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Comparison of two techniques in the theory of phonon-induced
cyclotron resonance line shapes
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Two perturbation methods are compared for the theories of the cyclotron resonance line shape for
electron-phonon systems. The line-shape functions in schemes designated as "moderately weak cou-
pling" and "extremely weak coupling" by Choi and Chung are obtained using Mori s method of cal-
culation. The results agree exactly with the functions Choi and Chung derived using Argyres and
Sigel's projection technique.

I. INTRODUCTION

Studies of cyclotron resonance line shapes (CRLS) are
of importance in investigating the electronic band struc-
ture of solids. Much theoretical work on this topic has
been published since the 1950s. Most of the studies, how-
ever, are restricted to the investigation of three-
dimensional electron systems, ' although some work on
two-dimensional systems has been reported.

To the authors' knowledge, most of the theories
presented start with the assumption that the absorption
coefficient is proportional to the transition probabili-
ty, ' ' the imaginary part of the dielectric constant, " or
the real part of the electric conductivity. ' In these
formalisms, with extremely few exceptions, the absorption
coefficient is given by

p ~ g A (a)[(co—coo) —t I (co)]

where A (a) is a function of the state index a, to is the mi-
crowave frequency, coo is the cyclotron frequency, and
I (to), which is equivalent to 8 (co) in the paper of Choi
and Chung, " is the line-shape function. The line-
shape function depends in general on the electron momen-
tum, and thus its real and imaginary parts of themselves
do not give the width and shift characteristics, respective-
ly. The line-shape function appears as a result of the
electron-background interactions. Among the many kinds
of interactions available, impurity [Refs. 8, 13(b), 14(a),
15(a), 15(c), 18(a), 19, 20, and 24] and phonon scatterings
[Refs. 1, 3—7, 9—11, 13(c), 14(b), 15(b), 15(d)—15(g), 16,
18(b), 18(c), 22, and 23] have been dealt with quite fre-
quently in the theoretical papers.

The present work is concerned with the third formalism
for the absorption coefficient, namely, the conductivity
tensor formalism, and with three-dimensional electron-
phonon systems. Many theories based on this formalism
have appeared, but here we will discuss only a few, such
as those of Kawabata, ' "' Lodder and Fujita, ' "Argyres
and Sigel, ' and Choi and Chung. 2" In dealing with the
scattering, they made use of different methods. In most
of the theories' """' "the line-shape function is given
in the following form:

I'a(co) ~ +8(a,P)[co—b i(a, P) —il '(a, P)—ig]
P

+I higher
a (1.2)

I"'(a,P) cc g C(a, P, y)[co —b,2(a, f3, y)

+ I I( 13)higher (1.3)

+I higher
a (1.4)

I a=0, (1.5)

where P' implies that n&1 and E(ka, kit) is the energy in
terms of the electron momenta ka and kit. E(ka, kit) is
negligible compared with m —nemo at low temperatures,
but the first term of I (co) is finite at the resonance peak
(co=too) since n&1. This formula does not include the
phonon energy in the energy denominators and cannot
successfully reproduce the electron-phonon interactions,
although an approximate solution for the acoustic phonon
scattering could be obtained on the basis of it. ' ' ' Furth-
ermore, the theory could not survive the critique of Ar-
gyres and Sigel (AS) that a line-shape function of this type
does not give the correct line shape since the higher-order
terms (I 's ") neglected in the perturbative expansion

where q~0+; I 's ",I '(a, P)h's"", . . . are the higher-
order perturbation terms usually neglected for the weak
interactions, 8(a,P), C(a,P, y), . . . are functions of the
state indices a, P,y, . . . ; and Ai(a, P), 62(a, g, y), . . . are
energy factors corresponding to a, P, y, . . . . I",I ", . . . ,
often called the collision factors, appear iteratively and
their structures are all similar.

In 1967 Kawabata introduced a theory based on the
Kubo formalism and Mori's method of calculation. In
the parabolic-band formalism, the line-shape function is
given by

I' (co) Q 8 (a, f3)[co neo E(k,k—p) i g—]-
pt
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blow up at the resonance peaks. Choi and Chung ' re-
cently claimed that the higher-order terms were finite at
the peaks, but soon their claim turned out to be erroneous
(see the calculation carried out by Argyres in Ref. 32). In
conclusion, the line-shape function obtained in this way
does not adequately reflect the impurity or elastic phonon
scattering where the phonon energy terms are not includ-
ed.

In 1968 Lodder and Fujita obtained a line-shape func-
tion making use of Fujita s connected-diagram
method. ' " The line-shape function for the electron-
phonon interactions derived in this way contains not only
the phonon energy (co&) but also the collision factors
I"'(a,p) in the denominators:

I" (co) cc QB(a,P)[co ncoo—E(k—,k~)+co& i I '(—a,P)]
P

+ I higher
a 1.6)

I"(a,P)&0 . (1.7)

+I higher
a (1.8)

The collision factors appear iteratively and the structure is
similar to that of I (co). It can be stated that the expan-
sion in this case does not break down. But the formula
has been applied to some impurity scatterings' "by sim-
ply dropping the phonon energy terms and also neglecting
the collision factors for the sake of mathematical simplici-
ty. In that case the formula is very similar to Kawabata's
expression and is subject to the same critique.

In 1974 Argyres and Sigel presented a theory starting
with the kinetic equation, using their own projection tech-
nique. Their theory seems to be quite general in the
sense that it is based on rigorous formalism and the self-
consistent projection technique and does not suffer from
the break down of the expansion. Granting that it is true,
their formula looks somewhat complicated. Hence, in or-
der that it may be applied to real systems some simplifica-
tions are advisable.

In 1983 Choi and Chung presented a theory for
electron-phonon systems. The projection technique of Ar-
gyres and Sigel was made use of in the theory. The line-

shape function is given as

I ~(co) ~ Q B(a,P)[co ncoo E(k~, ktt)+—coq i g—]-
0'

moderately weak coupling (MWC) or the extremely weak
coupling (EWC) schemes, depending on the coupling
strength. Usually the electron-state calculation precedes
the phonon averaging, but if the coupling is extremely
weak the reverse order seems acceptable. The authors
called the former coupling MWC and the latter EWC.
This classification is rather mathematical, and thus its ex-
act criteria are not available in the present situation. They
calculated the line shape for the electron-phonon interac-
tion in InSb in the extreme quantum limit, ' ' where only
the ground level was occupied. The result showed the
disappearance of the width for photon energy smaller
than the phonon energy, supporting the experimental re-
sult of Summers et al. '" ' Furthermore, the prediction of
Raju and Fujita of anomalous broadening in the
system' ' ' was not supported by this theory. Although
Choi and Chung utilized the same perturbative expansion,
their line-shape function is not subject to the AS critique
since the phonon energy is included in the energy denomi-
nators.

In 1984 Ryu and Chai obtained the same function by
the use of Kawabata's approach based on Mori's method.
Their calculation, however, confined itself to the EWC
scheme. The question of why only the EWC result ap-
peared was not addressed in their paper.

In this paper we shall first summarize the theory of
CRLS for the electron-phonon systems originally intro-
duced by the other authors and discuss a procedure which
enables us to derive the respective line-shape function for
the two coupling schemes. We shall then briefly discuss
the results.

II. CONDUCTIVITY

When a circularly polarized microwave of amplitude F
and frequency co is applied along the z axis in a semicon-
ductor, the average absorption power' "

P =(F /2) Reo+ (co) (2.1)

is delivered to the system, where the symbol Re means
"the real part of" and the conductivity tensor o.+ (co), in
units in which 6=1, and with a static magnetic field B
applied in the z direction, is given by

1 —exp( —Peso)
o+ (co)= g f(E )(1 f(E +~p))—

copQ

I"(a,P) =0 . (1.9)
Xj (F (~)) (2.2)

The line-shape function obtained is more or less similar to
the formula of Lodder and Fujita, the difference being
that collision factors are not included and summation
over some specific Landau indices are excluded. The
disappearance of the collision factors seems to be due to
the neglect of the scattering potential against the unper-
turbed electron Hamiltonian in a middle step of the calcu-
lation. Therefore, the line-shape function of Choi and
Chung is given in closed form, failing to give the iterative
behavior. Furthermore, they introduced two coupling
schemes in dealing with the calculations. According to
them, the electron-phonon interactions may belong to the

which is equivalent to the Choi-Chung expression

(~)= . Q[f(E ) f(E +coo)](j+)'(& (c—o))~.
impQ

(2.3)

Here, 0 is the volume of the system, f(E) stands for the
Fermi distribution function, coo=eBlm is the cyclotron
frequency for the electron of effective mass m,

j—=—j„+ij~, j being the single-electron current vector,

j~ =j~+~ ~ (a+—1 ~j+ ~—a—), p=(k&T) ' for the tem-
perature T, and E is the energy eigenvalue correspond-
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ing to the eigenstate
~
a) =

~
N, k) in the parabolic-band

approximation, X is the Landau index, k is the electron
wave vector, ( A )p denotes the average of quantity A over
the phonon distribution, Fa(co) is the Fourier-Laplace
transform (FLT) of (a+ 1 ~j +(t)

~
a) defined by

electron state
~
a) and Tr representing the trace in the

single-electron expression. After some simple manipula-
tion using the projection operators, we obtain from Eq.
(2.4)

F (co)= I dt(a+1
~

j+(t)
~

a) exp( ico—t r—tt),

which corresponds to

Ra(co)=(a+1
~

(co trt —L) —'J+
~
a),

(2.4)

(2.5)

where iI~0+, A(t) is the operator A in the Heisenberg
representation, and

&F.( )&, =
(A. ,j+)

i(co —co )+I (co)

where

(Aa, iLj +)
i~a &t~O+i( Va+l a+1 Vaa) &p(A,j+) p

(3.5)

(3.6)

I.o+I.p +I-

where I.o, I.z, and 1.~, respectively, are the LiouviHe
operators corresponding to the unperturbed single-electron
Hamiltonian ho, the phonon Hamiltonian Hz, and the
scattering potential V given by (Q,R (t))r.(t), =

(Aa,j+) p
(3.7)

which yields coa=coo if ( Vaa)p ——0 is assumed, and I (co)
or Ba(co) in the notation of Choi and Chung, called the
line-shape function, is the FLT of

Hp: g coqbqbq
q

V= X(&qbq+1'qbq»

yq
——Cq exp(iq r)

(2.7)

(2.8)
where

R (t) =exp[it (1 P)L]R— (3.8)

for the phonon with energy coq and momentum q, bq and

bq, respectively, being the creation and annihilation
operators. It should be noted that

Ra =i (1 Pa )Lj +—
=i (1 P)[Vj+]—,

(3.9a)

(3.9b)

J't = &a
1

j'
I
&&—=(&131J 'I a&)*=&t f,t+l

holds for arbitrary-state indicates a and P, where the
states a, a+ 1, and P, respectively, denote ( N, k),
(N+1, k), and (N', k').

III. LINE-SHAPE FUNCTION

Qa =(1 Pa)iLAa—
=i (1 Pa)[V, Aa]—,

(3.10a)

(3.10b)

[A,B] being the commutator of operators A and B.
Combining Eqs. (2.1), (2.2), and (3.5), we have Eq. (1.1).
In order to calculate I (co), we make use of the following
relations:

Following Ref. 14(a), we define two projection opera-
tors I'~ and P~ by

[ho+Hp,j +]=colj+, (3.11)

(Aa, B)
a .+ J j (Ba+l,a jja+l,a) ~(A,j+) (3 1)

(1—P' )[hp+Hp, A ]=0, (3.12)

(B j+)
A

(A,j+)

where B is an arbitrary operator,

(3.2) (1 Pa )(Lo+Lp )P B—=0,

(PaA, (1 Pa)B)=0, —

(3.13)

(3.14)

(A,B)=Tr(AB),

and A =aaa +l is a projection operator satisfying

(3.3) [(1—P )(Lo+Lp)]"(1 Pa)B =(1 P)[(LO+—Lp )"]B . —
(3.15)

(Aa~B) (Aa)a, a+1 a+l, a ~ (3.4)

a a ( a ) being the creation (annihilation) operator for the

By taking into account Eqs. (3.8), (3.9), (3.10&, (3.14), and
(3.15) and considering the perturbation only up to second
order in the scattering, the numerator of Eq, (3.7) then be-
comes
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—(A V, ho Vj+)+ (A V, hoj+ V)+(A V, Vj+ho) —(A V J+ Vho)

—( VAa, PahPVj+)+(VAa, P hoj + V)+(VAa, Pa Vj+hll) —( VAa, P~+ Vhll)

+(A V PahoVj +)—(A V P hoj V) —(AaV P Vj+hll)+(A V P~+ Vhll)

+ ( VA, Hp Vj
+

) —( VA a; Hpj + V) —( VA a, Vj +Hp ) + ( VAj +
VHp )

—( A V Hp Vj
+ ) +(A V Hpj + V)+ (A V, Vj +Hp ) —(Aa Vj + VHp )

—( VA, PaHp Vj +)+(VAa, PaHpj + V)+( VA, Pa Vj +Hp) —( VAa, P~+ VHp)
+(A V,PaHp Vj+) —(A V,PaHpj + V) —(A V,PaVj +Hp)

+(Aa VP~+ VHp)] . (3.16)

(Qa, Ra(t))=(i[VAa], i(1—Pa)[[Vj +]+it[ho+Hp, [Vj +]])
= —[(VAa, Vj + ) —( VA, j+V) —(A a V Vj

+
) + (A Vj + V) —( VA, P Vj +

) + ( VA a,P~+ V) + (Aa V Pa Vj
+

)

—(A V P~+ V)] it [—( VA, hoVj +)—(VA, hoj + V) —( VA, Vj +ho)+(VA,j + Vho)

Dividing the forty terms in Eq. (3.16) into four parts, we can calculate I" (t) and I"a(co) in succession.

IV. CALCULATIONS IN THE TWO COUPLING SCHEMES

In performing the calculation with respect to the electron states and the phonon averaging, the following two ways are
possible. If the electron-state calculation is carried out first, we may use the trace property

(Tr(BA a C) )p
= (Tr(A CB) )p

= (A a ) a+1 g ( C +1 pBp )p
p

for arbitrary operators B and C. We will call this scheme of calculation the MWC scheme after Ref. 22(a). In this
scheme we then have [where the numbers refer to the terms in Eq. (3.16)]

H (I)= (1st+ 5th) + (9th+ 17th) + (11th+ 19th) + (25th+ 33rd) + (27th+ 35th)

~ + +
( A a )a,a+ I +Jp Va+ 1,p+ 1 Vpa Ja Va+ l,a+ 1 Vaa

p

+1 g JpEa+1 Va+1,p+I Vpa Ja a+1 Va+1,a+1 Vaa g Jp pVa+ 1,p+1 Vpa+JaEa Va+l, a+1 Vaa
p, ~ p

+ g JpHp Va+l, p+1 Vpa JaHp Va+1,a+1 Vaa g Jp Va+1 p+1Hp Vpa+Ja Va+1 a+lHp Vaa
p p

(4.1)
With a close look at each pair in the small brackets, we see that the terms corresponding to f3=a are excluded in the
summations. Averaging over the phonon distribution can be carried out by considering (bqbq )p

——nq5qq and
(bqbq )p ——(1+nq)5qq, nq being the Planck distribution function. As a result, we have

(H(I))p= —(Aa)a a+1 g g jp I(1+nq)(yq) +1 p+1(yq)p exP[it(E +1 Ep coq)]- —
p(&a) q

+nq(yq)a+1, p+1(yq)paeXP[i&(Ea+1 Ep+~q)]I (4.2)

where we have used the formal expression 1+itE =exp(itEa). This looks unreasonable, but if all the higher-order per-
turbative terms excluded here are considered, this expression will be justified. Similarly, we have

( H (II) )p
——( (2nd+ 6th) + ( 10th+ 18th)+ ( 12th+ 20th) + (26th+ 34th) + (28th+ 36th) )p

=(A ) +1 g gj+ I(1+nq)(yq) p(yq)p exP[it(E +, Ep coq)]- —
p(&a) q

+ nq(yq) p(yq)p exp[it(E +1 Ep+coq)]I, — (4.3)
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( H (III) )z ——((3rd+ 7th) +(13th+ 21st) + ( 15th+ 23rd) + (29th+ 37th) + (31st+37th) )z

=(A ) +/j+ g g l(1+n q)( yq) a+/p(yq)p +/exP[it(Ep E—+coq)]
p(+a+1) q

+ nq('Yq) +1 p(yq)p +/ exp[it(Ep E——coq)]}, (4.4)

( H ( IV) )z ——( (4th+ 8th) + ( 14th+ 22nd) + ( 16th+ 24th) + ( 30th+ 38 th ) + ( 32nd+ 40th ) )z

(A ) +1 g gj p+ 1[(I+nq)(yq) +1 p(yqt)p 1 exp[it(Ep E—+coq)]
P(+a+1) q

+ nq(yq)a+1 p(yq)p 1 exP[it(Ep —E —coq)]} . (4.5)

Collecting all the parts and dividing them by (Aa, j+)=(Aa) a+/ja+, we get the average of I (t) over the phonon distri-
bution. Consequently, (I (co))z, the FLT of (I (t))z, can be obtained:

(yq)a+1, p[(yq)p, a+1 (3 q)p —l, aI p / ~Ja ]—[/1.(~)]Mwc «, +1)
co —Ep+E —67 —l 'ga q

+ [(yq)ap (yq)a+1, p+/Jp ~Ja ]('Yq)pa

p(~ )
CO —Ea+1+Ep+COq —/7I

( Vq)a+1, p[(yq)p a+1 ( Yq)p —l, aI p—1 JJa ]+ nq
P ( ~ + 1 )

CO —EP +Ea +CO q
—l 7I

I. ('Yq)ap (yq) a/+, p +Jp/~Ja ](3 q)pa+
p(~ )

CO —Ea+ 1 +Ep —
COq

—l 7I

p(&a+1)

(4.6)

(Tr(BA ac) )p
——(A )a a+1 g (Bp Ca+, p )~,

p

we will have a different result. It should be noted that both B and C contain bq and bq. The details of the evaluation
are given in Ref. 23. We will call this scheme of calculation the EWC scheme, also after Ref. 22(a) (this name may not
be appropriate). In this scheme we have

which is identical to the result of Choi and Chung [Eq. (1.8)]. The parts with nq+ 1 and nq are known as emission and
absorption terms, respectively. Note that both positive and negative signs appear on coq in the energy denominators of
each part.

On the other hand, if the phonon averaging is carried out first in

[iI' (co)] = g(l+n )

q

+gnq
q P(~a+1)

(yq) +1,P[(yq)P, +1—(yq)P-), JP-/~j+]
p(~ +1) CO —Ep+Ea —

COq
—l7I

+ [('Yq)ap ('Yq)a+1, p+1Jp ~Ja ]('Yq)pa

p(~ )
CO Ea+1+Ep —

COq
—/7—I

(yq) +(,P[(yq)P, +1—(yq)P-(, &P-(~j+]
cg —'Ep+ Ea +coq —I 'g

[('Yq)ap (yq)a+1, p+)J p ~Ja 1('Vq)pa+
p(~ )

CO —Ea+1+Ep+COq —l7I
(4.7)

which is also identical to the result of Choi and Chung.
We see that the energy denominators of the emission and
absorption parts contain coq with negative and positive
signs, respectively.

V. CONCLUSION

In the preceding section, we obtained two different
line-shape functions that are identical with the corre-
sponding expressions derived by Choi and Chung. The

I

MWC and EWC calculations are based on

(Tr(BA.C)), =(A.)..„g(C. , pBp. ),
p

alld

(Tr(BA C))~ =(A ) +/g (Bp C +1 p)~,
p

respectively. These two ways yielded different values
in the calculations involving bq and bq since bqbq&bqbq.
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The energy denominators contain mq differently in the
two schemes. As far as only this behavior is concerned,
our MWC-scheme result agrees with the formulas of
many other authors. ' """' " ' It is fairly similar to the
formula of Lodder and Fujita, the critical difference being
that P=a+1 and P=a, respectively, are excluded in the
first and second parts of each term.

The EWC-scheme result looks unphysical. But as
pointed out in Ref. 22(a), this function is well explained in
a formal sense in connection with the effect of scattering
on the line broadening. If the momentum dependence of
the electron energy is disregarded, the emission in this
scheme is maximum at co=ncoo+coq, while the absorption
is maximum at co=ncoo coq, —n (Ql) being the appropri-
ate integers. This implies that the broadening increases as
a phonon is emitted or absorbed.

In deriving the functions, we adopted the parabolic-
band approximation and neglected the scattering potential
against the unperturbed electron energy at a stage of cal-
culating the function in each scheme. As a result, the

width, the real part of I (co), comes from the arbitrary in-
finitesimal g. If these points are improved, more accurate
results will be obtained. In addition, the technique used
by Argyres and Sigel' in working out their general theory
will also be helpful in improving the present theory. We
will leave this for a further study.

In conclusion, we do not claim that our theory is quite
general. The main purpose of this paper is to recall that
the two different methodologies can yield identical results
as far as both are valid. Thus it is not strange that both
methods are still widely adopted in many theoretical

ers 34( ), 34(b), 35,36
0
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