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Local-density-functional calculations of the energy bands, equilibrium lattice constant, bulk
modulus, and cohesive energy have been performed using a newly developed self-consistent full-
potential linearized augmented-plane-wave {LAPW) program. Scalar-relativistic effects are included
for the band states, and the core-level states are treated fully relativistically in a central-field approx-
imation. Excellent agreement is obtained with the experimental lattice constant and bulk modulus.
Generally good agreement is obtained with the scalar-relativistic pseudopotential results of Bylander
and Kleinman. In this context, the impact of various approximations used in including the core
states is assessed, and these findings are related to the frozen-core and pseudopotential approxima-
tions, especially with regard to the treatment of the somewhat overlapping 5p semicore states and
their effect on ground-state properties. Comparison with the recent LAPW results of Jansen and
Freeman yields remarkably consistent values of the total energy at the equilibrium volume and pro-
vides a strong check on the accuracy of these two independently developed bulk LAPW programs.

I. INTRODUCTION

There have been major advances in the last few years in
ab initio theoretical methods for determining the elec-
tronic, vibrational (phonon), and crystallographic struc-
ture of solids, surfaces, and molecules using local-(spin)-
density-functional L(S)DF theory. ' ' Self-consistent
L(S)DF calculations have yielded results for the total en-

ergy, pressure, and forces' acting on the nuclei as a func-
tion of crystal structure and volume. These calculations
have provided information about not only the normal
(ambient-pressure} properties, but also about the high-
pressure equation-of-state and solid-solid phase transi-
tions, and such calculations have become increasingly im-
portant in view of the growing number of high-pressure
studies using diamond-anvil techniques. '

In this paper we report local-density-functional (LDF)
calculations of the energy bands, equilibrium lattice con-
stant, bulk modulus, and cohesive energy of tungsten, per-
formed using a newly developed all-electron self-
consistent full-potential linearized augmented-plane-wave
(LAPW} code. Excellent agreement is obtained with the
experimental lattice constant and bulk modulus, and good
agreement is obtained with the experimental cohesive en-
ergy.

The LAPW results reported here are found to be in
generally good agreement with the scalar-relativistic pseu-
dopotential calculations of Bylander and Kleinman'
(BK), the nonrelativistic pseudopotential calculation of
Zunger and Cohen' (ZC), and a calculation using an in-
dependently developed LAPW program by Jansen and
Freeman' (JF). Comparison with the results of JF pro-
vides a useful calibration of these two independently
developed LAPW programs.

The underlying approximation of the pseudopotential
approach is the frozen-core approximation, and, in this
context, the effect of the overlapping tungsten 5p semi-
core states on the equilibrium properties is assessed in
some detail. It is found that, at least near the equilibrium
(zero-pressure) volume, these 5p "fat" core states have
negligible effect on the predicted equilibrium volume and
a small effect on the predicted bulk modulus.

In the next section the LAPW method is briefly re-
viewed. In Sec. III we present a discussion of the results
obtained, and the primary conclusions are summarized in
Sec. IV.

II. CALCULATIONAL METHOD

The calculations reported here were performed with a
newly developed LAPW computer code for bulk crystals.
The main features of this code compared to the earlier
slab-LAPW code' are as follows. (1) No symmetry as-
sumptions are used (e.g., such as the existence of a site of
inversion}. This is an important feature for total-energy
and frozen-phonon calculations, since various distortions
of an otherwise high-symmetry crystal may be required.
(2) Like the earlier version, the representation of the po-
tential charge and spin density are unrestricted by shape
approximations (such as spherical muffin-tin potentials).
(3) It is an all-electron method in that both core and
valence states are treated self-consistently.

The LAPW method for obtaining the band eigenstates
from augmented-plane-. wave variational basis functions
has been fully described in Refs. 18—20, and is summa-
rized briefly here. For a periodic bulk crystal, all space is
partitioned into two types of regions: (1) nonoverlapping
muffin-tin spheres centered on each atom, and (2) . the
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remaining interstitial space between these spheres. A
LAPW basis function consists of a plane wave in the in-
terstitial region joined continuously and differentiably
onto scalar-relativistic ' solutions of the spherical com-
ponent of the potential inside the muffin-tin spheres. The
innermost core-level eigenstates are not usually treated
variationally (except where stated otherwise), but are ob-
tained using a fully relativistic atomiclike program using
the spherical component of the muffin-tin potential. The
core eigenstates are recomputed in each iteration, permit-
ting the core states and core charge density to be deter-
minixi self-consistently, as are the band eigenstates (i.e., no
frozen-core approximation is made).

Although only the spherical component of the muffin-
tin potential is used to construct the basis functions, the
full potential including nonspherical components is treat-
ed in the variational determination of the band eigen-
states. Thus, no "shape" approximations are employed
for either the potential or the charge density.

The relativistic exchange potential ' of MacDonald
and Vosko was used together with the Wigncr interpo-
lation formula for the correlation potential. Relativistic
corrections are included only for the exchange potential,
since these corrections are most important in regions of
high charge density, where exchange effects dominate
correlation contributions.

The total energy is calculated within the LDF formal-
ism using a method developed by Weinert et a/. " This
method is well suited to the LAP% method and is very
stable numerically. This is important in all-electron
total-energy calculations, since differences between total
energies are much smaller than the total energy itself.

A well-converged basis set of about 80 LAPW's is used,
resulting in differences between total energies which are
converged to better than 0.1 mRy. The convergence of in-
dividual band eigenvalues is shown in Table I. The num-
ber of basis functions and the muffin-tin radii used for
different lattice parameters was kept fixed. Inside the
muffin-tin spheres, the LAPW's are expanded up to 1=8,
and the maximum l value used to construct the lattice
harmonics is also 1=8.' ' ' The rms error in the con-
tinuity of the charge density and potential is less than
0.2% in all cases.

The Brillouin-zone summations for the charge density
are performed using a discrete k-point summation in
which each eigenvalue is effectively broadened using an
artificial Fermi-Dirac distribution corresponding to
kT=2 mRy. This results in rapid convergence of these
summations with respect to the number of k points used.
In the initial self-consistent iterations, eight special k
points in the irreducible Brillouin zone are used to get

close to self-consistency. The final iterations are carried
out using a uniform mesh of 55 k points, and the change
due to increasing the number of k points results is less
than 2% in the bulk modulus and about 0.1% in the
predicted lattice parameter.

Iterations are continued until the total energy is stable
to 10 Ry. At this level of self-consistency the integrat-
ed rms difference between the input and the output charge
density is of the order of 10 electrons bohr

III. RESULTS AND DISCUSSION

A. Equilibrium properties

The lattice constant and bulk modulus of tungsten are
obtained from the calculated total energies as a function
of volume in the bcc crystal structure. Total energies are
calculated at four different lattice parameters ranging
from 3% smaller to 3% larger than the experimental
lattice constant. The results are shown in Table II. The
calculated total energies are then fitted to Murnaghan's
equation of state

80 V ( VO/V)
E( V)=, +1 +const,

Bo Bo-

where B and B' are the bulk modulus and its prcssure
derivative at the equilibrium volume Vo. In Table III the
lattice constant, bulk modulus, and cohesive energy ob-
tained from this fit are compared with those calculated by
BK,' ZC, ' and JF,' as well as with experiment.
BK, ZC, and JF fitted their total-energy results to a poly-
nomial in the lattice parameter, and we have also tested
some other functional forms for the equation of state. We
found that in tungsten the lattice parameter is rather in-
sensitive to the particular form used, over this range of
volumes. Assuming a quadratic expansion in the lattice
parameter, the equilibrium lattice parameter changes by
only 0.3% compared to the value obtained from
Murnaghan's equation. The bulk modulus changes by
only 1.5%. The calculated pressure derivative 8' ob-
tained from Murnaghan's equation is 4.88, in good agree-
ment with the experimental value of 4.32.

To obtain the cohesive energy of bulk tungsten, self-
consistent spin-polarized all-electron atomic calculations
were performed for the isolated tungsten atom using the
von Barth —Hedin spin-density functional. As the non-
spin-polarized limit of the von Barth —Hedin functional is
the Hedin-Lundqvist density functional, we repeated the
bulk calculation using the Hedin-Lundqvist density func-
tional. Since in the bulk calculation the Sd and 6s states

TABLE I. Convergence of selected band states with number of augmented plane waves. PW1 and
PW2 are the number of.plane waves in two calculations, and AE is the difference between the eigen-
values of these two calculations (in meV).

PW1
PVf2
A.F

I is

55
79
0.02

I2s

55
79
21.4

P4

68
80

1.70

68
80
0.79

68
80
4.02

68
80
0.84
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TABLE II. Calculated total energy (Ry) at four lattice pa-
rameters (A).

3.064
3.160
3.207
3.256

—32 244.305 59
—32 244.31678
—32 244.31487
—32 244.308 95

B. Overlapping core-state effects

As mentioned, the core-electron states were treated
self-consistently in an atomiclike approximation in obtain-
ing the results given in Tables I—III. The handling of the
core electrons in tungsten deserves some attention, since

are treated scalar relativistically while the other states are
treated fully relativistically, this was also done in the
atomic calculation. The bulk equilibrium total energy is
—32313.017 Ry, and the isolated-atom total energy is
—32312.275 Ry. The cohesive energy is thus 10.09 eV.
The corresponding values in the calculation of JF (Ref.
17) (who used the Hedin-Lundqvist exchange-correlation
potential throughout) are —32 313.018 for the bulk,
—32312.300 for the spin-polarized atom, and a cohesive
energy of 9.76 eV. This constitutes truly remarkable con-
sistency between two independently developed LAPW
programs. We are not certain of the cause of the some-
what larger discrepancy in the two atomic calculations.
The discrepancy with experiment is about 1.0—1.2 eV in
these calculations. We attribute this overestimate of the
cohesive energy E, to neglected multiplet effects in the
atom, which would tend to increase the binding energy of
the atom and thus reduce the calculated cohesive energy.
In view of this, the near-perfect agreement in Table III be-
tween BK's E, and experiment is hard to understand.
The low E, for ZC may be due to the neglect of scalar-
relativistic effects.

These results are summarized in Table III. The overall
agreement with experiment ' is very good.

the 5p level is a "fat" core state (i.e., the Sp core state has
about 0.1 electrons per unit cell outside of the muffin-tin
spheres). This means, of course, that there is some over-
lap of Sp core states from neighboring atoms. This raises
the question of how much these states contribute to the
observed equilibrium properties. In addition, the effect of
these "fat" core states can be expected to become more
significant in high-pressure studies.

We now assess the impact of various approximations to
the core states, and we relate our findings to the common-
ly used frozen-core and pseudopotential approximations.
Tables IV and V display our results for various treatments
of the core electrons. For each treatment, self-consistent
calculations were carried out for the total energy at only
three lattice constants, a/a0=0. 97, 1.0, and 1.03, where
ao ——3.160 A is close to the experimental value. The total
energies are then fitted to a quadratic equation to obtain
the equilibrium lattice constant and bulk modulus.

In calculation (1) in Tables IV and V the crystal core
charge is treated self-consistently (the so-called soft-core
approximation) in an atomiclike approximation. The
atomiclike core-electron states for each atom are obtained
in each iteration from the spherical part of the potential
in each muffin-tin sphere extrapolated to infinity. The
extrapolation procedure (a I/r form was used) is some-
what arbitrary and calls into question the validity of this
approximation. In bulk tungsten near the equilibrium
volume, however, we have found that the results are in-
sensitive to the specific form used. The crystal core
charge density is then defined as the superposition of
these spherical core charge densities. This crystal core
charge density is then decomposed into a lattice harmonic
expansion within the spheres (it contains nonspherical
contributions coming from neighboring atoms) and a
plane-wave expansion in the interstitial region.

In calculation (2) in Tables IV and V the atomiclike
core states are obtained for each atom as in calculation
(1). Instead of superposing these core densities, however,
any "spill-out" core charge from the muffin-tin sphere is
uniformly distributed in the interstitial region. The total
spill-out core-state charge is 0.11 electrons, of which

TABLE III. Comparison of calculated lattice constant, bulk modulus and its pressure derivative, and
0

cohesive energy E, with experiment. The lattice parameter is in A and the bulk modulus is in Mbar.

ZC

3.173

BK

3.162

JF

3.149

LAPW

3.164

Expt.

3.162

3.45 2.97 3.45 3.18 3.1415'
3.1078
3.232
307

4.1 4.32d

7.90 8.93 9.76 10.09 8.90'

'Reference 33, T=O K, extrapolated.
"Reference 33, T is room temperature.
'Reference 31.
Reference 30, T is room temperature.

'Reference 34.
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(1) Self-consistent,
overlapping, atomiclike

3.168 3.24

(2) Self-consistent,
atomiclike, constant Qq

3.170 3.30

(3) Same as (2) but
frozen core

3.164 3.78

(4) Same as (2) but
renormalized frozen core

3.221 3.94

(5) Variational Sp core state,
frozen inner core

3.171

(6) Same as (5) but
self-consistent inner core

3.166 3.41

{7) Same as (1) but no

spin-orbit for Sp core state

3.165 3.47

(8) Same as {1) but no
spin-orbit for all core states

3.167 3.46

Experiment 3.162 3.142'
3 232'

'Reference 33.
Reference 31.

about 90% comes from the Sp orbitals. As seen in Table
V, the difference between the total energy in calculations
(1) and (2) is rather small. The largest difference occurs at
the smallest lattice parameter, where the atoms are closer
together and core overlap is greater. We conclude that, at
least near the equilibrium volume, the constant interstitial
core charge density effectively simulates the overlap of
the fat Sp core state.

The effect of the frozen-core approximation is exam-
ined in calculations (3) and (4) in Tables IV and V. The
core charge density obtained in calculation (2) is used for
this purpose. This approximation (3) leads to about a
20% error in the calculated bulk modulus. Calculation (4)
further examines the sensitivity to the choice of the
frozen-core charge density. The same initial frozen core
is used as in (3), except that this core charge density is re-
normalized such that the number of core electrons inside
the muffin-tin sphere is exactly 68, and there are no core
electrons in the interstitial region. This core density is
then frozen and used at all three lattice parameters. This
results in even larger discrepancies in not only the bulk
modulus but also in the predicted equilibrium lattice pa-
rameter. Calculations (3) and (4) thus show the magni-
tude of soft-core effects that can be expected in systems
with fat core states.

We now examine the adequacy of treating the Sp fat

TABLE IV. Comparison of various treatments of the core-
0

electron states (see text). The lattice parameter is in A and the
bulk modulus is in Mbar.

Core treatment

core state as an atomiclike state. Calculations (5) and (6)
in Tables IV and V treat the Sp level as a variational band
state. In (5) the innermost core states were renormalized
and frozen as in calculation (4). In calculation (6) the in-
nermost core states were not renormalized or frozen, but
were calculated self-consistently as in (1). The LAPW
variational calculation was performed in two energy "win-
dows, " one for the conventional Sd,6s band states and one
for the lower-lying Sp states. Thus, two different sets of
LAPW energy parameters are used. This requires two
separate diagonalizations of the secular equations at each
k point, but yields the greatest variational freedom. Al-
though this procedure correctly treats the Sp overlap, it
neglects the spin-orbit splitting of the Sp levels (which is
large, about 6.0 eV), since the band states are calculated
scalar relativistically. [Spin-orbit effects are further ex-
amined in calculations (7) and (8).] Thus, the difference
in total energy between (1) and (6},about 0.3 Ry, is due to
the neglect of the Sp spin-orbit interaction. As expected,
freezing the innermost core states which are very localized
has very little effect. There is roughly a 12% error in the
predicted bulk modulus in calculations (5) and (6), but
these results are in better agreement with calculations (1),
(2},and experiment than are the frozen-core calculations.

Finally, we examine spin-orbit effects. In the future we
will implement the treatment .of the spin-orbit interaction
for the variational band states. For now, however, it is
very easy to remove the spin-orbit interaction from the
calculation of the atomiclike core states. This is done in
calculations (7) and (8) in Tables IV and V. The only
difference between calculations (1) and (7) is that the
spin-orbit interaction has been removed from the Sp
atorniclike core state. The results for the bulk modulus
and the equilibrium lattice parameter are in very good
agreement with calculation (6). Calculation (8) shows the
effect of removing the spin-orbit interaction from all the
core states. As expected, this further change has little ef-
fect on the equilibrium properties, since the remaining
core states are extremely localized.

We conclude from these calculations that Sp-core-state
overlap has a significant impact on the elastic properties
of tungsten, even at normal pressure, and that these ef-
fects can be expected to get larger at the reduced volumes
obtained in high-pressure studies. The inclusion of the
spin-orbit interaction of the Sp core state also has a sig-
nificant effect on the bulk modulus, and this should also
become increasingly more important at high pressure.
These results also indicate that, at least for normal pres-
sure, it is not necessary to treat the fat core states as band
states. The frozen-core approximation, however, intro-
duces significant errors. We believe this accounts. for the
better agreement of our calculated bulk modulus with ex-
periment than had been previously obtained in the pseudo-
potential calculations of BK (Ref. 15) and ZC (Ref. 16).

C. Band structure

The calculated band structure along symmetry lines is
displayed in Fig. 1. Table VI compares selected LAPW
eigenstates with the scalar-relativistic pseudopotential
eigenstates of BK and with the nonrelativistic results of
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a /ao
1.0Core treatment 0.97 1.03

(1) Self-consistent,
overlapping, atomiclike

—0.305 59 —0.31678 —0.308 95

—0.305 03 —0.309 09(2) Self-consistent,
atomiclike, constant Qq

—0.31677

(3) Same as (2) but
frozen core

—0.304 82 —0.31677 —0.306 55

(4) Same as (2) but
renormalized frozen core

—0.263 77 —0.290 77 —0.294 11

(5) Variational 5p core state,
frozen inner core

—0.01663—0.003 37 —0.008 35

(6) Same as (5) but
self-consistent inner core

—0.018 24—0.007 02 —0.009 44

—0.003 32(7) Same as (1) but no
spin-orbit for 5p core
states

—0.014 60 —0.005 49

(8) Same as {1) but no
spin-orbit for all the
core states

46.393 4046.381 91 46.384 61

ZC. Generally good agreement is obtained with the band
structure of BK. Below the Fermi energy, the eigenvalues
differ by about 0.1—0.2 eV. The agreement with the non-
relativistic results of ZC is considerably worse. The most
notable case here is the much smaller I 25-I & gap in ZC's
results. This 3.55-eV discrepancy is a scalar-relativistic
effect, which lowers predominantly s states relative to d
states.

IV. CONCLUSIONS

We have reported local-density-functional calculations
of the energy bands, equilibrium volume, bulk modulus,
and cohesive energy of tungsten using a newly developed
self-consistent full-potential LAPW code. Excellent
agreement is obtained with the experimental lattice con-
stant and bulk modulus, and good agreement is obtained

TABLE VI. Comparison of eigenvalues (in eV) at symmetry
points in the Brillouin zone. All eigenvalues have been shifted
so that the I 25 eigenvalues are the same.

l5-

4
I

ZC BK LAPW
l5

3.551
8.351

11.861

0.165
8.351

11.776

r,
I 25'

Ii2

0.000
8.351

11.825
3 25

4 3

4.111
6.020

11.441
11.761
12.471
14.581

Ni
N2

N4
N3

3.417
6.036

10.662
11.684
12.600
15.504

3.295
5.994

10.448
11.707
12.710
15.894

4
2

l2

H)p
H2g~

Pg
P3

3.731
13.991
6.871

12.551

3.794
14.557
6.710

12.754

3.695
14.852
6.670

12.870

-lo I

I 4 H G N X I A PDN P F H

FICx. 1. Energy bands of scalar-relativistic tungsten with lat-
tice constant ao ——5.972 a.u.

TABLE V. Total energy (Ry) at the three lattice parameters used in Table IV, a/ao ——0.97, 1.0, and
1.03, where ao ——3.160 A (—32 244 Ry has been subtracted from all the total energies).
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with the experimental cohesive energy. Generally, good
agreement was also found with the scalar-relativistic pseu-
dopotential calculations of Bylander and Kleinman, ' the
nonrelativistic pseudopotential calculation of Zunger and
Cohen, ' and a calculation using an independently
developed LAPW program by Jansen and Freeman. '

Comparison with the results of JF yielded remarkably
consistent values of the total energy at the equilibrium
volume and provides a strong check on the accuracy of
these two. independently developed bulk LAPW programs.
The effect of the fat tungsten Sp core state on the equili-
brium properties was also investigated in detail. It is
found that, at least near the equilibrium (zero-pressure)
volume, these 5p fat core states have negligible effect on

the predicted equilibrium volume and a small effect on
the predicted bulk modulus.
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