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Nonlocal kinetic energy functional for nonhomogeneous electron systems
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We present three density-functional models for the kinetic energy of the electron gas. The density
functionals are constructed to give the exact energy and linear response of homogeneous systems.
We include nonlocal behavior through an "averaged density" evaluated with the aid of a weight
function. By a scaling hypothesis we obtain a universal (i.e., density independent) differential equa-
tion for the weight functions in k space. We have used these three functionals for jelhum surfaces
and light atoms to compare the results with the exact results and the calculations of other functional
approximations.

I. INTRODUCTION

For any system of electrons, the density-functional
(DF) formalism developed by Hohenberg and Kohn, and
Kohn and Sham, ' proves the existence of an energy-
density functional E [p(r)] such that it reaches its
minimum value at the density distribution of the ground
state, and the value of the functional with this density
gives the energy of this state. The functional E[p] may
be separated into an intrinsic nonelectrostatic term 6[p]
plus the interactions between the electrons and any exter-
nal potential U(r}:

I

E [p]=G[p]+ —,
' f I p p, dr dr' + J p(r)U(r)dr .

N
T [p]= g J dr f;(r)V' P;(r), (1.2)

G[p] itself is usually divided into a "kinetic energy"
term T[p), which would be the fu'll energy of a nonin-
teracting electron system, plus an exchange and correla-
tion term E„,[p]. The latter may be modeled in several
ways, like the so-called "local-density approximation"
(LDA), in which E„, is supposed to be locally equal to the
exchange and correlation energy of a uniform system.
The kinetic energy T [p] can be exactly evaluated in terms
of the one-electron wave functions:

summing over the N electrons. (We will use the rydberg
as our unit of energy. ) Equation (1.2) requires the
knowledge of the full set of one-electron wave functions,
and that means that we need much more information than
can be easily extracted from the density distribution (1.3).
In the latter case, we are using a three-dimensional func-
tional space instead of the 3N-dimensional space for the
wave functions. This means that it would be quite con-
venient to have a model for Tfp] without reference to the
wave functions, so that all the contributions in Eq. (1.1)
could be treated on the same footing and E[p] could be
minimized either by a variational procedure over a family
of p(r) or by using the exact extreme conditions

5E[p]/5p =0 . (1.4)

In a uniform system, with p(r) =po, the kinetic energy
may be written as T[p]=Nt(po), where t(po), the mean
kinetic energy per electron, can be exactly evaluated from
(1.2) as

t (po) =
s kF'(po) =

5 (3+po)'" .

So, the simplest model for T[p] is the LDA:

Ti,D~[p]= J drp(r)t(p) . (1.6)

This corresponds to the Thomas-Fermi approximation.
The first attempt' at treating nonuniform systems and im-
proving over the LDA was to include the leading term in
a density-gradient expansion for T [p], given by

with T[p]=Ti.D„[p]+ 3'6 f dr,(Vp)'
p(r)

(1.7)

p(r) = g ~
@;(r) (

', (1.3) where the coefficient of the square-gradient term was cal-
culated to give the correct limit of the energy of a uni-
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5'T [p]
5p(r)5p(r')

' (1.8)

where the function IC(r, r') is defined as minus the func-
tional inverse of the electron-gas susceptibility Xo(r, r'). In
a homogeneous system both J (r, r') and Xo(r, r') depend
only on

~

r —r' ~, and the connection between them is
much easier in Fourier space

X(k)=-
XQ

where Xo(k) is the Lindhard susceptibility

Xo(k)=—,1+ ~ ln
4~ 2g 1 —g

(1.10)

form and noninteracting system under the action of a
long-wavelength perturbation in the density.

Hohenberg and Kohn' have shown that the response
function of the system is directly related to the second
functional derivative of 6 [p], so that for a noninteracting
system we get

the density-energy functional but an important term when
discussing the ground-state energy of an atom or ion using
DF formalism. In these cases it has been pointed out that
there is some theoretical evidence supporting the descrip-
tion of T fp] with the full Weizsacker term, incorporating
the local-density one as a correction to it.

So, in order to obtain a functional for the kinetic energy
of a multielectron system, we are compelled to connect
the two extreme limits cited above: the limit of the uni-
form system on one side, and the case of systems with
well-separated electrons, so to speak, the Weizsicker limit
for T[p].

The aim of this paper is to construct a functional model
for T[p] containing the full linear response of a uniform
noninteracting system of electrons. That means that the
second functional derivative of our T[p] will be exact, in
the homogeneous free-electron limit. In our treatment,
the %'eizsicker term arises in a clear way in the energy
functional by using simple physical reasons. For illustra-
tion of the procedure for constructing T[p], we will
develop three different functionals which we will compare
in applications to surfaces and atoms.

with g=k/2kF.
It is straightforward to show that taking TiD~[p] in

(1.8) is equivalent to approximating Xo(k) by its k =0
limit, that is, in the Thomas-Fermi limit. The square-
gradient correction to LDA in (1.7) was obtained by tak-
ing the next term in the small-k expansion of Xo(k)

II. CONSTRUCTION OF T[p(r)]

T[p(r)]= f drp(r)t(p(r)), (2.1)

We try to construct a functional model for T [p] of the
type

1

Xo(k)

2ir' 1 k + t ~ ~

The next term, of order k, in (1.11) corresponds to the
inclusion of the second kinetic energy density-gradient
correction in (1.8). ' In atoms, the functional derivative
of this correction diverges for r~ao, due to the long-
range behavior of the response of the electron gas. This
divergence will introduce nonphysical properties in the
Euler equation (1.4) of the DF formalism. The series ex-
pansion of T [p] in terms of the gradient of p could be ex-
tended further but there is no guarantee of convergence
and, more importantly, it can never be made to reproduce
the logarithmic singularity of Xo(k) for k =2kF, which
produces some of the most striking features of the inho-
mogeneous electron gas, like Friedel oscillations, atomic-
shell structure, etc.

On the other hand, one can discuss the opposite limit:
systems with only one or two localized electrons.
Weizsacker included a correction to the LDA kinetic en-
ergy in terms of the square gradient of the charge density
but fitted to the k~ qo limit of Xo(k) rather than to k~0
as in (1.11). This approach gives the same functional
form as (1.7) but with an- extra factor of 9. This
Weizsacker term happens to be by itself and without the
LDA term, the exact kinetic energy functional for one- or
two-electron systems treated in the Hartree-Fock approxi-
mation. Furthermore, it has been well established ' that
the Weizsacker term is not only a natural component of

which looks like TLD&[p] in (1.7), but where the function
t(p) is not evaluated at the local value of the density p(r)
but at a value p(r) of a new function which is itself a non-
local functional of p(r). Functionals like (2.1) have been
used in describing the free energy of classical fluids'
and the exchange and correlation energy of a system of
electrons. ' The idea behind it is to take advantage of the
degrees of freedom not fixed in the prescription of p(r)
for getting the correct linear response of a free-electron
gas given by (1.8)—(1.10).

Here we take

p(r)= f dr'p(r')w(
~

r —r' ~,p(r)), (2.2)

f drw(r, p)=1 . (2.3)

In early attempts' to use this type of density functional
in electron systems, the weight function in (2.2) was taken
as depending on p(r) rather than on p(r). There is no"a priori" reason to prefer one of these forms over the
other but, as we will see below, our choice is in the end
much better for technical reasons.

By evaluating the second functional derivative of T [p]
at uniform density p(r) =po, we get

so that p(r) may be interpreted as an "averaged" density
obtained by convoluting p(r) with a weight function

- io(r,p(r)), which should be obviously normalized at fixed
p as
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5'T[pl
5p(r)5p(r') po

dw( Ir —r' I,pp)=2t'(po)w( Ir —r'
I

po)+pot"(po} f «"w( Ir —r"
I po)w( I

r' r"
I po)+2pot'(po) (2.4)

Po

K(o,po) =2t'(po)+pot "(po}= [pot (po)]" . (2.6)

This result is' consistent with the compressibility sum
rule's and, of course, with the value obtained for Xp(pp)
using (1.10). Lindhard susceptibility has the dependence
on k through the scaled variable q =k/2kF(po), so that
K(k,pp) in (2.5}can be written as

K(k,po) = = F(g)
—1 2~'

&o(k,po kF po

= [pot (po}1"F(n» (2.7)

with

F(g)= 2

1+ ln
1 —g 1+q

29 1 —7l

(2.8)

We try the same scaling of k for the weight function, i.e.,

w (k,p) =w(k/2kF(p) ) =w(g),

which gives [note that kF(p) =3+p]
d = 1n

w (k,pp) = —— w'(7}),
6po 3 po

(2.9)

(2.10)

where w'(g) is the first derivative of w(g). With this
scaling, Eq. (2.5) becomes

2t'(pp)w (g)+pot"(po)w (g) —
3 YJw'(g) = [ppt(pp)] "F(il) ~

(2.11)

We can see that all the explicit dependence on po can be
eliminated so that we get an universal (i.e., density-
independent) differential equation for w (i}):

2w(g) ——,
' wz(g) —', rlw'(g) = —,'F(q) . — (2.12)

This equation will play a major role in all the discussion
below.

We must point out that the right-hand side of (2.12) is

where t'(p) and t "(p) are, respectively, the first and
second derivatives of t(p). By using (1.8), the function
K (k,pp) for a free-electron gas is given in Fourier space as

K (k,po) =2t'(pp) w(k, pp) +pot" (po) [w (k,po) ]
dw(k, po)+2pot'(po) (2.5)

po

where w(k, pp) is the Fourier-transformed weight function
and K (k,pp} is given by (1.9).

The normalization (2.3) implies w (k =O,pp) =1, so that
for k =0,

fixed by the "input" response function we want to repro-
duce, while the left-hand side is given by the structure of
the functional we are going to construct, expressed in this
case by Eqs. (2.1) and (2.2). Thus, had we taken
w (r,pp) =w (r}, with no dependence on po, we would get
instead of (2.12) an algebraic equation for w (k),

2w(k)+ —,
'

w (k)= ', F(k/—2kF),

which requires a special choice of kF (or the density) at
which the Lindhard response function will be achieved for
each k; that is, the weight function would not be able to
reproduce the response of a system with a given density
for all k. Moreover, if we take the weight function as de-
pending on P(r) rather than on p(r), as was tried' for
E„,[p], we get a term qw(g)w'(q) instead of gw'(p) in
(2.12). This change produces a very nasty divergence of
the derivative w'(g) whenever w(g) goes to zero, making
it difficult to integrate the differential equation for a sen-
sible function w(g).

In the rest of this section we keep the left-hand side of
(2.12) as it stands, but we will play with the right-hand
side by taking some parts of the Lindhard response func-
tion out of F(g), for reasons we will explain below. In
this way, we will explore three different models for T [p],
which in the next sections we will test for surfaces and
atoms.

A. First functional model Ti [p]

If we solve Eq. (2.11) as it stands, with F(rl) given in
(2.8), that is, trying to get the full Lindhard response
function out of the functional (2.1), we get that F(g)
diverges for large g:

F(g) =3g ——', +O(1/g ) (2.13)

when g~ao, and this divergence propagates to w(g)
through (2.11). w(r, pp) must have an extremely strong
diverging structure, much worse than a 5 function, to get
this behavior in w (g) when k is large. We must track the
problem back to a physical reason and try to take it out of
the differential equation. In fact, for getting a density
fluctuation with wave vector k in a free-electron system,
it is necessary to excite electrons with this wave vector.
This means a kinetic energy k per excited electron,
which must be reflected in the susceptibility Xp(k). The
functional P(r) may include this effect, stronger for larger
k, which is opposite to any intuitive idea behind (2.3),
where we suppose p(r) to be some sort of "averaged" p(r).

Thus, it is clear that if we want to keep this naive idea
of p(r) and, more importantly, to make feasible any nu-
merical solution for w(g), .we have to take the leading
term in (2.13) out of the right-hand side of the differential
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equation (2.12). One possible way to do that is by includ-

ing explicitly in our functional model for T [p] a term in
square gradients which will give exactly the large-k limit
of —1/Xo( k,po).

Thus, we get our first functional model

2

Ti[p]= I drp(r)t(p(r))+ —,
' J dr

p(r)
(2.14)

with p(r) given by (2.2) where the weight function is fixed
by the new differential equation

2w (g) ——,
'

w (rI )——', rlw'(rl )= —', [F(q)—3g2] . (2.15)

The density-gradient term in (2.14) is precisely
%eizsickers correction to the local-density approxima-
tion, as commented on in the Introduction. As is well
known, this term gives by itself the exact kinetic energy of
any one-electron density distribution, and we have ob-
tained it by treating exactly the single-electron part of the
Lindhard response function.

Going back to (2.15), we can rearrange the differential
equation for w(g) as

w'(g) =—3w(g) ——,
'

w (g)— 15
2n (2.16)

which, in principle, would be solved with the initial value
w(0)= l. In fact, that is not feasible because (2.16)
presents an unstable solution when integrated from g =0,
so that any small deviation, e.g., inaccuracy in the numer-
ical integration, will drive w(g) to extremely different
values of w(g) for large rl. To avoid this problem, we
analyzed the large-g behavior of (2.16) and found that
w (g) will go flat as g~ ao [i.e., w'( oo )=0] with only two
values, which are the roots of the equation

3w ——w +—=01 2 3
oo 2 oo

w being equal to limv w(g). Thus, we have
w =3+~12. Now, if we integrate (2.16) backwards
from large q with any of, these values, the solution is quite
stable. Nevertheless, in the limit g —+0, only the solution
with w =3—~12 goes to the prescribed value w(0)=1,
so that this is the solution with physical meaning.

Now we can make the inverse Fourier transform of
w (g) get the weight function in real space as

condescend to any interpretation and consider it as a mere
tool to construct a function Ti [p] with some well-defined
specifications, we can go ahead with a straightforward ex-
tension of t(p) to negative arguments. In this case the
values obtained for the ground-state energy and the densi-

ty must be compared with the exact results for deciding
the accuracy of the functional model.

B. Second functional model Tq[p]

Despite the arguments just given about the viability of
the functional Ti[p], even when p(r) reaches negative
values somewhere, it may be useful to look for the origin
of this behavior. In the large-g liniit we have removed
from the right-hand side of (2.15) the diverging term 3g
but the constant term ——', is left. So we have at large k
an inverse response function

w (rp) =8kF(p)w(2kF(p)r), (2.17)

where the 2kF enters not only as a scaling factor in the
universal function w(x), but also as the prefactor neces-
sary to keep the normalization (2.3). The fact that w(p)
goes to a nonzero constant when g —+ 00 means that'there
is a 5-function component in w (x), with a factor given by
the value of w. So p(r) has a term proportional to the
local density p(r), with a coefficient c =3 —v 12
= —0.464 101 6. It is somehow unnerving to find a nega-
tive local direct contribution to p(r) which may be com-
pensated for by the nonlocal part, though in some cases it
can lead to negative values for p(r) itself. In fact, this is
the case when the functional model Ti[p] is used to
describe the hydrogen atom, which should be considered
as an extremely hard test for any functional model which
has been constructed with ingredients, say t (p) and
Xc(k,p), taken from the homogeneous limit. Getting neg-
ative values of P(r) is discouraging from the point of view
of the "physical interpretation" of this object, but if we

0.001—

-0.001—

FIG. 1. Weight functions for the three kinetic functionals.
Dashed line: TI. Dotted line: T~. Solid line: T3. Local con-
tributions are taken out.
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AX(k)= — — g = — +0(1/k ) .
Xo(k,po) kF 5kF

It is easy to see the physical origin of this constant term;
it is the same as for the quadratic term in (2.13), coming
from the energy of one-electron states, with wave vector k
being excited to generate a density fluctuation with the
same value of k. In fact, the excitation of this electron
implies the creation of a hole in the Fermi sphere, which
has a negative energy. For k »kF, the energy of the hole
can be calculated by averaging over the Fermi sphere, giv-
ing the ——, term in (2.13).

Now, in the formulation of a new functional, w'e can
try to extract from the construction of p(r), not only the

I

excited electrons, but also the hole being left in the Fermi
sphere in the large-k limit. So we let all other possible ex-
citations be described by a functional of the type (2.1).

To get a constant response function (in k), we need a
local-density functional or a 5-function response in real
space. Thus, we include explicitly in Tz[p] a LDA term
with a ——, prefactor and write

Tz[p]= —,
' f drp(r)t(p(r)) —', —f drp(r)t(p(r')}

l &p(r) l'+
p(r)

(2.18)

as our second functional model for T[p]. In this case,
P(r) is defined by (2.2), while the weight function is the
solution of

w'(g)= —3w(g) —Tw (g)—1 25
'9 2 8

2

(1—g )1 1+g
2q 1 —g

(2.19)

where we have extracted from F(g) the two trouble-
making terms. Again, as for (2.16), the solutions to this
equation are unstable if we start integration from q=0.
However, we get the limit w (g)~0 when g~ oo and the
backwards integration from this value leads to the correct
w(0)=1.

The weight function in real space, scaled with kF in the
same way as (2.17), is represented in Fig. 1 together with
the nonlocal part of the weight function in the first func-
tional model, both of which have an integrable divergence
(-1/r) at the origin.

C. Third functional model T3[p]

At this point, it should be quite clear that there is a lot
of freedom in the construction of a kinetic-energy func-
tional, even with the requirement of reproducing both the
energy and the full linear response function of a free-
electron gas. On the other hand, we want to get a func-
tional that adequately describes strongly inhomogeneous
situations in electron systems. In the Introduction, we
have recalled Weizsacker's correction itself as the exact
functional for the kinetic energy of a single electron sys-
tem. T&[p] and Tz[p] include this term but they do not
reproduce the energy of such an electronic state. All the
ingredients used in T&[p] and Tq[p] come from the
homogeneous limit, and our aim being to construct a
T [p] for inhomogeneous systems, we could ask ourselves
for a functional model tailored to some specific situations.
In particular, it would be especially rewarding to have a

I

functional which, besides giving the correct limit for
homogeneous density distributions, would give the exact
energy in the Weizsacker limit. In this way we could tie
up the two extreme cases we discussed in the Introduc-
tion, in the hope that the functional would describe better
than T~ and Tz any intermediate case.

Let us discuss the localized density of an s state in the
hydrogen atom. In this case the Weizsacker term given,
by itself the exact result, so that it would be desirable to
get rid of the remaining terms of the kinetic energy func-
tional which, on the other hand, are the important ones
for the homogeneous limit. However, these extra terms
give a positive contribution of about 24% of the exact
value when using T~[p] and a negative contribution of
about 11% for T3[p]. This suggests a functional model
somewhere in between both functionals, so that the terms,
apart from the density-gradient one, will strictly vanish
when evaluated for an s-orbital density distribution. Be-
cause of the scaling of k to kF in (2.8), this property will
hold for any one-electron s state, whichever arbitrary pa-
rameter is used in the wave function.

We assume our third functional to read as

T3[p]=( 1 +d) f drp(r)t(p(r))

—d f drp(r)t(p(r)}+ —,
' fdr, (2.20)I ~p«) l'

p(r)
where d is a fitting constant to give the vanishing result
cited above. The functional P is evaluated by (2.2) with
the weight function obtained from the differential equa-
tion

w'(g) =—3w(g) ——,
'

w (g)—2(1+d) (2.21)
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Clearly, Eqs. (2.20) and (2.21) reduce to (2.14) and (2.16),
and (2.18) and (2.19), respectively, if we make d =0 and
d = —', . The weight function can be integrated backwards
from the constant asymptotic value of

1/2

u„=3—9+ 3—5d
(2.22)1+0

For each value of d we get a different w(x) and a dif-
ferent result for the kinetic energy of the s orbital in the
hydrogen atom. Varying d, we can solve the implicit
equation for d and get the correct value of the energy.
The resulting value is d =0.22= —, (within the numerical
precision). The weight in real space has a 5-function con-
tribution with a factor rU„= —0.247; we represent the
nonlocal part in Fig. 1.

That completes our search for different descriptions of
the kinetic energy functional T[p] in terms of functional
models like (2.1). The three models give the same results
for weak deviation from a homogeneous density distribu-
tion but will lead us to different results when treating
strong inhomogeneous systems. We can decide which of
these functionals is better in any given situation based
only on the results we obtain.

In order to simplify the numerical evaluation of P(r)
and T

ipse,

we have developed an analytical fit of the
weight functions (see Appendix) and we should note that
all the calculations we present in this paper were done
with these parametrized weight functions.

III. APPLICATION TO SURFACES

In this section we will use our three functional models
for T [p] to determine the surface electronic structure of a
metal within the jellium model, i.e., when the positive
charges are replaced by a steplike background with uni-
farm density po in the solid and zero outside. This model
was studied by Lang and Kohn' (LK) using the LDA for
the exchange and correlation energy E„,[p], and the for-
malism of Kohn and Sham to evaluate exactly the kinetic
energy T [p) from the wave-function solution of the effec-
tive one-electron Schrodinger equation. The same system
was also studied by Sniith' using a first-gradient correc-
tion to the LDA for T[p], and later by Ma and Sahni's
(MS) with a functional model for T[p] which includes
the next-order gradient corrections to Ti D&[p]. Here, we
will use the same approximations for the exchange and
correlation energy and compare the predictions of our
madels Ti[p], Tz[p], and Tz[p] with the results for the
exact T [p] (LK) and the gradient expansion (GE).

To get the minimum of E [p], we have used

+W, exp[ —(z —W, )'/W', ] . (3.1)

In Table I we present the results for the surface energy
with our three functional models for T [p] after minimiz-
ing the total energy with respect to the seven parameters
in the trial profile (3.1). We also present the results ob-
tained within the same parametrization but using the gra-
dient expansion ToE[p] and the exact (for T[p]) fully
self-consistent calculations of LK, which do not require
any trial parametrized density. It is clear that our second
and third functional models give better results than the
gradient expansion. It has to be pointed out that in the
original MS paper, the trial function used in the variation-
al approach was a much simpler exponential-type profile,
which gives surface energies quite close to the exact LK
values. When the more sophisticated trial function (3.1) is
used, the results of MS are driven down so that the previ-
ous agreement has to be considered as fortuitous.

In Fig. 2 we present the density profile for three cases:
the LK calculation, when the total surface energy of the
system is minimized by using our Tz[p], and when the
TaE functionals are used with the parametrization (3.1).
We remark that the density profiles calculated when using
Ti[p] are quite similar to the ones obtained with T[p].
Our profile is closer to the LK one than the GE result.
Both Tz[p] and ToE[p] find a peak near the surface but
do not reproduce the oscillations below. %e have looked
for the reasons of this behavior and have found that it is
due to the lack of flexibility of the parametrization, even
with the sophisticated Eq. (3.1). In fact, if one tries to fit
the LK result for p(z) to our form (3.1) by least squares,

parametrized trial density distributions p(r) in a variation-
al calculation. The result of such a niinimization gives a
rigorous upper bound to the ground-state energy of the
system. We have used a variety of trial functions to get a
better estimation of the minimum for E [p]. It is very im-
portant to get a good description of the first peak in the
electronic density near the surface. Any monotonic pro-
file gives bad estimations of the real minimum of E[p],
so we describe this first peak by a Gaussian with its am-
plitude, center, and decay considered as free parameters.
For the decay of p(z) in the tail outside the positive back-
ground, we assume an exponential form, and as we are
also interested in including Friedel-like oscillations, we
use the profile suggested by Bosio and Dumezine' with
seven parameters,

p( z) 2 i sin( —2mz/3 z )1+ 2 [1+exp(z/2 q )]
po 1+(z/A, )'

Lang-KohnT2

TABLE I. Results for the surface energy E„as calculated by variational minimization of the
surface-energy functionals in the range of metallic densities. Units are ergs/cm~.

Ti T3

2.0
3.0
4.0
5.0
6.0

—1082.2
155.3
133.46
81.82
50.16

—673.8
249.6
174.12
103.54
63.62

—924.5
185.7
149.5
93.51
57.88

—768.5
223.75
163.39
99.67
60.91

—1008
199
158
98
60
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go
)

M

0

the density

&&[ I
~p I

r
I

+u,rf(p(r) )=p,
where

p(r'), &E,[p]
U ff(p(r)) =u„,(r)+, dr'+

r —r' 6p

Work towards a solution of these equations is in progress.

IV. ATOMS

0.5-

-2
z/2 kF

FIG. 2. Electronic density profile after minimization of the
surface energy of a jellium with r, =5. Solid line: exact result
of LK. Dashed line: GE. Dotted line: T2.

the resulting profile does not present oscillations beyond
the first peak. On the other hand, we have calculated the
surface energy using the LK values of the density profile
in the different functionals. The results are shown in
Table II and we can see that our T& and Tz functionals,
except for r, =2, have a surface energy lower than that
obtained with (3.1), and so we expect that the real minima
p(z) of these two functionals are closer to the LK profile
than to the p(z) obtained with the parametrization (3.1).
Furthermore, the results for ToE take the opposite direc-
tion, and the profile that minimizes To+ will show a
shape closer to the one represented in Fig. 2 than to the
LK type.

The results obtained for the surface dipole barrier and
the work function with our Tz[p] functional, are shown
in Table III. The results of LK and of MS with an ex-
ponentia1 trial density are also included. As can be seen,
our second functional improves the results of MS. How-
ever, these values depend delicately on the parametriza-
tion of the density profile we have used, and we hope that
the results will be better for a profile closer to real mini-
ma. To obtain the exact profile within our theory it is
necessary to solve self-consistently the Euler equation for

In this section we will give some results obtained with
our functionals when applied to the calculation of the ki-
netic energy of light atoms (from H to Ne). So we want
to study the feasibility of our functionals, constructed for
reproducing the free-electron case, in the description of
small localized electronic systems.

In order to simplify the treatment, we have studied only
atoms with closed subshells or filled shells, so the electron
density has spherical symmetry. We will use Slater orbi-
tals for the one-electron wave functions, orthogonalized to
the orbitals with lower energy, and construct the electron-
ic density of the atom using (1.3). This treatment, quite
similar to the single-zeta approximation of Clementi and
Roetti, is simple bgt our aim is to compare the results
obtained with the three kinetic functionals with the exact
values of the kinetic energy. Another approximation, the
so-called second-gradient expansion which has been used
by Murphy and Wang ' with the Hartree-Fock electron
densities of Clementi and Roetti, is also compared with
these results.

In Table IV we show the kinetic energy of some atoms,
using the electron density obtained with the Slater coeffi-
cients of the single-zeta functions of Clementi and Roet-
ti. In the parentheses we present the percent error of
each value when compared with the exact kinetic energy
of the atom, obtained directly by ineans of the Slater coef-
ficients. Obviously, T3[p] given by construction gives the
exact results for H and He, but T2[p] gives better results
for the other atoms. This means that the physical reasons
for the construction of T&[p] stand for one- or two-
electron atoms, but they fail for other atoms. On the oth-
er hand, Ti[p] always gives the worst results, just like
with the surface problems.

We also note that the values obtained with T2[p] can
be positively compared with those of Murphy and Wang '

which are, to the best of our knowledge, the more accu-
rate results evaluated with kinetic energy functionals. We

TABLE II. Results obtained for surface energy E, in the range of metallic densities, calculated with
the density profile of LK and the kinetic energy functionals. Units are ergs/cm .

2.0
3.0
4.0
5.0
6.0

—1065.3
167.8
142.03
86;91
53.55

—632.8
250.8
171.73
101.25
61.73

T2

—887.2
185.
147.9
90.6
56.27

T3

—746.8
221.6
161.22
96.58
59.35

Lang-Kohn

—1008
199
158
98
60
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TABLE III. Surface dipole and work function (in eV). I: Ma and Sahmi with exponential profile.
II: our second functional. III: exact treatment of Lang-Kohn.

7.31
2.82
1.49
0.94
0.66

44
4.00
3.64
332
3.03

6.097
2.053
0.915
0.103
0.004

3.183
3.235
3.006
2.479
2.373

6.80
2.32
0.91
0.35
0.04

3.89
3.50
3.06
2.73
2.41

must comment also on the results of Alonso and Girifal-
co, who have calculated the kinetic energy of some of
these atoms by using a nonlocal weighted-density approxi-
mation in which the kinetic energy functional depends ex-
plicitly on the exchange-correlation factor. Their results
are comparable with the values shown in Table IV, but we
do not include them because they have calculated the ki-
netic energy using a Hartree-Pock density. Although we
present results for simpler densities, we expect that the
general trends shown in Table IV would be satisfied if
more accurate electron densities were used.

On the other hand, the scaling of the weight functions
for the local density kF(p(r) ) guarantees that the
minimuin value of our three functionals for electrons, in
the presence of a point-charge Coulomb potential, will
satisfy the virial theorem (i.e., the value of T [p] is minus
the total energy E [p]). But if we use the aforementioned
density profiles with the functionals included in Table IV,
we will not obtain the exact virial coefficient. It is clear
that we are not at the minimum functional value of the
total energy because all these functionals verify the virial
theorem in their minima. We must numerically integrate
the Euler equation associated with each of the functionals
to obtain the actual electron density of the atoms. By
now, we will content ourselves with showing in Table V
results of the total-energy minimization using orthogonal-
ized single-zeta orbitals to describe the electron density of
the atoms. The percent errors presented in the table refer
to the difference between the kinetic energy obtained by

minimization of the exact total energy and of the total en-

ergy evaluated with the kinetic functionals (all calcula-
tions were done with the Xa method for the exchange-
correlation energy a taken from Slater; after minimiza-
tion the virial theorem is satisfied). As can be seen, these
results show differences with respect to Table IV, but the
error ranges of the values of the kinetic energy are similar
in both tables. Even though the GE approximation gives
excellent results for the total kinetic energy, it is known2
that its local behavior is less accurate than other nonlocal
kinetic functionals. In any case, it is clear that we must
free all the restrictions on p(r) to obtain the actual density
profile that will give the minimum functional value of
E [p]. This freedom is not compatible with single-zeta or-
bitals and so the minimization results of Table V are
merely indicative (note that we have proven that it is pos-
sible to obtain the same values for the total energy with
quite different electron densities). On the other hand, it is
well known that to describe the shell structure of the
electron density the inclusion of nonlocal terms in the ki-
netic energy functionals (in addition to the Weizsacker
term) is of fundamental importance. Moreover, if one
wishes to obtain a good density, it is necessary to con-
struct a kinetic functional with a good local-energy-
density behavior. ' So it is important to discuss the re-
sults of the numerical solution of the Euler equation for
the density profiles and for the local behavior of the kinet-
ic functionals presented here. Work on this question is in
progress and we will report the results elsewhere.

TABLE IV. Kinetic energy of some atoms (in Hartrees) using single-zeta orbitals with distinct func-
tionals. In parentheses, the percent error of each value with respect to the exact kinetic energy.

Atom

0.6179
(23.6)
3.353

(17.7)

»[p]
0.446

( —10.7)
2.969

(4.27)

0.5
(0.0)
2,845

(0.0)

0.3806
( —23.9)

3.059
(7.42)

Li 8.535
(14.6)

7.561
(1.6)

7.247
( —2.6)

7.795
(4.7)

Be 16.408
(12.7)

14.578
(0.15)

13.99
( —3.8)

15.110
(3.8)

58.420
(7.66)

52.646
( —2.99)

50.957
( —6.1)

54.664
(0.73)

Ne 139.17
(8.8)

127.58
( —0. 18)

124.40
( —2.66)

130.45
(2.06)
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TABLE V. Percent errors of the kinetic energy after minimi-
zation of the total energy using single-zeta orbitals.

He
Be
Ne

—15.1
—4.4
—1.0

T2

—4.1

5.2
5.0

T3

0.0
9.8
7.1

GE

—6.9
—1.1

0.7

V. DISCUSSION

We have constructed three functional models for the ki-
netic energy of a noninteracting system of electrons. The
idea was to take functional forms like (2.1) which give the
exact energy for a homogeneous system, by taking the ex-
act t(p), and to use the prescription for P(r) in terms of
p(r) to achieve the correct linear response. This process
leads to a density-independent weight function w (x) given
by a differential equation like (2.12). We have seen also
that in order to avoid strong pathologies in w (x) one has
to take out the leading term in the inverse response func-
tion for k~ao. This term comes from the one-electron
excitations in the I.indhard susceptibility Xo(k), and so it
is not surprising that it is exactly obtained from the
Weizsacker term. That gives our first functional model
T~[p]. The next step was to take out of the description,
through a functional like (2.1), not only the leading but
also the next-to-leading term in Xo(k) for large k. The
new contribution arises from the averaged hole being left
in the Fermi sphere by any one-electron excitations.
Thus, in our second functional model T2[p] we describe
through an "averaged density" p(r) all the contributions
arising from many-electron excitations, keeping out all the
one-electron plus averaged hole processes.

The results, both for the jellium surface and for the
atoms, show that this second model is the best, supporting
the physical considerations which led us to it.

Both T~[p] and Tq[p] were constructed only with the
information from the homogeneous density system. Our
third model T3[p] is an attempt to include also some in-
formation on the one-electron system so that we could
bridge the two opposite limits. To do that we used an in-
terpolation between T, [p] and T2[p] to achieve the
correct limit for the one electron in a 1s orbital, partially
sacrificing the separation between one-electron and
many-electron processes, followed for T2 [p]. Unfor-
tunately the results for this third model are not rewarding
because, although for the jellium surface they are only a
little worse than the results with T2[p], for atoms (other
than H and He, which are exact by construction of
T3[p]), the agreement with the exact T[p] is much poor-
er. This indicates that the interpolation scheme used to
get T3[p] is deficient and we have to propose Tz[p] as
our best model for the whole range of possible systems:
from a few electrons to infinite systems. This functional

compares very favorably with any existing density func-
tional for T[p], making a clear improvement over the
gradient expansions.

We also have to point out that our model is perfectly
self-consistent and does not require any extra information
before applying it to any system. The parametrization for
the weight function w(x) corresponding to T2[p] makes
it very easy to use in numerical calculations.

C'2

2
28 1

175(1+d) 7—w

A is determined by the normalization condition, and w

and d are given in Sec. II. In Table VI we present the
values of the best-fitting constants of the analytical
weight functions for our three functionals. The values of

00 1 /2I dq[w (q) —wt (q)]

are also shown in the table.
The weight function (A1) can be Fourier transformed to

obtain

w(r)=C5(r)+e '" ~ '(a+br )+e (flr+g), (A2)

where

(n.a) 3D (~~)A+, b=
. 8 2' '

8 4Q;2

(A3)
C D+CFI

4n. ' S~H

APPENDIX: ANALYTICAL PARAMETRIZATION
OF THE VfEICiHT FUNCTIONS

Due to the differential equation (2.12) that relates the
weight function to the response functions of the electron
system, two points of nonanalytical behavior of w(g) are
found. The response function F(g) introduces a
nonanalyticity for rt =1 (g=k/2k') and the structure of
the differential equation introduces a new one for g=o.
That means that the asymptotic decay of w (r) for r ~ 00

is slower than exponential and the numerical evaluation of
p(r) may be delicate. In addition, the calculation of T [p]
becomes difficult in some cases.

In order to avoid these numerical subtleties, we sought
an analytical fitting of the weight function. The behavior
of w (g) when g~ oo (up to terms in g ) is known from
(2.12) and we can write

wg(g)=e "(A+By )+ +, +w„,C D+ CH2

~2+HZ (~2+~2)2
(Al)

where

C=— 12
35(1+d)(5+w„) '

TABLE VI. Values of the parameters for the best-fitting analytical weight functions.

T$
T2
T3

0.0
3/5
2/9

2.9088
3.012
2.9534

—3.008
—2.083
—2.5802

1.3794
1.2256
1.3126

0.039
0.025
0.032
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sip 2-
I

We must stress that the important point in the fitting is to
describe the values of w (ri) when to (1 as suitably as pos-
sible.

On the other hand, we have found it more accurate to
fit the values of to(g) instead of fitting the response func-
tion F(g) and then integrating the differential equation
(2.12) for w(ri). But if we differentiate the parametrized
weight function (Al), we get the function represented in
Fig. 3, quite close to F(q). Note that the singularity for
k =2kF has disappeared in the parametrization process.
In this figure we depict also the right-hand side of (2.12)
as obtained in the second-order gradient approximation
(GE).
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