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Dimensionality crossover induced by a magnetic field in thin metallic films
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The field dependence of the magnetoconductance in finite-geometry samples is analyzed within
the framework of the localization theory. It is found that for high magnetic fields the magnetocon-
ductance acquires the functional field dependence characteristic of a three-dimensional system. This
is so even when the inelastic mean free path is much larger than the sample thickness and when the
zero-field transport properties of the system are two dimensional in character. The crossover point
is obtained once the radius of the Landau level becomes smaller than the sample thickness for both
the parallel and the perpendicular field orientations. These theoretical considerations are borne out
by experiments on indium oxide films.

I. INTRODUCTION

The electronic conduction and its magnetic-field depen-
dence in disordered conductors can give information con-
cerning the role of Anderson localization as well as
electron-electron interactions in such systems. These
effects are expected to depend on the effective dimen-
sionality of the system and are known to be different in
three-dimensional (3D) as compared with two-dimensional
(2D) systems. ' ' In this connection one is faced with
the question of what determines the effective dimensional-
ity of a given system. This paper deals with some theoret-
ical and experimental aspects of this question with a spe-
cial emphasis on the 30~20 crossover. Similar con-
siderations should apply for the crossover to one-
dimensional (1D) behavior which will not be specifi-
cally addressed here. These crossovers are governed by
the interplay between the relevant lengths in the problem:
the inelastic diffusion length IT, the magnetic length
lH=(A'c/eH)'~, and the sample thickness d. We shall
present the theoretical analysis in the context of the weak
localization theory which seems to give an adequate
description of our experimental results discussed later.
Similar consideration should apply when the interaction
contribution is considered with lT replaced by (AD/kT)'
(see Sec. II for definitions).

In zero field, the 30~20 crossover in the conductivity
o. is expected to occur when Iz becomes comparable with
d. This question has recently been addressed by Ber-
grenn. Our theoretical considerations are presented in
the first part of Sec. II. In the second part of Sec. II we
discuss the analogous crossover induced by a perpendicu-
lar magnetic field at constant temperature. We find ' that

. even for films that are 2D with respect to their cr(T)
behavior (d « lT) a 3D behavior of the magnetic resis-
tance (MR) is obtained once the applied field is strong
enough to make I~ smaller than d. The result is qualita-
tively similar to that obtained by Al'tshuler and Aronov
for the parallel field case where the notation of a cross-

over to 30 is intuitively more transparent.
The theoretical considerations of Sec. III are compared

in Sec. IV with experiments performed on In203
„

films
of various thicknesses. The experimental results confirm
the qualitative features of the expected field-induced
crossover, in particular, the correlation between the cross-
over field and d is well established. In addition, we find
that the logarithmic slope of the MR for a sufficiently
large parallel field is twice as large as that for a perpen-
dicular one (for d &lH &lT). This is in agreement with
the theoretical predictions of Ref. 27.

II. THEORY OF 2D-3D CROSSOVER

o.o ——ne ~/m,2 (2)

n, m, and r being the electron density, effective mass, and
the electron's relaxation time due to elastic scattering,
respectively. 0.

&
is the anomalous part. We consider a

three-dimensional sample of a finite width, d. To obtain
the temperature dependence of cr, when the magnetic field
is zero, the correction to the conductivity is given by '

2 Ad/2' 2

cr, (O, T)= g ln +2m. (a/d) n )
2m'Ad

(3)

where a is some microscopic length (which is in this case
the elastic mean free path), D is the diffusion coefficient,
and ~;„ is the inelastic or phase breaking time,
(2Dr;„)' =IT. We assume a « l7.,d. Here AA/a is the
upper cutoff in momentum. The two-dimensional (2D)
result is obtained from Eq. (3) by taking only the term
with n=0,

In general, the conductivity o(H, T) in mag. netic field H
and temperature T may be written as

o ( H, T) =o o+ cr, (H, T),
where o.o is the Boltzmann part of the conductivity
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2 2

oi (O, T)= ln
2D~;„

2e
[ln(ti ld)+ln(d/lr)] .

The 3D limit is obtained by replacing the summation in
Eq. (3) by an integral. This is allowed when the inelastic
length ("Thouless length" ), Iz., is much smaller than d,
d & ~ lT. The result of the integration is

t7i (O, T)=, (inA —C)+
4~'X(Dr )'"

X 1+0
(Dr,„)'"

(5)

The first term renormalizes the "bare" conductivity, crp C
is a numerical constant of order unity (for lnA =C this
correction vanishes). We leave open the question of the
observability of this correction. A plot of ot(O, T) [Eq.
(3)] versus d /(D r;„)' is shown in Fig. 1. For
dl(Dr;„)'~ && I we recover the 2D behavior [Fig. 1(a)].
For d/(Dr;„)' »1 we find a linear dependence on I/iz.
[Fig. 1(b)] as expected. The corresponding behavior for a
three-dimensional system [i.e., d~ao, see Eq. (5)], is
shown by a dashed line. Note that when lT «d one still
finds a correction factor with respect to the "ideal" 3D re-
sult. The difference between the finite thickness sample
and the "true" 3D case is essentially due to the n=0 term
(i.e., the 2D contribution) in Eq. (3). This difference is
practically constant (in fact it varies logarithmically) as a
function of IT and therefore the relative correction goes to
zero. Such deviations from the 3D behavior, which exist
even for d » lr, should in principle be observable in the
experiments. Note also that the variation of a i is smooth
and no sharp changes in slope are obtained. We em-
phasize that the above-mentioned corrections are not just
functions of d/lT.

The 2D to 3D crossover occurs at d/IT -1. This cross-
over is determined in theory, as well as experimentally, by
the change of slope of oi, from linear to logarithmic
behavior. We emphasize that it should not be determined
by, say, the condition that o.

&
and o~ are comparable.

This latter criterion, which yields a different relation be-
tween d and lT at the crossover, cannot be simply related
to experiment.

We now introduce a magnetic field. ' ' ' The problem
of magnetic field parallel to the surface has been already
discussed by Al'tschuler and Aronov. Here we shall
consider the problem of magnetic field perpendicular to

-20—

I I

-5 —4 -5 -2

I.n (d / V D 'r~n )

—l5

b)

2 4 6 8 IO 12 I4 l6 I8

the layer. In this case we write

cr i (H, T)=o, (H, T) ~ob(H, T) . .

cr, is the "2D contribution" measured in (ohm cm) ', and
is equal to

o, (H, T)=—
lHfid „p4DIH (n. +.—,)+1/r;„

where IH ——ch /eH is the square of the radius of the lowest
(n=O) Landau orbital of an electron in a magnetic field
H. We take lH &~a. The related cutoff parameter is
Np-l~/a . The second contribution in Eq. (6) is ob

d /VDTin,

FIG. l. Anomalous conductivity oi, in units of ei/2' Kid, as
function of temperature, parametrized by d/lT. (a) Using a log-
arithmic scale for d/lT —on which ol is linear for d &(D~;„)'
(2D case). (b) Same quantities on a linear scale; o.

l is linear in

IT
' for d » lT (3D behavior). These calculations were done

for films with d/a=60. In (a) and (b) the dashed line depicts
the pure 2D and 3D behaviors, respectively.

4e 2D 1

m lJfid
„ i „p4DIH (n + —,

' )+D(2irn'/d) —I/r;„

The assumption in Eqs. (7) and (8) is that the magnetic
field is weak enough so that the resulting modification of
the one-particle states may be ignored in the disordered
system. ' The magnetoconductivity (MC) bo, is defined

l

by

ho(H, T)=crt(H, T) ot(O, T) . —
The 2D part of the MC is '
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b,rr, (H, T)=o, (H, T) o—, (0,T)

e' lH
2

—ln
2m Kid 2l

lH

21tT
(10)

where f(z) is the digamma function.
In the weak-field (or high-temperature)

(lH » lT »a), Eq. (10) reduces to

e' IT
4

4
12m 2' lH

whereas the strong-field limit (a « lH « lT) yields

2e' ~a
Ao.,= —1.964—ln

x~2M 2IT

limit
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We now consider the other contribution, o.b. If we are
allowed to replace the summation over wave vectors [first
summation in Eq. (8)] by integration, we obtain the usual
30 results

035
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0
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o 0.]0
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Qc 1
C, = g 2(v'n+1 vn ) —— 0.605 .

n=0 ( + —,')'')
In analogy with the above discussion of the

temperature-dependent conductivity, the 20 to 30 cross-
over in the presence of a magnetic field should be found
by considering the slope of the MC.

We now consider two cases
(a) IT « lH. We find fram Eqs. (11) and (13a) that the

condition for crossover is

0.00

8.0

6.0—
C:
O 5.0—

o 4Q—

c 3Q—

20

50 ~oo

Magnetic fie(d

lT-d,
as in the zero-field case.

(b) lT » lH. We find from Eqs. (12) and (13b) that the
crossover occurs at

(14b)

Note that this strong-field (or low-temperature) crossover
occurs at an H value which is independent of tempera-
ture.

Figure 2 shows the H dependence of the MC [Eq. (9)]
for three values of d!1T (which is the parameter deter-
mining the effective dimensionality for o~(l, T). In the
two "thin" sample cases [Figs. 2(a) and 2(b)] shown, the
behavior of the MC merges with the 2D ane for
d/lH « 1 and becomes essentially parallel to the 3D one
for d/l~ &&1. In the thick one [Fig. 2(c)], the behavior is
almost indistinguishable from the 3D one [Eq. (13)]. All
these results are in agreement with our above discussion.
We note also, as discussed before, a difference between the
value of the full MR and the 30 contribution. This
difference appears to be roughly a coefficient multiplying

I.O—

0.0
io 20

MOgnetiC fieid

FIG. 2. Magnetoconductance in units of e /A for various
films as a function of the magnetic field in units of cA/ed .
Solid curves, numerical calculation; dotted curves, 3D contribu-
tions b,crb [Eqs. (8) and (13)];dashed curves, the pure 2D contri-
bution b,o, [Eq. (7) and (10)]. The calculations were done for
three thicknesses: {a) d/1T ——0.1 {2D-like behavior); {b)
d/lT ——0.75 (2D intermediate behavior); (c} d/IT ——4 (3D-like
behavior).

the 2D contribution. The coefficient is of the order of
40% for the thinnest case, and decreases manotonically
with increasing thickness. Thus, for very thin samples it
takes a much larger field than that for which lH -d to es-
tablish 30 behavior not only with respect to the slope but
also for the value of her(H, T).

In order to gain some physical insight into the problem
of dimensional crossover in the MC, let us consider an
electron wave packet which develops in time in the pres-
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ence of some magnetic field. The length lH, as well as lT,
plays the role of a characteristic scale for the system to
lose its H =0, T=0 quantum coherence. Thus if
l—:min(lH, lT) «d, the finite thickness of the system is
not felt by the propagating wave packet and the behavior
is, to a leading order, 3D. Once I -d, a crossover to a 2D
behavior takes place. Alternatively, one may say that the
relevant wave vector, appearing in the expression for o.

&,

should satisfy
~

q ~

&1/1. Since q is quantized (q=O,
+2m/d, . . . ), l »d implies that only the q=O term (i.e.,
the 2D contribution) should be taken into account. The
condition for crossover from 2D to 3D behavior in the
parallel field case was found in Ref. 27 to be similar to the
one we find here. In the parallel field case the physical
picture is more obvious since the motion due to the field
is perpendicular to the surface of the film. A point to be
emphasized is that in the parallel field case of Ref. 27, the
slope of the MC versus lnH in the range d « lH « IT is
tcoice that of the perpendicular field case [compared Eq.
(12) with Eq. (9) of Ref. 27].

Finally, we would like to emphasize that the "weak-
scattering" (kfl »1) theory discussed above is expected
to apply only when the correlation length is irrelevant.
This is the usual case when kfl and lT are sufficiently
large. However, when the metal-insulator transition is ap-
proached and g becomes appreciable, it may be necessary
to modify the theoretical treatment given above.

III. EXPERIMENTAL TECHNIQUES

In In203 samples were prepared by e-gun deposition
of pure (99.997%) hot-pressed indium-oxide powder. Mi-
croscope glass slides held at —150'C were used as sub-
strates and the desired geometry were obtained by the use
of appropriate stainless-steel masks. Further details of
preparation and samples characterization are given else-
where. For completeness we give here details of two of
the features that may be of particular relevance to the
present study. The thickness of the films was measured,
in situ, with a quartz crystal which was periodically cali-
brated against a Tolanski interferometer. We estimate the
uncertainty in absolute thickness determination to be
+10% and the relative uncertainty +5%. The other
point is the surface roughness or the thickness variation of
our films. Figure 3 is a high magnification TEM micro-
graph of a typical sample prepared with the prescribed
conditions. The surface roughness observed amounts to
+20 A, apparently independent of the total thickness.
Since the thinnest film used in this study is -350 A, we
feel that the physical thickness of our film is quite well
defined. This fact may be crucial for the unambiguous
observation of the 3D~2D crossover to be discussed
below. .

Conductivity measurements were performed as a func-
tion of field and temperature employing a standard dc
four-terminal technique. The magnetic field was achieved
by a conventional split-coil design magnet that could be
rotated 360' relative to the sample's plane. ' Electrical con-
tacts were soldered in the In203 „samples with pure me-
tallic indium, a method that in principle, might influence
the magnetic field inhomogeneity at field smaller than

—300 Oe (which is for the critical field of indium in the
superconductivity state). We did not detect, however, any
spurious behavior at the field in question. Moreover, the
data relevant to the field-induced crossover were taken at
fields which are considerably higher than —300 Oe. This
is described in the next section.

IV. RESULTS AND DISCUSSION

In this section we describe and discuss the experimental
results obtained for the resistance of the indium-oxide
films as a function of field and temperature. Since in vir-
tually all cases described below the fractional change of
the resistance (with either field or temperature) is quite
small, Ao/o. has essentially the same magnitude as
AR/R. It should be noted that the latter is used in this
section.

Figures 4(a) and 4(b) depict the temperature dependence
of several In203 films with thicknesses ranging be-
tween 350 to 1250 A. These data were taken at a field of
-2X10 Oe (which was the residual field inside a
double-mu —metal shield) and at electric fields of the or-
der of 10 V/cm. We have not noticed any change,
within our experimental error, in the resistivity at a con-
stant temperature, in fields which were 1D times larger
than those quoted. It is therefore believed that these mea-
surements yield the "zero-field" resistivity as a function
of temperature.

In each case, it is observed that there is a temperature,
Td, below which the film s resistance increases logarith-
mically with temperature. Above Td the functional
dependence of R (T) takes on a different form, for exam-
ple, R (T) =Ro AT' which is——believed to be the resis-
tivity versus temperature law in the microscopic (critical)
3D regime of this material. It is thus natural to associate

FICx. 3. Bright-field micrograph of a 300 A In203 sample
taken at a JEOL-100C transmission electron microscope. The
black bar is equivalent to a length of 0.4 pm.
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FIG. 5. Negative MR results for the 1250-A sample rnea-
sured at several temperatures below Td for both field orienta-
tions. The two 1owest curves show for comparison the full low-
field behavior at 4.2 K. Note that while low-field anisotropy is
significantly affected by temperature, the crossing field is not.
It is interesting to note that this is so even in the temperature
range where the film is affectively 3D.
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asymptotic high-field logarithmic slopes of the parallel
and perpendicular MR results. The theoretical expression
for the MR in a parallel field is

T(K)
FIG. 4. Zero-field resistance versus temperature (on a loga-

rithmic scale), for samples with various thicknesses (as indicat-
ed). In each case the 3D~2D crossover temperature, Td, is
marked by an arrow. Note the similarity between thinner sam-
ples (a) and the theoretical result [Fig. 1{a)]. It is seen that for
the thicker samples (b), Td occurs at progressively lower tem-
peratures.
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z ln z +1
2m A 12lH

which reduces to

(15)

Td with the 3D~2D crossover temperature. We note
that such a procedure constitutes a valid measurement of
lT. It should be pointed out that measurements along
these lines when compared with MR experiments seem to
indicate ' that Iz.(T=Td)=d within an uncertainty of
+20%.

We turn now to the MR results of the four films
described above. These are given in Figs. 5, 6(a), 6(b), and
7. The most obvious aspect of the data shown in these
figures is the gradual decrease of anisotropy (i.e., the
differences between the MR for parallel and perpendicular
field orientations), for a given field and temperature, as
the thickness increases. It can also be observed that this
anisotropy decreases with temperature for a given sample
at a constant magnetic field. This was first noted in Ref.
21. There are two interesting features in these results that
we wish to discuss in some detail. The first concerns the
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FIG. 6. Negative MR measured at 4.2 K in parallel and per-
pendicular fields orientations (marked H~I and Hj, respectively)
for (a) 350-A-thick and (b) 600-A-thick samples. The dashed
straight line on the parallel-field MR is used to define Ho. Note
(by reference to Fig. 4) that, in the absence of field, both samples
are 2D in this temperature.
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e.g., Fig. 6} as a function of the inverse of the films thickness (in
units of 10 cm ').
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O. I Q2

for magnetic fields so high that IH « iTd.
This should be compared with

e Rz 2IT
ln (16)

2~ A l~

which is the analogous expression appropriate for the
high-field (IH « lr) MR of a 2D film (d « lT) whose
plane is oriented perpendicular to the field. It is thus ex-
pected that the high-field 2D limit (i.e., d « lH « iT ) will
be reached first for the perpendicular orientation.
Asymptotically, a logarithmic increase of the MR with
field will be exhibited for both field orientations. Further,
we can be seen by comparing Eqs. (15) and (16), the loga-
rithmic slope of the MR for the parallel field is exactly
twice that of the perpendicular one. The data for the 350-
and 600-A samples (Fig. 6) clearly demonstrate the above
three features. The logarithmic slopes ratio for the 350-A
sample is 1.9+0.1, and it is 1.7+0.1 for the 600-A sample.
We ascribe the difference from the ideal value of 2.0 to
the finiteness of d/lT. It would be of much interest to
study the behavior of the thicker films in lower tempera-
tures, where lT is presumably larger, to verify this conjec-
ture. The second point concerns the crossing of the MR
curve for a parallel field with that of the perpendicular
one. This should occur according to (15) and (16) for
lH -(M6/12)d and is thus a purely geometrical condition.
A similar condition might be derived from a quasiclassi-
cal description of the quasiparticle trajectory. One ex-

pects the MR to be isotropic once the time it "takes" the
quasiparticle to diffuse a distance d exceeds the time to
complete a full circle (-mlH). Either way we have an
easy to verify prediction —the curves should cross at a
temperature-independent point and at fields that scale as
d . Comparing this with our data we find that this is
indeed so, but the empirical proportionality constant is
-0.35 rather than the theoretical V 6/12. The insensitivi-

ty of the crossing field to temperature is illustrated in Fig.
5. Another characteristic field that comes out of such
considerations is obtained by extrapolating the asymptoti-
cal form of the MR for the parallel orientation to
b,R /R =0 (see dashed lines in Fig. 6). From (15) it is seen
that this field Ho is defined by dlT ——2W31~, which sug-

gests a dependence of the form Ho cc d ' (with a
temperature-dependent proportionality constant). We
have attempted to see how this relationship fits our data
in the inset of Fig. 7. This gives a reasonable curve and,
in fact, the value of lT obtained from the slope of these
data, —1300 A at 4.2 K, agrees favorably with
lT-1000+100 A obtained elsewhere ' for the same films
using two different methods.

From the experimental point of view it is easy to under-
stand the field-induced crossover which seems to occur at
or close to the point where (hR /R)H ——(b.R /R)H .

Il

Clearly, (15) and (16) should be modified for fields higher
than the crossing field since otherwise (hR/R)H will be

larger than (b,R/R)H which would appear to conflict
with the physical idea underlying (15) and (16). The
natural solution is that both curves will deviate at this
point from their lnH field-dependence characteristic of
the 2D sample into the H' dependence expected in the
3D range. This indeed seems to be the case (Figs. 5 and 6)
though our limited range of fields does not allow for a de-
finitive functional dependence to be established. This
analysis confirms the theoretical considerations of Sec. II
according to which the 2D~3D crossover defined by the
functional dependence on the field is essentially indepen-
dent of temperature. At the same time some questions re-
garding the form of the 3D behavior are raised. For ex-
ample, according to Kawabata in the pure 3D case the
high-field regime has the universal feature that
b,o(H, T)=0.918VHmhocm ' (where H is in koe), re-
gardless of material and temperature. Usually, this pre-
diction is borne out by experiments performed on thick
samples to within an order of magnitude, "' but conspi-
cuous variations do occur. The experimental results for
b,o/vH seem to indicate that temperature dependence
cannot be neglected Som. e of these discrepancies might
be traced to other mechanisms not treated here such as
spin-orbit coupling. However, the considerations made
above suggest that in finite-geometry samples the
"Kawabata's number" b.o /&H mill be temperature
dependent to a significant degree simply through the
"background contribution" of the 2D component (see Fig.
2). This may be of some relevance even for thick films
where d &~ IT if an inherent structural anisotropy is
present which is often the case in granular metal films.

Nate added in proof. Dimensional crossover with mag-
netic fields has also recently been reported by P. Ohyama,
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M. Okamoto, and E. Otsukai, J. Phys. Soc. Jpn. 54, 1041
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