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The problem of localization of phonons in disordered materials is studied in the framework of the
weak-localization theory. Quantum correction to phouou diffusion is calculated by the resummation
technique of maximally crossed diagrams in two and three dimensions. The strong energy depen-
dence of the elastic mean free path —the Rayleigh-Klemens scattering —is responsible for the ex-
istence of a threshold frequency co3 where the diffusion constant vanishes. The value of co3 depends
only on the local fluctuation of masses and on the Debye frequency in three dimensions. This
threshold describes the phenomenon of localization of phonon density Auctuations or second sound.
The self-energies of the phonons are strongly affected by this quantum correction via the anharmon-
ic interactions. The two basic anharmonic couplings contribute to the one-phonon renormalization
and provide shortening of the mean lifetime as well as excess of spectral density in the vicinity of the
threshold. In two dimensions, as for the electrons, the dynamical quantum correction diverges loga-
rithmically when the frequency goes to zero. A procedure of convergence is used by cutting off the
low-frequency contributions at the inelastic relaxation rate. Renormalization of phonons are ob-
tained in a self-consistent way. Finally a tentative application of the previous results to the low-

temperature properties of glasses is discussed. In particular the existence of a plateau in thermal
conductivity accompanied by excess specific heat in all the glasses measured so far could be under-

stood as the manifestation of localization of acoustic-phonon density at the critical threshold m3 .

I. INTRODUCTION

The problem of localization of particles in a disordered
medium has received considerable attention in recent
years. ' Important progress has been obtained in describ-
ing electron diffusion in the weak-localization regime
where both the elastic scattering and the interparticle in-
teraction are treated as perturbations. One important re-
sult is the quantum correction to the two-particle propa-
gator which decreases the diffusion constant of the densi-
ty fluctuations by constructive interferences of the back-
scattering at the site origin. This quantum correction has
been verified by magnetoresistance experiments where the
magnetic field destroys the coherence. The transposition
of this new concept to phonons is the main motivation of
this article and has never been attempted as yet to our
knowledge. Passing from electrons to phonons implies
many modifications which must be carefully discussed,
particularly the relevance of the statistics (bosons or fer-
mions) for building up the diffusion kernel of the two-
particle interaction as well as the different dispersions:
linear for the phonons and quadratic for electrons. A
striking difference arises from the strong frequency
dependence of the characteristic length or time in the pho-
non problem. In particular, the strong energy dependence
of the elastic mean free path must be contrasted to that of
the electron whose mean free path varies both smoothly
and weakly. Moreover, the Fermi-Dirac statistics restrict
the range of energy to a narrow vicinity of the Fermi level
at low temperatures. Let us call the elastic relaxation
time ~(co); it is well known that it obeys the Rayleigh-

Klemens law which is written in d dimensions:

1=22
~(co)

where os' is the local fluctuation of masses or harmonic
restoring forces—and g~(co) is the spectral density of
modes (per atom) in d dimensions:

d —1

gq(co) =d
6)D

coD being the Debye cutoff frequency of a unique branch
of phonons we will consider here. In three dimensions,
the elastic relaxation time varies strongly, as ~, which
clearly distinguishes phonons from electrons: A dramatic
consequence of this co dependence will be the vanishing
diffusivity of phonon density fluctuations "alled second
sound —at a threshold frequency co3. Although the criti-
cal localization phenomenon is, strictly speaking, beyond
the perturbation theory of weak localization, we believe
that the occurrence of this critical frequency co& for the
diffusion constant reveals the existence of a genuine
threshold of mobility for phonons in three dimensions.
The same phenomenon, absence of diffusion, for the static
case is a signature of the general localization of modes in
two dimensions. This result confirms the recent work of
John et a/. where a mobility edge was found in three di-
mensions by a renormalization treatment of the nonlinear
o. model. Here, a quite different approach based on di-
agrammatic expansion of the maximally crossed dia-
grams" in the weak-localization regime gives a correct
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starting point for a scaling treatment. Another new
consequence of the reduction of the diffusion constant at
high frequency is the shortening of the mean lifetime of
phonons. Phonons are coupled to the phonon density
fluctuations by anharmonic interactions; this effect pro-
vides the well-known Landau-Rumer ' mean lifetime of
phonons in a perfect crystal. The counterpart of the
Landau-Rumer attenuation time is obtained here in the
weak-localization regime, and the prediction of a consid-
erable reduction of the phonon lifetime at high frequency
when co approaches ~3, or at high temperature when T
tends to T" (=Ac@3/k&8), is obtained directly from the
coupling of the phonon with local-density fluctuations.

This drastic shortening of the phonon mean free path
seems to us very important in the context of glasses. As
a matter of fact, it has been well known for a long time
that the thermal conductivity of glasses at low tempera-
ture has a plateau, even a dip sometimes, around 10 K.
The value of the conductivity at the plateau is very low,
of the order of 10 ' Wm 'K '. The mean free path de-
rived from the kinetic formula of conduction is very
short, typically a few angstroms, sometimes less. Accom-
panying this plateau, an excess specific heat has been ob-
served in the same temperature range. These observations
have inspired many attempts at explanation during the
last decade. Let us mention the most recent one where it
was assumed that, at short length scales, glasses have a
fractal structure. In this model, the spectral density of
modes changes from phonons to fractons at a characteris-
tic frequency related to the length scale of the fractal
structure. Since the fractons are localized they do not
contribute to the thermal conductivity but only to the
specific heat. Although describing qualitatively the ex-
perimental situation, this model calls for careful structur-
al analysis of the local order in a possible fractal struc-
ture. In contrast, without any special assumption as to
the structure of glasses, we believe that present weak lo-
calization and anharmonicity theory provide an indication
for the occurrence of a plateau in the thermal conductivi-
ty and the excess specific heat. We note that no special
parameters are necessary in our model except the basic
features of phonons: sound velocity and Debye tempera-
ture. It is, therefore, natural that all glasses exhibit this
universal behavior of a plateau in the thermal conduction
and excess specific heat.

This article is organized in four sections. In Sec. II, the
quantum correction to diffusion is calculated by the well-
known series expansion of the maximally crossed dia-
grams of the two-phonon propagator. The diffusion con-
stant of phonon density (second sound) exhibits a strong
frequency dependence and vanishes in three dimensions at
a critical value co3. In two dimensions the same diffusion
constant is defined only in the dynamical regime Q&0, as
expected from the general result of localization in two di-
mensions. ' A simple physical picture of this quantum
correction is put forward in terms of the ratio of the
residence time of the two-phonon coherent state at the ori-
gin over the lifetime of the same two-phonon state. Sec-
tion III is devoted to the self-energy of phonons coupled
via anharmonicity to density fluctuations. The two basic
diagrams of the anharmonic expansion, to third and

II. QUANTUM CGRRECTIGN TG DIFFUSIGN
AND THE EXPRESSION

FOR THE PHONON DIFFUSION KERNEL

The analysis for the phonon diffusion kernel is based on
the standard diagrammatic techniques" for a particle
moving in the field of randomly distributed impurities
considered as elastic scatterers. The transport coefficients
or the diffusion constant can be derived from the average
two-phonon Green's function

62(k, k', co, Q) = (Gk (co+Q)Gk (co)), (3)

where ( ) represents the mean value over all configura-
tions of impurity centers, and where Gk (co+Q) and
Gk (co) describe, respectively, the retarded and advanced
one-phonon Green's function with momentum k and en-
ergy co+ Q (k' and co, respectively).

The first diagrams for G2 are depicted in Fig. 1. In or-
der to calculate the dominant contribution to 62 given in
Eq. (3), the most divergent terms in the density expansion
must be resummed. This resummation will ultimately
lead to localization of density fluctuations.

Let us start from the well-known Bethe-Salpeter equa-
tion (rederived in Appendix A) for G2(k, k', co, co'):

/
0,

I

FIG. 1. Relevant diagrammatic expansion for 62(k, k', co, 0).
The lines with arrows correspond to the one-phonon Green's
function and the dashed lines represent the Fourier transforms
of the interaction potential between a phonon and an impurity.

fourth order, are modified in order to take into account
the formation of the two-phonon coherent backscattered
state. As a result the phonon lifetime is obtained as a
function of frequency and temperature and is strongly re-
duced when co tends towards co3 or T towards T . In a
similar way, the density of states is obtained for both
anharmonic interactions and shows an important
enhancement around co3. In Sec. IV, the problem of two-
dimensional weak localization is carefully analyzed, since
a low-frequency cutoff is necessary for preventing the in-
frared divergence. A discussion of the basic expressions
of the phonon self-energy is developed in terms of the cut-
off frequency. The possible applications of the previous
results to low-temperature thermal properties of glasses
are discussed in Sec. V, while this work is summarized in
Sec. VI.
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G2(kk i ~~co ) k (cp)Gk'(cp ) ~k, k'+ g Uk, k((~~~ )G2(kl~k ~ co~co

k)

(4)

U(q; Q, cp) =

where v is the sound velocity for the unique branch of
acoustic phonons co=Uk as assumed and the spectral den-
sity gd(cp) is given by Eq. (2). The expression given by
Eq. (5) of the diffusion vertex calls for some remarks.

(1) It is the phonon counterpart of the electron dif-
fusion vertex which has been established in the context of
impure metals [see, for example, Eq. (16) of Ref. 12]. In
Eq. (5), cp stands for Fermi energy in the electron problem
while Dp(cp) represents the diffusion coefficient of elec-
trons at the Fermi level.

(2) Although the acoustic approximation cp =uk is used
in the expansion in q of the denominator, a term in q is
obtained in two and three dimensions as in the electron
problem where E-k . This is not true in one dimension
where the general condition of validity of perturbation ex-
pansion is not fulfilled. '

(3) The diffusion coefficient Dp(cp) is related to the
Rayleigh-Klemens scattering time ~(cp) or the elastic

This equation relates the two-phonon propagator to the
one-phonon propagators Gk"' and the irreducible part of
the vertex interaction Ukk (cp, cp') as shown in Fig. 2.

U is built up from impurity scatterers which break the
momentum conservation law but conserve the energy. At
first sight it may be surprising that the interaction
Uk k (cp, co') couples two phonons of different energy iricp

and Ace, while the basic scattering is elastic. But this is
true and it results from the quantum treatment of dif-
fusion. Let us call Dp(cp) the diffusion constant of one
phonon cp. Classically we know that diffusion introduces
a relationship between space (or k) and time variables. By
breaking the translationa1 invariance and, consequently,
changing the ks at each collision, the diffusive one-
phonon motion introduces a frequency dependence
cp co'-Dp—(k —k') which, by virtue of the uncertain
energy-time relation, extends the energy shell for the in-
teraction. The dominant contribution to U comes from
the maximally crossed diagrams (or fan-shaped diagrams)
which can be summed up as a geometrical series. ' The
most divergent part of these diagrams comes from back-
scattering where k'= —k+q, q small ql(cp) «1, and

~

cp' —cp
~

=Q small, Q~(co) &&1, where l(cp)=vr(cp) is the
elastic mean free path of a phonon cp. In Appendix A, we
report the calculation of the vertex U which, at the lowest
order in 0 and q in the denominator gives

2v' A' 1
(5)

m-Dp(cp) gd(cp) i Q+Dp(co)—q

linewidth of the phonon propagator (see Appendix A),
I (cp) =file(co) by the well-known relation

u r(cp) A'u

d dI d(cp)

Since the Rayleigh scattering frequency is proportional to
crl, the local fluctuations of masses, U varies like
cr~gd(cp) as expected. Therefore, the first term of the
series expansion is a good representation of the X or
crossed diagram.

(4) The denominator of Eq. (5) exhibits a diffusion
pole: It implies that the dominant contribution will come
from the vicinity of the diffusion pole Q-Dpq in the Q-

q plane. Let us define the diffusion coefficient D( cpQ)

by the velocity currents correlation function. ' This
leads, in the limit of acoustic phonons, to the following
expression:

D( cpQ)= g k.k'G2(k, k'; co,cp') .u (flu)

irco gd(co)

For k+k'=q and Q =
i

cp' —co t, as before, we expand the
Green's functions in powers of Q and q, and we solve the
Bethe-Salpeter equation given by Eq. (2) to first order to
obtain

G2(k, k'; cp, cp')

=Gk(cp)Gk (co )5kk

+Gk (cp)Gk (cp') Uk, k (cp, cp )Gk (cp)Gk (cp'),

where

Uk k (cp, cp') = U(q, Q, cp)

is given by Eq. (5). By replacing Eq. (8) in the expression
of D(cp, Q), one obtains two terms. The first one propor-
tional to gkk Gk(cp)Gk(cp') gives Dp(cp), the single-

phonon diffusion coefficient, while the second produces
the quantum correction to classical diffusion, and involves
the scalar product k k'=k (q —. k).

Just as before (cf. Appendix A), the sum gkk q cancels
and there remains only a term proportional to —k which
gives finally, for D (cp, Q),

D(cp Q) =Dp(co) 1— 2, 1

~gd(co) q i Q+Dp(cp)q—

( k,u))

{k;4)')

( k, EU) ("),u))

+ ~:.fj;
( k', &') ( k~, d)

FIG. 2. Bethe-Salpeter equation for the two-phonon Green's
function.

+ 4 ' ~ ~

This is the expression for the quantum correction to the
dynamical diffusion coefficient at frequency Q, associated
with the density fluctuations. It was first derived by
Gor'kov et al. for electrons for d =1,2, 3 in a very simi-
lar form. The summation g indicates a restriction in
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the range of q for which the regime of density fluctua-
tions is hydrodynamic: ql «1 and 0~&&1.

The quantum correction term is complex, but the imag-
inary part is reduced from the real part by a factor
(Q~)' for d =3 and ( —lnQ&) ' for d =2 and will be
neglected. The calculation of the integral over q is
straightforward and gives, in the limit Qr «1, the fol-
lowing expressions: for d =3,

A simple physical interpretation of weak localization
has been largely used recently for the electron localization
problem in terms of coherent backscattering. ' We think
that a similar analysis could be very useful here in the
context of phonons and will make mme transparent the
underlying physical picture.

Let us call g the dimensionless quantum correction to
diffusion from Eq. (9):

D(co) =Dp(cp) 1— 3

n p g3(cp)l
(10)

1, 1
2L, g~P q

—iO+Doq
(14)

and for d =2~

D(co, Q) =Dp(co) 1 — ln
1 1

n.zp gz(a))l

where p=N/L d is the density.
It is remarkable that at three dimensions D (cp) does not

depend on frequency Q, while at two dimensions the ln
dependence of D(co, Q) introduces a singularity when
Q~O which is considered as a signature for the localiza-
tion of the two-dimensional (2D) systems. Since l =us
and ~(co) varies for Rayleigh scattering as co '"+",we ob-
tain finally the following co dependence for phonons of en-
ergy co: for d =3,

6

D(cp) =Dp(co) 1—
C03

with cp3 ——0.51aM AD, and for d =2,

D(~»)=Dp(~) 1—,lnco 1

Q~~

(12)

(13)

With COp =(2o'I /7T) Ci)D.

At d =3, the relation (12) describes a vanishing static
diffusion constant when co approaches the threshold cp3.
For the extreme case of disorder —glasses for instance—
oM —1 and cp3 is less, but not far from, cpD. This result
has been established for Rayleigh-type scattering relaxa-
tion time which is valid only for dilute concentration of
impurities. Although the validity of the present calcula-
tion in the weak-localization limit is of a perturbative na-
ture and restricted to co «u3, we observe that the quan-
tum correction to the diffusion constant increases strongly
with cp up to a threshold frequency cp3 where a complete
absence of diffusion occurs. It must be realized that this
absence of diffusion affects the fluctuations of phonon
density. Since these excitations of the phonon density are
called second sound, we could describe this effect as the
localization of second sound near A@3 In fact, th. e one-
phonon mean free path is also strongly affected by this
coherence effect through the anharmonic coupling to this
density fluctuation.

This result distinguishes the present theory from a pre-
vious approach of John et al. where a mobility edge is
found by scaling considerations on the one-phonon prob-
lem. The two-dimensional case needs special discussion
since, as shown by Eq. (13), the diffusion constant van-
ishes for any energy in the static regime Q~O (see Sec.
IV).

The diffusion pole in Eq. (14) given by the expression
( —iQ+Dpq ) ', is nothing but the Fourier transform in

q and Q of the probability density

P ( r, t)-(Dt)"~ exp( r /4Dt—)

for a diffusing particle starting from r=0 at t =0. Then
the sum over q up to

~ q ~

=1/l describes precisely the
residence time 6(Q) up to t = 1/Q for the diffusing parti-
cle to be found in a volume I in the neighborhood of
r=o:

e(Q)= f dte'n' f d r p(r, t), (15)

where the spatial integration of P(r, t) represents the re-
turn probability near the origin in a sphere of radius l.

By a direct calculation of Eq. (15) using the standard
expression of P(r, t) it is easy to derive Eqs. (10) and (11)
for d =2 and d =3: e-r for 'd =3 and 6-sin(1/Qv)
in d =2 where a divergence is obtained for Q —+0 since
the two-dimensional random walk is recurrent, but so far
this argument is purely classical; how does the quantum
nature enter into the problem~ First, it is the return prob-
ability in the sphere l which measures the occurrence of
a two-coherent-phonon pair (+k, —k+q) to build up.
Secondly, the residence time 6 in the initial sphere is,
therefore, directly related to the lifetime of the coherent
backscattered pair. The characteristic time pgd(cp)l"
represents the lifetime of a two-phonon state confined in a
sphere of volume l . The quantum correction is, there-
fore, directly proportional to the ratio of the residence
time in the sphere 1 around the origin to the mean lifetime
of the two-phonon state in the sphere l. A natural max-
imum value of one is then obtained which corresponds to
the situation of localization where the residence time of
the coherent pair is comparable to the persistence time of
the two-phonon state. For this limiting situation D van-
ishes. The localization of phonon density fluctuations
occurs because this ratio increases strongly near u3 due,
basically, to the strong frequency dependence of the Ray-
leigh scattering at three dimensions. At two dimensions
all the stationary modes are localized as expected, owing
to the recurrent nature of the random walk for d & 2.

The strong decrease of the diffusion constant D when
the frequency increases must also renormalize the dif-
fusion vertex U. We propose to take into account this re-
normalization, following Gor'kov et ai., by redefining a
diffusive vertex U(q; co, Q):

2v4 1
U(q; co, Q)= 2 2 . (16)

n.D (co,Q) gd(~) iQ+D(co,Q)q—
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This has not been strictly derived from the diagram
resummation techniques but should constitute a better ap-
proximation for the calculation of the transport coeffi-
cients.

III. THREE-DIMENSIONAL
ANHARMONIC INTERACTIONS

(h)) pk))

(4),k )

3
( ~~-e, k&-k)

(m»kt)

(~,f) Yg (u), k)

(b)

In a perfect crystal, the first two anharmonic terms, y3
and yz, arising from the expansion of the Hamiltonian of
the system, give rise to the lowest order of perturbation, to
interactions between a given phonon (co,k), and the
thermal phonons in equilibrium in the system. Such in-
teractions are shown diagrammatically in Figs. 3(a) and
3(b).

The y4 diagram represented in Fig. 3(b) corresponds to
the excitation of a virtual phonon. In a pure crystal, such
an interaction process cannot produce a finite lifetime and
only renormalizes the sound velocity.

The y3 diagram described in Fig. 3(a) represents the
coupling of the incoming phonon with two thermal pho-
nons of the medium. The lowest-order diagram of pertur-
bation theory has two vertices of interaction and then is
proportional to y3. Actually, the perturbation expansion
of the anharmonic interaction shows that y3 is of the
same order of magnitude as yq. Unlike y4, the y3 dia-
gram provides a finite lifetime for the given phonon. It is
this diagram which leads to the well-known Landau-
Rumer lifetime r for low-frequency phonons, where r
is proportional to coTC„(T), C„(T) being the specific heat.
For impure materials or glasses, the presence of Rayleigh

l

FIG. 3. Relevant diagrams for the anharmonic interactions
in crystals.

scattering will produce an additional interaction between
the excited phonons and the incoming phonon of the dia-
gram given in Fig. 3(b) or the two thermal phonons of di-
agram given by Fig. 3(a). Via this anharmonic coupling,
p3 and y4, the phonons, will be coupled to the phonon
density fluctuations and will acquire a strongly reduced
mean lifetime. Let us calculate separately both contribu-
tions to the renormalization of the phonon self-energy.

A. Self-energy for the y4 interaction

The modified diagram including the diffusion kernel U
from Eq. (16) is represented in Fig. 4. The basic process
is related to the coherent backscattering interference be-
tween the incoming phonon (co, k) and the thermal excited
phonon created by y4.

If V' '(k, —k, k+q, —k —q) represents the anharmon-
ic interaction potential, we can write for the self-energy
X3 '(co) the following expression:

X3 '(c0)=k&T g g V' '(k, —k, k+q, —k —q)(G z q(cop)5(co —co(k)))5q
t, t' q,p

where cop represents the usual Matsubara frequency and ( ) the average value associated with the disorder. In X'3 '(co),
an average over all the k on the energy shell co must be performed. With the standard relation

5(io co(k))= (R—/2in )[tG—k (co) Gk"(co)]—

and with the help of Eqs. (4) and (16) we can show that (cf. Appendix B)
4 2

y(4)( )
(&U) Ctl

4m I (co)g(co) D2(~) I ~(co)+A2(co co)2
q

—i (co co )+D(—co)q
(18)

where n (co'/T) is the Bose-Einstein occupation factor.
The inverse lifetime I 3 '(co) is given by the imaginary

part of X3 '(co). Considering first the integration over the
q variable from 0 to I '(co), one has

( &pp-k-q)
We then obtain for the expression I ~3 '(~),

&~4~( )
arctan2

2

'RU CO V4
7/2I'(~)g (~) D' '(~)

&& I de'n(co'/T) i
co —co

i
I (co)

I (co)+A' (co —a)')

I i
i

1/2

2 ~
=2m. (arctan2)

(~—~')'+ (Dq')'

(19)

(20)

FICi. 4. Diagram contributing to the y4 anharmonic interac-
tion. Note the coupling of the loop phonon with the (co,k) pho-
non due to the effective U interaction.

The function

I (co)

I (co)+Pi (co —co')
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defines a Lorentzian with width I'(co) and height I" '(co),
centered at co'=~. We approximate this Lorentzian by a
rectangular function with the same width and height, and
then

f ( /T) I
co —co

I
I (co)

I (co)+A (co co'—)

where 53 '(co(k) ) is the real part of X3 '(co). An expansion

gg(4)
b3 '(co)=63 '(co(k))+[co—co(k)]

Bco

,of b, '3 '(co) around co(k} gives the following expression for
the renormalized density of states:

and finally I 3 '(co) reads

=n(co/T), /2
I '/ (co),2a'" (21)

g' '(co) = g(co),

where

(23)

&(4)( }
arctan2 2 }

n (co/T)

[1 (~/~*)6]7/2 (22)
1 aa(3"

A(co)—= 1 ——
BQ)

Some specific features must be emphasized for the
mean attenuation I 3 '(co). The condition for the most
divergent diffusion kernel implies that ~co —co i7 ((1.
This condition is fulfilled here when the excited phonon
co' has nearly the same frequency as the incoming phonon
co. This dominant contribution in the expression of
X3 '(co) of the thermal phonons belonging to the energy
shell (rico of the incoming phonon explains the Planck oc-
cupation number in the final expression given by Eq. (22).
At low frequency and low temperature I 3 '(co) is very
weak as compared to I (co), and it is at higher frequency
co-co3 and high temperature (T-T") that the effect of
localization will act efficiently.

As for the renormalized density of states, it is defined
by

g' '(co)= 7r 'Q—ImDk(co) .
k

If co(k) are the new eigenenergies of the system then

co(k) =co(k)+63 '(co(k)),

with for b, 3 '(co) the expression derived from Eq. (18):

&3 (co)= y41' (co)(4) 1 2 n (co/T)

[1—(co/co" ) ]' (24)

This expression shows a great enhancement of the density
of states near co3 and T- T'. This situation will be con-
firmed by the calculation of the self-energy X3 '(co).

B. Self-energy X3 '(co) associated with y3 interactions

The diagram associated with this interaction is
represented in Fig. 5, but the structure of this diagram is
more "classic" than those of the y4 interaction. The con-
structive interferences between excited phonons k and

q —k is described by the renormalized diffusive kernel U
of Sec. II. By considering the breakdown of translational
invariance, it is natural to consider only local fluctuations
of phonon density coupled to the incoming phonon. This
implies a violation of the momentum conservation law
and consequently an unrestricted summation over
momentum k and q in the self-energy. Then, we have '

X3 '(co)=ki)T g g V' '(k k', q —k')V' '(k' —q, k, —k')5(co — (kco))(D ( kc)oDq k (co~ —co)), (25)

where the interaction potential V' ' is defined by

(kl&k2&k3) p3(&/2) ' [co(ki )co(k2)co(k3 }]

I 2

X3"(co)=—y37)i v co—f dco'n(co'/T)
I (co')D (co,co')

In a way quite similar to those studied in Appendix B, we
obtain

xg —ico+D(co, co )g
(26}

which gives for the inverse lifetime I 3 '(co) associated
with this anharmonic process

((i)peak ) (&p, k' q)

p k}

( (i)p-(d~ q-k') ((op-()irk )

FICx. 5. Cyraph related to the y3 anharmonic interaction.
Note the difference between y4 and y3 relative to the nature of
the coupling to the density fluctuations.

r3 (co) = (arctan2)y3(3) 3& (~ )3/2

4 - COD

I' '(co')(co')'
X f dco n(co /T)

[1—(co'/co ) ] / (27)

and for the real-part b, 3 '(co) of the self-energy

(3) 37r 2 fico fd, I (co')(co') (,/T)
coD [1—(co'/co') ]'

(28)
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Both the expressions given by Eqs. (27) and (28) are diver-
gent when a)' approaches {v3, but we know that this limit
is out of range of validity of our calculation of weak local-
ization. A convergent version of Eqs. (27) and (28) can be
obtained in the approximation of the dominant phonon at
temperature T by replacing the summation over m' by the
average value co' k&T/fi in Eqs. (27) and (28). There-
fore, approximate expressions are

we have only one characteristic length go(a))=l(co) and
only the strong localization regime occurs. ' However,
for two-dimensional films, as for the one-dimensional
case, the mobility edge, defined by a diverging localization
length, is obtained for co=0 only, with an essential singu-
larity, which ensures localization for density fluctuations
over the whole spectrum.

p{3)( )
3')r a«t»2 2(~ )

1/2

4

1 T
[1 (T/T+)6]7~2 8

r 7
( 3) 3'1T

b,3 (a)) =. (iruoD )os@3(Rco)2 2 T 1

8D [1 (T/T') —]

(29)

(30)

A. y3 anharmonic interaction

The structures of y4 and y3 diagrams given by Figs.
3(a) and 3(b) are the same in the two-dimensional case.
Starting from the general expression for the self-energy
Xz '(co) given by Eq. (25), one obtains for the attenuation

2 I 2
I 2"(co)=—,

' @3''V 2 f de'
{oD I'3(a)')D (a),co')

Xn(co'/T) g'
2 2 4,2+D2 4

where the correction to the density of states is always
given by Eq. (23), i.e., the relative variation 5g/g is given
by

7
5g 3m.

(~D){TM1 3 ()
1

g 2 [1—( T/T')']'

Just as before, this expression provides a great enhance-
ment of the density of states for T-T* for all the spec-
trum, even for phonons with co & co .

IV. TWO-DIMENSIONAL CASE

We can, as before, find the correction to the lifetime
and the density of states in a two-dimensional disordered
system due to anharmonic coupling. Now, however, we
must take into account the dynamic singularity given by
Eq. (13) for the diffusion coefficient. Because of the loga-
rithmic divergence of the quantum correction in the limit
Qr « 1, we define a cutoff frequency Q such that
D(a), Q)=0. Such a cutoff is imposed by the necessarily
positive value of the diffusion coefficient. Then Q is de-
fined by

2--
M 1

ln
C02 Q~

CO
1n

C02

I
CO%'(CO )

(35)

We can, just as before, approximate this relation by
keeping only the contribution to the integral of the dom-
inant phonons which )rta)'-ki) T to obtain finally

2
'3

I 2 '(a)) = y3(RcoD)fico
D

—3

(34)

where the notation g' always indicates a sum over the
hydrodynamic modes ql (a)) « 1, but with the supplemen-
tary condition imposed by Eq. (33), q & g '(a)):

1

q +D g 2Dco

Then,
2 2

I 2 '(a))= y3 2 f de'(co') n(co'/T)
16 Q)D

—3

which implies X lnT' cot(T)
(36)

Q
' 2 (32)

T(CO )

This value Q can serve to define a wave-vector cutoff q
or, equivalently, a characteristic length g({o) such that
g(a)) =[Do(co)/Q]'~ . We then obtain

g(a))=l(a))e "' "
(33)

This length coincides with the localization length go(co)
defined by John et al. for the case of a noncorrelated po-
tential. It must be noted that g(co) is much greater than
l(co) and defines a second characteristic length and a
weak-localization regime for g({o)» l(co) in the two-
dirnensional case; by contrast, in one-dimensional systems

where

We can in the same way derive an expression for the
correction to the density of states given generally by Eq.
(23). But in the 2D case, the sum g'Qq /(co +D q )

reduces to (m/2D)ln(1/cow) because of the weak-
localization condition g(a)) » l(co). Then with the same
approximation of the dominant phonon, keeping only the
most important correction, one finally has
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'0 3

h2 '(co) = y3(~z )(fico) ln
16 O~D

1

co7( T)
(37)

and the correction to the density of states is given by
3

(38)

which still provides a greater enhancement of the density
of states in the regime cor(T) « 1 previously defined.

B. y4 anharmonic interaction

As for the three-phonon interaction, the diagram given
by Fig. 4 remains relevant in the case of 2D films. But
here, the specific dependence of the diffusion constant on
the frequency Q given by Eq. (13) gives rise to a strong
divergence for the expressions of I 2"'(co) and b 2 '(co).

The origin of this divergence is quite clear and comes
from the peculiar structure of the y4 diagram. Here, the

dynamic singularity is indeed associated to the energy
difference 0=

~

co —co'
~

of phonons in the coherent back-
scattering situation. Then, for all energy values irico of the
incident phonon, there exists a value co' in the spectrum of
the system for which 0=

~

co —co'
~
=0 leading to the

divergence of I z '(co) and b2 '(co). But, it must be em-
phasized that this singularity is to be attributed equally to
the structure of the y4 diagram and to the two-
dimensional character of the systein. Indeed, the previous
expressions of I 2 '(co) and b.z '(co) do not produce such a
singular behavior because, in this case, the energy differ-
ence 0 is fixed at the value of the incident phonon energy
N.

Now, in order for the self-energy to converge, we intro-
duce a natural cutoff for frequencies: the inelastic width
A'/~;(co, T) of the modes, which restricts the dynamical
quantum correction to a range of frequencies between
1/r; and 1/r. This leads to the following modified ex-
pression for D (co,0; T):

D(co, Q; T)=DO(co) 1— 2 ~, 1

mg(co) .~ D 2 1—IQ+Dpq +
v;(co, T)

+ 0 ~ ~ (39)

2

ln
602

r;(co, T)

r, (co)

instead of Eq. (9), where no special assumption is made on
the physical nature of r;(co, T). In the limit of weak local-
ization, ~; &&~, one obtains

D (co, T)=Do(co) 1— (40)

C. Self-consistent approximation

As for the electrons case, ' ' we can develop a self-
consistent approximation and identify the inelastic
scattering time and the mean lifetime of quasiparticles
given by fi/I z '(co, T). It gives at low frequency co less
than T and F02

The relation (40) will lead to a convergent expression for
I 2 '(co) and bz"'(co) generally given by Eq. (18). We now
have

7r(ftu) Vco

8I (co)g(co)

I i '(co, T) = k~ TI (co)
32

b, i (co, T)= kz TI"(co ) ln(4) V4 TJ
8m. T

where

(44)

(45)

X I dco' n(co'/T)
I (co)+Pi (co —co')

where the Lorentzian can be summed to give

(41) =32AT) =-
V4

Then the relative variation of the density of states is pro-
portional to

I 2 '(co) = iricol (co)n (co/T)
32

—3

5g 2 T1
— —~co Tln
g T (46)

r;(co, T)

~, (co)
(42)

an expression which recalls the corrections of the electron-
ic density of states in the weak-localization regime for in-
teracting fermions. ' '

In the same way, we can derive for b, 'i '(co) the following
expression:

V. APPLICATIONS
TO LOAF- TEMPERATURE THERMAL PROPERTIES

OF THREE-DIMENSIONAL GLASSES

CO
ln

Q)2

~;(co,T)

~, (co)

b,, (co, T)= (m)l (co)n (co/T)ln(4) Y4 ri (co, T)

8m co

—3

(43)

We have seen that the elastic relaxation time or
Rayleigh-Klemens time plays a crucial role in the theory
of weak localization. Therefore, it is natural to turn to-
wards the situation where the harmonic disorder is the
strongest: the glasses. This situation has already been
discussed in a classical article by Zeller and Pohl' where
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2
7G 1

P4—V3-
MU

(47)

where yG is the Gruneisen parameter (=1) and M is the
mass of the atom. The parameter a is typically of the or-
der of 10 for a canonical glasslike vitreous silica. Oneob-
tains

(4) 2r3 oM co 1 CO

4I a Q~4 [1—(~/~')6]7~2 T
(48)

(co and Tinsameunits), which shows that I3'«I in the
regime co, T«co3. It is only in the range of a &co3 and
T&T* that I3' can be more efficient than I. For the
excessdensityofmodeswe find

2
5g ™
g CX

1
n(co/T)

[1—(co/co3) ] i (49)

The very strong frequency dependence comes from the
Rayleigh scattering, and here, as for the lifetime, the ex-
cess density is negligible except in the vicinity of m3 andT. 7

A similar conclusion can be achieved for the y3 interac-
tion which applies only to low-frequency phonons as com-
pared to the temperature. Theexpressions(29) and(30) of
r'," and Aq

' are candidates for predicting the sound at-

the Rayleigh-Klemens mechanism was used to explain the
plateau of the thermal conductivity. In this paper, they
model a glass as a crystal where each atom can be con-
sidered as amass defect. In such acasecrM ——1. By using
the classical approximation of the dominant phonon, they
were able to explain both the magnitude and the tempera-
ture dependence of the "kinetic" mean free path derived
from the gas kinetic expression of the thermal conductivi-
ty: K= —,'Cul. If the value oM ——1 seemsjustified for the
case of glasses, the association of the dominant phonon
approximation with the gas kinetic thermal conductivity
is misleading for a strong frequency dependenceofrelaxa-
tion time. Here we will retain from the basic work of
Zeller and Pohl the limit value oM ——1 for glasses. It also
must be indicated at this point in the discussion that the
two-level systems cannot play the role of elastic scatter-
ers we had considered previously. %'e will neglect them
for thepresent analysis.

The present theory of phonon weak localization and
anharmonicity provides two sets of expression for the at-
tenuation and the excess spectral density contained in re-
lations (22), (24), (29), and (30). These relations are fre-
quency and temperature dependent and involve the
threshold frequency co3 or threshold temperature T' at
which a divergence occurs. We will consider only regimes

of low frequency'&co3 and low temperature T&T*.
The expressions involving y4are valid for any frequen-

cy or temperature, especially for thermal phonons where
coisof theorder of Tandcanbeapplied to theanal~sisof
the thermal conductivity. The expression (22) of I3'can
be compared to the Rayleigh-Klemens scattering r by
forming the ratio I3'/1. The known expressions for the
anharmonic coupling constants are

tenuation and spectral density for hygersound phonons.
Naturally we are led to compare I3 to the Landau-)

Rumer expression:

I LR=33coT(T/OD) (50)

By forming the ratio I3'/I'LR, the y3 coupling constant
is eliminated and gives

(3) 1/2r3 2 N T 1

'LR ~D O [1—(T/T')']''
The value of this ratio is less than 1 except when Tap-
proaches T where the divergence occurs.

A similar result is obtained for the excess spectral den-
sity for the y3interaction:

7
5g 3m 2 T
g 2Q O" D

1

[1—(T/Te)6]7/2

the contribution of which becomes sizable only when T
tends towards T . Actually, the general conclusion of
this analysis is that a strong enhancement of the excess
density of states as well as the attenuation is predicted
when co and T approach co3 k&T*/A. T——his prediction
must be compared to the experiments on glasses which ex-
hibit a plateau in thermal conduction accompanied by a
bump in the specific heat around 10 K in all glasses
which have been tested. The standard analysis of these
features exhibits, therefore, an abrupt decreaseof thepho-
non mean free path and, at the same time, a strong excess
of the spectral density. It is tempting to apply the previ-
ous conclusions to this situationbyidentifying the critical
frequency co3 or temperature T* with the temperature of
occurrence of the plateau in the thermal conduction
namely T'=10 K. From the expression (12), we can
derive a value of co3 less than coD co3 —0.51coD for
o.M ——1. This value is very high, typically above 100 K,
and cannot be applied directly to the case of glasses. We
think that it is a consequence of the approximation of
weak localization which cannot produce a good value of
the threshold of localization. We believe that higher-
order contributions to the diagram expansion as well as
more realistic spectral density could result in a lower
value of co3. If co3 is considered as a parameter which
fits, the present theory of weak localization is able to
describe thequalitative features of glasses, namely, theoc-
currence of a plateau in the thermal conduction and,
simultaneously, an excess specific heat at low tempera-
ture. At T =0 K the present model does not predict any
localization for the single-mode problem. As a matter of
fact, the mean lifetime shortening, as well as the spectral
density contribution, vanish either exponentially or as a
power law for both the y4 and y3 interactions. But the
two-phonon correlator contributing to the diffusion con-
stant is localized when co approaches co3. This prediction
does not contradict the recent numerical study of Nagel
et al. ' which was performed at T=O K on a three-
dimensional model of glass where atoms interact via 6-12
potential. They only observed a localization of vibration
modes at high frequency near the cutoff. Our analysis
leads to a situation of localization for "second sound" at
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critical frequency which is reflected in the first sound via
the anharmonic coupling. A finite temperature is neces-
sary in order to observe localization in the one-phonon
problem.

As a final remark on the application of the localization
in glasses, let us specify the domain of validity of the
present model. The energy of phonons is limited by co3 at
high frequency in order to satisfy the condition of pertur-
bation expansion incident plane waves instead of localized
modes. A supplementary condition is that thy inelastic
collision frequency must be less efficient than the elastic
or the Rayleigh-Klemens relaxation. This is true for the
anharmonic interaction as reported by expression (48). In
glasses, however, at low frequency and low temperature,
we know that two-level systems are present and inelasii-
cally scatter the phonons. More precisely it is accept-
ed' ' that below 1 K, the two-level systems are more ef-
ficient than mass defects for scattering phonons. Actual-
ly, the domain of validity of the weak localization is re-
duced in the range of temperature or frequency between 1

and 10 K where the mean free path drops abruptly to in-
teratomic distances.

VI. SUMMARY

Let us summarize the main steps of the transposition of
the weak-localization theory from electrons to phonons.

(1) Quantum corrections to diffusion are obtained by
the resummation technique of the maximally crossed dia-
grams. A pole of diffusion in the effective vertex interac-
tion subsists, despite the change in statistics, from fer-
mions to bosons and in dispersion from quadratic to
linear.

(2) The strong energy dependence of the elastic
Rayleigh-Klemens scattering produces a threshold energy
c03 in the renormalized diffusion constant in three dimen-
sions. At this critical value co3, the two-phonon density
fluctuations or second sound —become localized.

(3) In two dimensions the divergence at low frequency,
0~0, of the dynamical quantum correction indicates the
general localization effect in low dimensionality (d (2).

(4) The anharmonic interactions couple the one-phonon
propagator to the phonon density fluctuations. Phonon
self-energies are calculated for two basic anharmonic in-
teractions and diverge when co or T approach the critical
energy co3. Strong shortening of the phonon mean free
path and additional spectral density reflect the approach
to this localization threshold.

(5) In the two-dimensional case, a low-frequency cutoff
(the inelastic rate of collisions) is indispensable to ensure
the convergence of the quantum correction when one kind
of anharmonic interaction is switched on. The resulting
phonon self-energy is quite similar to the electronic. one.

(6) A tentative application of the previous concepts to
glasses is developed: Qualitative features of low-
temperature anomalies of glasses —plateau in thermal con-
duction and bump in excess specific heat —are under-
standable in the framework of weak localization providing
that the value of the phonon threshold energy is reduced
to around 10 K.

APPENDIX A: DERIVATION OF THE EFFECTIVE
INTERACTION U OF PHONONS

In this appendix we would like to sketch the expansion
of Green's functions in order to obtain the expressions (4)
and (5) of the kinetic equation for G2(k, k', co, Q) and the
effective U interaction between interfering phonons lead-
ing to the coherent backscattering effect. First, if
H =Hp+Hd„represents the Hamiltonian for the phonon
gas moving in the field of randomly fixed impurities, we
can write the usual development for the Green's operator
D(a) ):

D(co) —=Dp(co)+Dp(a) )t(co)D(co),

where

(Al)

Dp(/a) =(fuuI —Hp)

D(cp) =Dp(a))+ Q Dp(ro)t(co, X )Dp(co)

+ g Dp(co)t(co X )Dp(co)t(co X )Dp(ri))+
m, n

Nf +8

where I X„I represents the impurities positions.
From Eq. (A2), we can write

G2(k, k', co,Q) = lim lim (Gj,(co+ Q+i5)Gg (co ie) )—
e~o 5—+0

in the form

G2(k, k', co,Q) =51, g Gg (m)GP (co+Q)

+Gg (a))GI", (co+Q)I ), g(Q)

XGg (ta)Gf (~+Q), (A3)

FIG. 6. Resummation of the most divergent diagrams in the
hydrodynamic limit ql(co) «1. The simple lines —represent
the free propagator and the double lines~the renormalized
phonon propagator.

~t(co) =Hdeg(ficoI Hp —Hde$—) (AcoI Hp)—
represents the collision operator. Equation (Al) can be
written more explicitly in the form
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where the vertex function I k k(Q) describes the interac-
tion of phonons with impurity centers as shown in Fig. 1.
Now, we can express I k k(Q) as the sum of two terms,
one of them, Uk k (Q), giving the sum of irreducible dia-
grams. Then we have

rkk(Q)=Ukk (Q)+ y U/, /, , (Q)rk k(Q)
k)

X Gk, (co)Gk, (co+Q),
and (A3) and (A4) lead to

(A4)

Gi(k, k', co,Q) =6k k Gk (co)Gk (co+Q)+ 6k (co)Gk (co+ Q)Gk (co)Gk (co+Q)

+ [ Uk, k'«)+ g Uk, k (Q)Gk ( )Gk ( +Q)~k, ,k «) j
k)

which implies

G2(k, k'; co,Q) =5k k Gk (co)Gk (co+Q)+Gk (co)Gk (co+Q) Uk k (Q)Gk (co)Gk (co+Q)

+Gk (co)Gk(co+Q) g Uk, k)(Q)Gk'(co)Gk'(co+ Q)l k(, k'(Q)Gk)(co) k)(co+Q) i

k(

and from Eq. (A3) we finally get

G2(kik i coiQ) Gk (co)Gk (co+ Q) 'Sk, k'+ y Uk, k]( Q) G2( kl iki coiQ)
k)

which coincides with Eq. (4).
The effective interaction between phonons is then de-

fined by the sum of irreducible diagrams. The most
divergent set of these diagrams, as shown by Langer and
Neal, is given by the maximally crossed diagrams and
can be resummed (cf. Fig. 6) to give Uk k (Q) as the sum
of a geometric series

b~I~(co, Q; q)

1 b I Q-'
(A5)

where

Gk q(co+Q) —Gk(co)
Gk q(co+Q)Gk(co)=

[Gk(co)] ' —[Gk q(co+Q)]

where the Green's functions for phonons in the field on
impurities are defined by

Gk (co) =A 1

A'[co —co(k) ]+iI g(co)

and

Gk q(co+Q)=R 1

fi[co+ Q —co(k —q) ] i I g(co+ Q—)

Iz(co, Q; q)=—g Gk(co)Gk ~(co+Q),
k

and b~ is given by the Fermi golden rule,

n. gg(co)
(A6)

~e prefer these definitions of the phonon propagators
to those generally given because of the fundamental role
played by time reversal in the constructive interference ef-
fect between phonons. On the other hand, the acoustic
approximation for the dispersion relation allows us to
write

In this last expression, g~(co) is the d-dimensional density
of states and I ~(co) is the inverse Rayleigh-Klemens life-
time proportional to co"+'.

%'e would like now to have a perturbative expression in
powers of Q and q (where we recall that k+k'=q) in the
limit ql (co ) « 1 and Qr(co) « 1 of the product
Gk (co)Gk q(co+Q). First, we write

[Gk (co)] ' —[Gk q(co+Q)]

2l 2i I g(co)=fi —I"g(co)+Q 1+
fico

Uq k.q
2k k

and the denominator of Eq. (A5) with the help of Eq.
(A6) reads

bg
1 b~Iq(co, Q; q)=-

2i I'~(co)
fiQ 2i n.

gg(co)+ ~ gg(co)+ . y —[Gk (co)—Gk (co)]2iI g co A' 4r„'(~) 2EI g co k k
(A7)

where the term proportional to q cancels because it appears only in the sum

'k.q ~ q J cos8 d 8,
k

0

where 0=arccos(k q/kq). In Eq. (A7) the last term proportional to I '(co) is negligible because the Rayleigh-Klemens
expression for I'(co) is proportional to n, where n is the impurity density assumed to be very small and then
I (co) » I '(co). Finally, we get
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1 b—dId(co, Q, q) =
21' co

AU—iQ+ q

and

2U 1
Ukk(Q)=

mDQ(co) gd(co) l Q—+'Do(co)q
(A8)

where Do(co), defined by Do(co) =A'v /I d(co), is the single-phonon diffusion constant. Equation (AS) is the desired Eq.
(5) given in the text.

APPENDIX B: SELF-ENERGY X' '(a)) ASSOCIATED %'ITH THE FOUR-PHONON
ANHARMONIC PROCESSES AND THE U INTERACTION

Starting from the general relation given by

X3 (co) —kg T g g &'"(&, —&, &+q, —lc —q) &D k —q(cop )~(co co(k)) )~k', —k —q
k, k' q,p

we can begin to calculate the sum S defined by

fiS= y4+co (k)Dk(cop)Dk(cop)Dk(co)Dk(co),
4

and finally we get for d =3
fi m co g(co)S=—y44 I (co) I (co)+A' (co' —co)

(B2)

where the renormalized propagators in the presence of im-
purities can be expressed by

Dk'"(co) =
%[co co(k) ) +i I—'d (co)

in which I d(co)=aviv /dDo(co) is the Rayleigh width of
the modes proportional to the impurity density, assumed
to be small. Then Eq. (Bl) can be replaced by

S= y4 2
—f dco"(co") g(co")5(co co")—

4 r„'(~) R

r(~)
I (co)+Pi (co' co")—

Equation (B2) combined with the expression given by Eq.
(6) for the effective interaction U leads for X3 '(co) to the
expression

Av co

4n.I co g co

X gn(co'/T)
q i (co' —co) +—D(co, co')q

1
X

I (co)+A' (co' —co)

which is the Eq. (18) given in the text for a three-
dimensional system.
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