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A Green-function investigation is made of the (complex) band structure and local density of states
of superlattices composed of two alternating component crystals, which are modeled by means of
the two-band nearly-free-electron approximation. The variation of different superlattice band struc-
tures with component-crystal thickness is studied in detail, particular attention being paid to the all-

important role played by interface states.

I. INTRODUCTION

The band structure of superlattices, especially those
prepared by molecular-beam epitaxy (MBE), has been in-
vestigated intensively in recent years. The first simple
models, with rectangular barriers,! have now been super-
seded by more sophisticated calculations, which can
describe real systems.? These calculations are rather
demanding numerically, so simplified formulations, par-
ticularly for thicker component crystals, have also been
developed.? ’

Here, a straightforward Green-function (GF) approach
is adopted, which provides a means of describing the elec-
tron energy bands and gaps of a superlattice in terms of
the solutions of the Schrédinger equation, satisfying one-
sided boundary conditions at infinity. A study is per-
formed of the development of the band structure, i.e., the
modification of the energy gaps of infinite crystals, and
the formation of new gaps as the thickness of the com-
ponent crystals is varied. Special attention is paid to the

role of interface states, since superlattices may be viewed
|
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as systems with many interfaces.*=° Isolated interfaces
between two crystals can either contain such localized
states, or be free of them, so these properties can be ex-
pected to be reflected in the related superlattices. To illus-
trate the general properties, a simple one-dimensional
model in the two-band nearly-free-electron (NFE) approx-
imation is adopted, for which two types of interfaces are
easily obtained by merely changing a single parameter in
the effective potential.

II. FORMULATION

In atomic units (#i=2m =1), the GF G(x,x’;z) in the
coordinate representation is given by

[z +V2—V(x)]G (x,x";2) =8(x —x') , (1)

where z=E +i0. Although there are several ways to
construct the GF, the so-called direct method”? is used
here, where the GF is expressed in terms of the solutions
of the corresponding Schrédinger equation, satisfying
one-sided boundary conditions. For infinite systems,
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where f, and f_ are the solutions of the Schrodinger
equation for energy E, satisfying the physical boundary
conditions at + o and — oo (i.e., outgoing propagation of
electrons in the bands, and decaying solutions in the gaps).
In the denominator, the Wronskian of f, and f_ is in-
dependent of x. The poles of the GF determine the ener-
gies 'of the discrete eigenstates, and the local density of
states (LDOS) at x is given by

D(x;E)=—7"'ImG (x,x;E +i0) . (3)

The superlattice to be investigated consists of alternat-
ing layers of 4 and B crystals, the potential V(x) being
equal to that of crystal 4 (B) over the domain of length
d,4 (dp). The infinite system is periodic, with a period
d =d 4 +dp, so solutions of the Schrédinger equation will
have a Bloch form with real wave numbers k from the
Brillouin zone —w/d <k </d, and the dispersion rela-
tion E (k) will exhibit allowed and forbidden energy bands
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(the latter corresponding to complex wave numbers). In
the allowed bands; the group velocity V;E,(k) of an elec-
tron enables the correct assignment of f, and f_ to the
Bloch functions to be made.

Since the systems to be modeled are prepared by MBE,
the interatomic distances in the two crystals forming the
superlattice have to be very close. Therefore, model po-
tentials with the same periodicity a are used for both crys-
tals 4 and B. As the aim is to understand general trends,
rather than to describe actual structures, the simple NFE
approximation is employed for the two crystals. The po-
tential in the first unit cell is then

Vi) Vy+W,cos(gx), —Njqa/2<x<N,a/2
X)=
Vg+ Wpgcos(gx), Nya/2<x<(N,/2+Nz)a
(4)
7863 ©1985 The American Physical Society



7864

where g =2m/a, N4 (Ng) is the number of atoms in the
crystal 4 (B), and d4 (=N a) is kept equal to djp
(=N, Ba).

The solutions £, and f_ are now obtained for the sys-

tem, using (4), by the following procedure. Inside any
]
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domain A4 or B for each energy, two independent solu-
tions of the Schrédinger equation can be found from the
solution for the infinite NFE crystal, satisfying one-sided
boundary conditions,’ namely

é+(x)=expl +i(£2— V) 2x /g]{expligx /2)+ V[ EF(E2— V)2 ]exp( —igx /2)} , (5)

where £=z—V —g?/4. The complete solution is ob-
tained by quantum mechanically matching these domain
solutions at the interfaces. Because of the periodicity of
the superlattice, only two matchings between A4 and B
crystals are needed, complemented by the Bloch theorem
requirement.

Using the inversion symmetry of the potentials, a linear
combination of the functions (5) in A can be formed, in
such a way, that at the origin one of the solutions is of
unit value and zero slope, while the other is of zero value
and unit slope. This simplifies the evaluation of the
Wronskian in (2) (such even and odd solutions have also
been used for piecewise constant potentials'®). These solu-
tions are then matched at x =N a /2 with the solutions
in B. After the next matching at x =(N 4 /2+ Np)a, the
two solutions at d =(N 4 + Np)a can be evaluated. The fi-

nal solutions for the superlattice, which satisfy the re-

quirements of Bloch’s theorem, can then be formed by
proper linear combinations of the two solutions:
fx(d)=e™f,(0). From the boundary conditions, for each
energy E, the pair f; (x) and fj _(x), needed in (2), re-
sults.

III. ELECTRONIC PROPERTIES OF SUPERLATTICES

The one-band approximation!! can be used to describe
superlattices formed from two kinds of crystals whose
valence and conduction-band edges are only slightly dif-
ferent. However, it has been shown!? that this approxi-
mation fails, even qualitatively, when for example the top
of the valence band of one of the component crystals lies
close to the bottom of the conduction band of the other.
In such a case, the two-band description of the crystals is
required. The band structure of such superlattices has
been investigated.!> For very thin films, dispersion rela-
tions E (k) have been obtained and compared with the re-
sults of the one-band approximation, and, for thicker
films, the thickness dependence of the gap has been given.
The analysis showed that, by varying the thickness of the
two component crystals, a material can be obtained whose
band structure bears little resemblance to that of either of
the component crystals. Indeed, the new properties
seemed to be governed by the relative positions of the
band edges.

The analysis of a superlattice—viewed as a system with
many interfaces between the crystalline components*—6—
can be started from that of a single interface. As far as
the band structure of two ideal crystals in contact is con-
cerned, two classes can be distinguished: systems with in-
terface states, localized only in the vicinity of the inter-
face, and those without any such states. If the number of
interfaces is increased to form a superlattice, the two
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classes should exhibit different behaviors, because the in-
teraction between the former interfaces should induce the
formation of an interface band from the isolated interface
state. The relative importance of this band is expected to
increase, as the thickness of the component crystals de-
creases, thus giving rise to qualitatively different band
structures in the two cases. Although interface states on
isolated interfaces differ in their space localization from
the remaining delocalized states, this distinction tends to
disappear on forming the superlattice, resulting in a kind
of hybridized behavior. Consequently, not only the band
structure of the two crystals, but also their coupling at the
interface, is expected to be an important factor in deter-
mining the band structure of the composite system.

In the NFE approximation of the two crystals, the gap
widths are determined by the magnitude of the Fourier
components of the potentials, whereas the coupling de-
pends on the relative phases of the components as well.
The simplest case of an interface between two NFE crys-
tals is that where the crystals have equal gaps at the same
energies. The magnitudes of the two potentials are then
the same and, in order to distinguish different couplings, .
the cases when the two Fourier components are (a) identi-
cal and (b) of different sign will be discussed. Here, only
superlattices with crystals of equal thickness
(d 4=dp=d /2) are considered.

In the first case (with no interface state), the system’s
periodicity is a, and a simple band structure of an infinite
NFE crystal is obtained, without any dependence on d.

The band structure for the model which has an inter-
face state in the middle of the gap is shown in Fig. 1(a).
The interface band broadens as d decreases, filling the gap
of the infinite crystal at d ~60a. This behavior corre-
sponds to earlier findings, where the interaction between
two states, localized on opposite sides of a thin film, have
been studied.>!* In Fig. 1(c) is displayed the complex
band structure of the system with d =80a. The interface
band, centered at E =1, is separated from the other
branches of the band structure by gaps bridged by com-
plex loops. These gaps arise as a consequence of the in-
creased period of the system, which is accompanied by the
cutting of the original Brillouin zone into smaller seg-
ments. Note that, although the positions of the gaps are
the same ih the two cases discussed, the band structure
around E =1 is qualitatively different. Figure 1(b) de-
picts the LDOS curves corresponding to the interface-
band case. The spatial distribution is given for the inter-
face band (E =0.99 and 1.00) and for the next bands
(E =0.96 and 1.04). In the former case, an enhanced lo-
calization of the electrons at the interfaces is apparent. In
contrast, in the two adjacent bands, the LDOS maximum
is in the middle of the component crystal.
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FIG. 1. Band structure of a superlattice with equal centered gaps. Potential V(x) is given by (4) with N,=Nj3, a =,
Vi=Vz=0, W,=—0.02, and Wz=0.02 (a.u.). (a) Energy bands (shaded areas) as functions of component thickness. Dashed lines
depict the gap of the infinite crystals 4 and B. (b) Local density of states D (x;E), where x =Na (N being an integer), for a system
with N=Nz=40 in the interface band (E =0.99 and 1.00) and in the two adjacent bands ( E =0.96 and 1.04). (c) Complex band
structure at N 4=Np=40 with complex loops (dotted) connecting the real branches.
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FIG. 2. Band structure of a superlattice with overlapping centered gaps. Potential (4) with Ny=Np, a=m, V4=Vp=0,
| W4 | =0.01, and W3=0.02. Energy bands for a system: (a) without ( W,=0.01) and (b) with ( W= —0.01) an interface state at
an isolated interface. (c) Complex band structure for (b) at N4=Np=40. (d) Local density of states D(x;E) for a system with
N ,=Np=40 in the interface band ( E =0.99 and 1.01) and in the two adjacent bands (E =0.96 and 1.04).
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FIG. 3. Band structure of a superlattice with disjoint gaps.
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Potential (4) with N,=Np, a =w, V,4=—0.025, V3=0.025,

| WA | =0. (?2, and Wp=0.02. Energy bands for a system (a) without ( W, =0.02) and (b) with ( W= —0.02) an interface state at
an isolated interface. (c) Complex band structure for (b) at N,=Np=40. (d) Local density of states D(x;E) for a system with

N,4=Np=40.

If crystals with different gap widths, centered at E =1,
are in contact, a rather different band structure is encoun-
tered around E =1. Figure 2 illustrates the d dependence
of a superlattice formed by two NFE crystals with
| Vg | =0.01 and 0.02. When the Fourier components are
of equal or opposite sign, there is a gap around E =1, in
each case. The gap is wider for the case of equal signs
[Fig. 2(a)], where it remains constant and equal to the
average value of the gaps of the two infinite crystals till
about 100a, after which it slowly narrows as d increases.
For potential amplitudes of opposite sign (when, for a sin-
gle interface, there is an interface state in the middle of
the gap), as shown in Fig. 2(b), the gap is smaller, even
than the gap of either infinite crystal, and is again con-
* stant till ~100a, when it gradually decreases with increas-
ing d. As can be seen, in Figs. 2(a) and 2(b), other bands
and gaps accumulate above and below the center gap.
The complex band structure, corresponding to Fig. 2(b) at
d =80aq, is given in Fig. 2(c), and the LDOS in Fig. 2(d).

Finally, the case of two nonoverlapping gaps was inves-
tigated, and the results are presented in Fig. 3. The two
crystals of the superlattice were chosen to have equal gaps
(| ¥, | =0.02) separated in energy by 0.05 (one having its
center raised by 0.025 above E =1, and the other its
center lowered by the same amount). The results for
Fourier components with equal (opposite) signs are shown
in Fig. 3(a)[3(b)]. Qualitatively different band structures
are obtained around E =1 for the two cases. In Fig. 3(a),
there is a gap in the middle (even though both infinite

crystals have allowed bands in this region), while in Fig.
3(b) there is a band around E =1. The complex band
structure for the case with opposite signs of the Fourier
components at d =80a is drawn in Fig. 3(c), and the cor-
responding LDOS curves are in Fig. 3(d).

IV. CONCLUSION

A simple method of constructing GF for superlattices
in terms of the solutions of the Schrodinger equation for
infinite crystals, satisfying one-sided boundary conditions,
has been developed. Although the procedure was applied
to one-dimensional systems with two alternating com-
ponents, it can be extended in a straightforward manner
to systems with more components, and also to three-
dimensional problems.!* If the GF is used in the context
of the surface GF formalism, then finite superlattices can
also be treated.

From a two-band model, based on the NFE description
of its components, the trends in the variation of the band
structure of a superlattice as a function of component
thickness have been presented. For the cases of overlap-
ping and disjoint gaps, the complex energy band structure
and LDOS have been calculated. In particular, a qualita-
tively different behavior has been found for the two model
cases differing only by the existence, or nonexistence, of
localized interface states at their isolated interface. These
findings indicate that the relative positions and magni-
tudes of the gaps are not sufficient by themselves to deter-
mine the properties of corresponding superlattices.



32 GREEN FUNCTIONS FOR SUPERLATTICES

ACKNOWLEDGMENTS

One of the authors (I.B.) wishes to thank the Depart-
ment of Applied Mathematics at the University of Water-

7867

loo for the warm hospitality extended to him during his
visit. This was work supported by the Natural Sciences
and Engineering Research Council of Canada.

*Permanent address: Institute of Physics, Academy of Sciences,
Prague, Czechoslovakia.
IL. L. Chang, L. Esaki, and R. Tsu, Appl. Phys. Lett. 24, 593
(1974).
2J. Thm, P. K. Lam, and M. L. Cohen, Phys. Rev. B 20, 4120
(1980).
'3S. R. White and L. J. Sham, Phys. Rev. Lett. 47, 879 (1981).
41. BartoS, Phys. Status Solidi B 85, K127 (1978).
SH. Ueba and S. G. Davison, J. Phys. C 13, 1175 (1980).
6S. G. Davison and K. W. Sulston, Phys. Status Solidi B 120,
415 (1983).

7B. Friedman, Principles and Techniques of Applied Mathemat-
ics (Wiley, New York, 1956), p. 164.

8B. Velicky and I. Bartos, J. Phys. C 4, L104 (1971).

91. Bartos$ and B. Velicky, Czech, J. Phys. B 24, 981 (1974).

10y, B. Band and S. Efrima, Phys. Rev. B 28, 4126 (1983).

1D, Mukherji and B. R. Nag, Phys. Rev. B 12, 4338 (1975).

12G, A. Sai-Halasz, R. Tsu, and L. Esaki, Appl. Phys. Lett. 30,
651 (1977).

IBR. J. Jerrard, H. Ueba, and S. G. Davison, Phys. Status Solidi
B 103, 353 (1981).

14y, T. Hwang and H. Rabitz, J. Chem. Phys. 70, 4609 (1979).



