field given by Eq. (16) we ob-
tain the following result:
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(L,.) IQEi ' ji(L;r) —A ~(l+1)r, r &R

Pg (r)= .
(17a)

jt being (d/dx)[ji(x)].
(L,. )

The different constants Ei ', Ei'"', Ei ', and Wi ap-
pearing in the total field are not independent. Indeed,
they have to verify certain relations that can be deter-
mined by analyzing the field equation:

(„)gi( )
ER(n). ~ E1 T +A r, r (R

A~/r +' r~R

Ei j'~(Tr), r &R

0, r~R

(17b)

(17c)

2
V X(VXE)— E=4~~2P/c2,

where P is the polarization field in the metal. Equation
(19) only holds for r & R; for r & R, external currents must
be included in the right-hand side. The l components of
P for r & R can be obtained from the general equation

where
4mPi(r) = f [e(r—r', co) —I5(r —r')] Ei(r')dr', (20)

(Lg ) . + 1 (~)

L;

(17d)

(.).A~=
(2l+ 1)R' QEI ' ji(L;R) Ei"j—i(T—R )

where e is a tensor having longitudinal and transverse
components and I is the unit tensor. Equation (20) can be
easily worked out if we use for the field the general ex-
pression (10), since we have the following relations

(17e) f e(r r') l,i—i(k, r. ')dr'=el (k, co)l,i, (k, r), (21a)

while the singular part associated with &i is given by f e(r —r').m, ii(k, r')dr'=ez (k, co)m, ii(k, r), (21b)
2 REi '"(k)=— Mij/ (kR ),
m k (18a) and

(18b)
fe(r r) n i—i(k, r')dr'=eT(k m)n ii(k r) . (21c)

Es(m)(k) 0 (18c)
Substituting Eqs. (17), (18), and (21) into Eq. (20), we ob-
tain the following even part of Pi(r):

4mP, i(r).ii=4mP, i(r)Pi'(cos8)cosg

=PI (cos8)(cosg)—1 2

k [el (k, co) 1]ji' (kr)dk f—(r') ji(kr')pi(r')dr'+ [eT(co) 1] Ei"'(—r)

+~I f k [ez(k co) —1]R ji'(kRj)~'(kr)dk+[eT(co) —1]—0 2 21+1 (22)

There is also an odd part for Pi(r), P, i. As it leads to no relevant result, it is not given here.
I.et us now assume that eL (k, co) is given by Eq. (4). For this case, the dielectric function takes the following form:

2N 2N
&L, (k,~)=Q (k' —I.; ) + (k2 —l,') . (23)

From Eqs. (22) and (23) we get the following result:
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(L;) („)l(1+1) .47rP, i(r)= —y Ei ' Lji (L;r)+(e7(cp) 1)E—i'"' ji(Tr)
i=1 Tr

(12 L2) I

+i g l~ji (l, r)',~ g Ei ', 2 [Ljji(LjR)hi(l R) lij—i (LjR)hi(l(R)]
i =1 TT (12 12) j=1 j i

J
J+l

hi(l;R)

l

where hi is the spherical Bessel function ji+ini. Equa-
tion (24) gives for P, i(r) several pieces. (i) The first two
terms represent the polarization associated with the even
modes l,il and n, il. When Eqs. (24) arid (16) are substi-
tuted into Eq. (19},these two terms lead to identities, re-
lated to the fact that the field is correctly constructed and
satisfies the field equation. (ii) The other terms of Eq.
(24) do not have equivalent terms coming from the field
in Eq. (16). They must vanish, giving the following 2X
conditions:
2E (L ) Ig E, ', ', [Lj,(L;R)hi(l;R) 1ji (L;R)—hi(l;R)]I.J —ll

+Ei" ji(TR) +W ih/(/; R)=0(„)1(1+1) hi(l;R)
TR I;

(25)

for the (2%+2) unknowns, Ei ', Ei", and Wi.
(I, ) („)

As regards the odd part of Pi, P, i, when its general ex-
pression is worked out by using Eq. (23), we only obtain
terms verifying identically Eq. (19}. Thus, for the odd
part, no new condition equivalent to (25) is found.

(n)One more condition for the unknowns Ei ', Ei'"' and
&i can be obtained by imposing the condition that the
current (or the polarizability) at r =R be zero. This con-
dition yields

(I,. ) („)l(l +1) .+E, ' L„j,'(L„,R) =[eT(~) 1]Ei"—
TR

ji(TR) .
l

(26)
Equations (25) and (26) allow us to express the even 1

component of the field in the extended metallic medium
as a function of only one constant. Similarly, the odd 1

component of the field can also be written in the extended
medium as a function of only one constant. In the two
cases, the field inside the metal sphere, for r &R, is
known up to a normalizing factor which has to be deter-
mined by matching the field to the even and odd parts of
the vacuum field. For completeness, let us write the even
and odd components of this field:

Ee, l(r)=i [ inell(kp, r)+bineil(kp r}] ~

v .i 21+1
1 1+1

E, i(r) =i [m,i((kp, r)+aim,"i l(kp, r) ],v .i 21+1
+

I

where n,"il and m,"il are given by Eqs. (8) with the spheri-
cal Bessel furictions hi(kpr) substituting for ji(kpr). The
coefficients ai and bi and the normalizing factors for the
field inside the sphere are determined by means of the
usual matching equations at the sphere surface. Having
found the field, we can proceed and calculate all the opti-
cal properties of the sphere, surface impedance, reflectivi-
ty, absorption, etc.

B. Specular surface

E„(R)=0, (28a)

dEe(r)
dr

=0,

dE~(r)
dr

(28c)

E„, E~, and E~ being the radial and angular components
of the field, respectively.

With this choice, we define a complete set of vector
states for the region r &R. Thus, we can develop the field
inside the sphere in these vector states. Now, our main
assumption about the infinite extended metallic medium
is that, in analogy to the work of Apell and Ahlqvist, ue
extend the series obtained for the field inside the sphere
(r &R ) to the u)hole space. Conditions (28) guarantee that
the extended field for r & R near the sphere surface is ap-
propriate for a specular surface.

According to this discussion, we substitute Eq. (10) for
the following equation:

We argu'ed in Sec. II that, for a completely rough sur-
face, the sphere could be embedded in an infinite metal if
we imposed the condition that the field be zero at r &R.
Specular surfaces do not reflect the electrons at random,
and we have to look for different conditions for the field
at r &R, conditions which must take into account ade-
quately the effects associated with the specular surface.
At this point we are guided by the work of Apell and
Ahlqvist for thin films, and instead of using the complete
basis defined by the continuous values of k in Eq. {6),we
only use those basis states defined by the wave vector k,
verifying the conditions appropriate for a specular sur-
face. These conditions are the following:
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4i(&)=Q &i,.j»/. —
n

with

(30)

El(r) g Cli I !1(k'r)+g CI' n!1(kj r)
l J

+g Ci, 'm, i,(k„r), (29)
S

where the eigenvectors I, n, and m verify the boundary
conditions (28), and have the corresponding eigenmomen-
ta k;, kj, and k, . Comparing with Eq. (16), it is
worthwhile noticing that, in Eq. (29), the longitudinal and
transverse modes extend to the whole space, while in Eq.
(16) the field at r )R is zero; in this last case, a singular
term has been also added at the surface.

Our problem is to calculate the coefficients Ci';", C
and Ci', ', that is, the field inside the sphere created by the
incident em plane wave. As regards the transverse com-
ponents, since we are using a local approximation for eT,
we can easily obtain g .Cii~"'n, i i ( kj, r) and

g, C~', 'm, i i(k„r), the two transverse polariton waves for
an 1 component, except for a constant factor. Indeed, the
two fields, say ET,i and ET,i, are the transverse fields
calculated in any standard text book for a local dielectric
function.

Thus, our problem reduces to obtaining the longitudinal
part of Eq. (29). Details of this calculation are published
elsewhere. Let us only mention here that the longitudi-
nal mode is defined by an electrostatic potential Pi, given,
up to a normalization factor pi, by the following equation:

I (E&& H*).n dS8' S
(32)

where E and H are the electric and magnetic fields,
respectively, and n is the unit vector perpendicular to the
sphere surface S of radius R. The numerator in Eq. (32)
gives the rate of flow of energy across the sphere, and the
denominator the same rate per unit area for the incident
field. Therefore, Eq. (32) yields the sphere cross section to
the optical absorption of the incident field.

Equations (27) and (32) yield the following result:

o.= —2irR g (2l+1)[
~
ai

~
+

~
bi

~
+Re(at+bi)] .

1=1

(33)

Coefficients bi and ai are associated with the l-electric
and 1-magnetic multipoles. In our actual calculations, for
small spheres, only a

&
and b~ give relevant contributions.

In order to calculate the optical absorption of an ensem-
ble of small spheres filling the whole space with a given
filling factor i) we take into account that the em field in-
duces electric, p, and magnetic, m, dipoles in each sphere,
which are related to the coefficients bi and ai by means
of the following equations:

C. Optical absorption

Once the electromagnetic field has been obtained, we
can calculate the optical absorption for a sphere by means
of the following equation:

RpI
B)„———4m.jI(xt. )[(xi'n )' i(i+1)]—

p= —( ibi)—3 ~ 1

0
(34a)

&In
E'L

~ CO

1

~L (0,~) (31)

where xi„defines the different eigenmomenta,
ki„=xi„/R, associated with the condition dji(kR)/dr =0
[see condition (28a)]. Then the whole field inside the
sphere is a linear combination of the longitudinal mode
%[Pi(r)P~'(cos8)cosg] and the two usual transverse polari-
ton modes. Note that the longitudinal mode is only cou-
pled to the even transverse mode (see above), giving a
mixed mode which corresponds to the p-like em wave of
planar surface. The odd mode is decoupled from longitu-
dinal modes and corresponds to the s-like em wave of pla-
nar surfaces.

The mixed mode for the longitudinal and transverse
even modes can be obtained by imposing the condition of
zero value for the normal component of the induced
current at the sphere surface. This condition gives the
right combination of the above-mentioned modes, and
determines completely the field inside the sphere except
for a normalization constant which will be finally calcu-
lated by matching the em fields inside the sphere and the
vacuum field at r =R. This is equivalent to the discus-
sion given above at the end of the "diffuse-surface" case.

3 1
m =—( iai)—

k0
(34b)

Now, by means of a Maxwell-Garnett theory we can de-
fine an effective dielectric function e, given by the follow-
ing Claussius-Mossotti-like equation:

1+2'/R
1 —i)p /R

( ibi)—1+3'
(koR )

1—3q ( —ibi)
(koR )

(35a)

In a similar way we define an effective magnetic suscepti-
bility p, :

( iai)—
1+39

(koR)3

1—3ii ( iai)—
(koR )

(35b)

a(co) =2—Im[(e,p, )'~ ] .
C

From Eqs. (35) we define the effective absorption coeffi-
cient a(co) of the whole medium by means of the follow-
ing equation:
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IV. RESULTS AND DISCUSSION

We have calculated the optical absorption for spheres of
different radii and different electronic densities. Figures 4
and 5 show the results for the following conditions
r, =4.86 (potassium), the filling factor g=0.1, R=18,
and 36 A (corresponding to the following numbers of
atoms: 343 and 2748) and specular surface. In these cal-
culations we have introduced broadening effects in the
dielectric function given by Eq. (3) by means of an imagi-
nary component of co, co+iy, and by defining new real
and imaginary dielectric components according to
Mermin's prescription' ' (we have taken
y=5.3X10 co&). In Figs. 6—8 we show the results for
the optical absorption of the following spheres: r, =2.07
(aluminum), g=0.1, R=7.5, 15, and 36 A (correspond-
ing to the following numbers of atoms: 105, 845, and
11 864), and specular surface. Broadening effects are tak-
en into account with the same Mermin prescription, and
taking also y=5.3X10 co&. In all the figures we show
Mie's results, ' and in Fig. 8 we have also drawn Wood
and Ashcroft's results' for comparison.

The most interesting results coming out of our calcula-
tions for the optical absorption of small spheres and spec-
ular surface is the resonant structure associated with the
quantum size effects of the small particle (electron-hole
pairs excitations). For potassium this structure appears
clearly for R=18 A, while for Al we find similar results
for R=7.5 A; in both metals, for much greater radii, the
structure associated with the quantum size effects has
many small peaks and all these contributions tend to over-
lap and give a smoother pattern. For R=36 A in K and
R= 15 A in Al, this effect has evolved partially, while for
the case R =36 A in Al the process has evolved complete-
ly and the absorption spectrum becomes quite smooth.
Our results show that quantum size effects can be only

'10

1P5

10'—

1023

1
p-2

I

~001 0004 0 02 010 0-40

~p

FIG. 5. As Fig. 4, for R =36 A.

0 0

observed for R (10 A in Al and for R (25 A in K. The
difference in the results for the two metals is related to
their different electron densities: for greater metallic den-
sities and the same radii, there appear more electron-hole
pairs excited in the sphere and the optical absorption spec-
trum becomes smoother.

It is interesting to compare our results with other calcu-
lations. Comparing with Wood arid Ashcroft, ' our re-
sults show a smoother structure (see Fig. 8); again, this ef-
fect is associated with the number of electron-hole excita-
tions, much greater in our calculation than in Wood and
Ashcroft's paper where a dipole approximation is used for
e(co). The "multipole" electron-hole pairs introduced in
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FIG. 4. Optical absorption
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conditions. Mie's results are also
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FIG. 6. As Fig. 4, for R =7.5 A, r, =2.07, and g =0.1.
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FIG. 7. As Fig. 4, for R =15 A, r, =2.07, and q =0.1.

0.04 0.1

our calculation are also responsible for the general in-
crease of the optical absorption that we find for frequen-
cies lower than the plasmon peak, with respect to %'ood
and Ashcroft's. Comparing uow with Ekardt, ' it is
worth noticing the similarity between our results for K
and R = 18 A, and Ekardt's results for Na and 8 =23 A;
both cases show quite clearly the structure associated with
the pairs excitations. Let us comment, at this point, that
in our calculations this structure is broadened by the cou-
pling between the longitudinal (pairs or plasmon) modes
and the transverse electromagnetic field. In order to show
how the broadening of the different pairs modes depends
on that coupling, we have also calculated the optical ab-

]Qo I

0.001 QQ 04 0.0 20 0.1 0 0 0100
Mp

FIG. 9. Optical absorption for spheres of radii 7.5 A,
r, =2.07, and g=0.1. Solid line: y=5.3)&10 co~. Dashed

line: y=5.3)&10

0

sorption spectrum for Al, with A =7.5 A, but reducing by
1 order of magnitude y, which now has been taken as
5.3X 10 co&. Figure 9 shows the new results; we find the
same kind of spectrum than in Fig. 6 with somewhat
deeper "pairs" peaks but having widths similar to the ones
of Fig. 6. These widths are mainly controlled by the
pairs —electromagnetic-field coupling.

All our calculations for K and Al present a blue shift
for the frequency of the plasmon peak with respect to the
classical Drude result and an important enhancement of
the optical absorption at low frequencies. The blue shift
is a consequence of the model used in this work, where the
diffuseness of the surface electron density has been
neglected. It is well known that a realistic surface-
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FIG. 8. As Fig. 4, for R =36 A, r, =2.07, and g =0.1. Dot-
dashed line: Wood and Ashcroft's results.
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FIG. 10. Cross section (in units of n.R ) to the optical absorp-
0

tion for a sphere of radius 25 A, r, =4, y =10 'co~ and specular
surface. 0 and ~: Penn and Rendell's results. Dashed line:
Mie's results. Solid line: our results.
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electron-density profile produces a red shift in the
plasmon peak; this is clearly seen by comparing our Fig.
4 and Ekardt's results: the red shift found in the latter
paper is a consequence of the self-consistency introduced
in the electronic charge. Notice that this self-consistency
can be expected to introduce little effects, however, on the
pair structure discussed above, since the pairs extend to
the whole sphere. On the other hand, the enhancement of
the optical absorption at low frequencies is a result of the
electronic pair structure; this point has been stressed pre-
viously by Penn and Rendell' and is in good agreement
with our calculations. It is worth commenting that at
variance with Penn and Rendell we have introduced
specific quantum size effects in the calculations for the
sphere; however, for great radii, this structure disappears
and the effect of the pairs is only to enhance the optical
absorption at low frequencies. To see how our model
reproduces Penn and Rendell's results, we have calculated
the optical absorption of a sphere with the same parame-
ters of Ref. 16: r, =4, R=25 A, y =10 co&, but we have
used a Lindhard-Mermin dielectric function instead of the
one introduced in Sec. II [Eq. (3)]. Figure 10 shows our
results, Penn and Rendell's calculations, and the ones
given by Mie's theory. This figure shows that our model
yields values quite close to the ones given by Penn and
Rendell when the same dielectric function is used in both
cases.

When the structure of the electron-hole pairs tends to
overlap in the optical spectrum, there is a finite probabili-
ty for the excited pairs of being mixed among them. This
means that electrons reflected from the surface can be
scattered off into many different final states; for this case,
surface irregularities are important since electrons can be
randomized at the surface. Then, the analysis presented
in this paper for rough surfaces comes in. According to

the results obtained for specular surfaces, that case ap-
pears for K and Al when the sphere radii are greater than
40 and 20 A, respectively.

Before discussing our results for spheres with rough
surfaces, it is convenient to present calculations showing
the good approximation that the dielectric function of Kq.
(4) is to the more exact dielectric function given in Eq. (3),
in order to calculate optical properties. This has been
checked by calculating the optical absorption of Al
spheres (r, =2.07) having R =36 A, g =0.1, and
y= 5.3 X 10 co&, with the two dielectric functions (3) and
(4). Figure 11 shows the results of our calculations for the
two cases. Notice that both calculations yield practically
the same optical absorption; in the same figure we have
drawn the classical results for comparison. It is con-
venient to comment that in the approximated dielectric
function given by Eq. (4), we have introduced broadening
effects by substituting co(co+iy) for co in each factor of
[co —co (k)].

Let us now move on to presenting the results of our cal-
culations for rough surfaces. Figure 12 shows the optical
absorption of Al spheres for R =36 A, g =0.1, and
y=5.3X10 co&. In the same figure, we have drawn the
results of our calculation for a specular surface. The
main result arising from the comparison between our two
calculations is that rough surfaces intvoduce little effects, if
any, on the optical properties of spheves. This result can be
more deeply understood if we compare it with similar re-
sults for planar surfaces. For this case, it has been shown
that rough surfaces introduce no change on the optical
properties of surfaces if a model is used of a nonlocal
longitudinal dielectric function and a local transverse
dielectric function. Roughness only introduces new ef-
fects on the optical properties of metal spheres if a nonlo
cal transuerse dielectric function is used in the calculation;
the physical reason is that transverse modes can be excited
in such a way that they dissipate the energy brought by
the longitudinal modes to the surface. In light of this
result for planar surfaces the results found in this work
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FIG. 11. Optical absorption for R=36 A, g=0.1, r, =2.07, .

and y=5. 3&(10 co~. , results using the dielectric func-
tion of Eq. (3). o o, results using the dielectric function
of Eq. (4). ———,results using the Lindhard dielectric func-
tion. —.—.Mie's results.

1&o 1 I I l ( I

5-01 0.02 0 04 0 08010 0-20 0.40 0.80100
~p

FIG. 12. Optical absorption for spheres of rough surfaces.
R=36 A, r, =2.06, g=0.1, and y=5.3&&10 co~. Dashed line:
results for spheres of specular surfaces.
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are not surprising at all. On the contrary, by analogy with
the planar ease, we eonelude that surface roughness can
only introduce effects on the optical properties of spheres
if a transverse nonlocal dielectric function is introduced.
For this case we expect to find some increase in the opti-
cal absorption for low frequencies. s Work along this line
is in progress in our laboratory.
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APPENDIX A
ln this appendix we calculate the coefficients of the ex-

pansion given by Eq. (10) for the field of Eq. (16). As re-
gards the singular part W&5(r —R)P&'(cos8)(cosg)i&, it is

quite straightforward to find the coefficients given by
Eqs. (18) using the inverse relations:

Ei" (k)= Ei(r) n,Ii(k, r)d r, (A2)
(„) 1 l (l+1)

2l+1

' f Ei(r)'moli(k, r)d r . (A3)
(~& 1 l (l+ 1)

2l+1
For the regular part

Ei (r)=8(R r) Q—Ei ' l,Ii(L;,r)+Ei" n,i,(T,r)R (L, ) („)

LI

+Ei 'm, i i( T,r )

we proceed as follows.
First of all, equate the ii components of Eqs. (10) and

(16). This yields

2 (1) ~ ,EI (k) . . ~L, ~ d . ,„&l(l+1) .
dr f k EI (k)jI(kr)dk+ f k ji(kr)dk=B(R r) —'QEi ' ji(L;r)+E&"' j&(Tr)r 0 k dr ' Tr

Using the Bessel-transform definitions given by Eqs. (11),we can write

d l(l+1) ~„~ «;~ d . ~„~ l(l+1) .$1(r)+ E/" (r) =6(R r) QEI ' —j,(L;r)+E&" j,(Tr )dr r dr ' ' Tr
1

By equating the i2 and i3 components of Eqs. (10) and (16), we obtain the following equations:

QI(r)+—— frE~"'(r)]+E~' '(r)=6(R r) QEi ' j i(L—;r)+Ei—"' [rj~(Tr) j+EI j'I(Tr)r rBr

(A5)

(A6)

(A7)

Equations (A6) and (A7) have the following solutions:

(L,. )
Pi(r)=6(R r) QEI —'jl(L;r)+fi (r)

L;

E(n)
Ei'"'(r) =6(R r) —ji( Tr )+f„(r)

+6(r —R )f„(r),

(AS)

(A9)

df, + (rf„)=0,
dr

and the continuity conditions

QI(R )=pi(R+),
Ei'" (R ) =EI'"i(R + ) .

Equations (Al 1) and (A12) yield

fi (R)= —A ~(1+l)r',

fi (r)=A ~

(A12)

(A13)

(A14)

(A15)

(A16)
Ei '(r) =6(R r)E~(™j&( Tr ), — (A10)

with fi (r), fi (r), f„(r), and f„(r) verifying the equa-
tions

f~(r)=A ~r

) A~f„(r)=
(A17)

(A18)

dfI l(l+ 1)+ ndr r (A 1 1) while conditions (A13) and (A14) yield Eqs. (17b) and
(17e) for A and A
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