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Spin polarization of secondary electrons in transition metals: Theory
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A theory of the spin polarization of the secondary electrons in transition metals and glasses is
presented. In contrast to the secondary-electron intensity distribution, the spin polarization is shown
to yield useful information about the electron-electron interaction. The ratio of the lifetimes of
majority- to minority-spin electrons can be determined directly from the measured values of the spin
polarization P(E) by v, (E)/r, (E)= [(1—pe)/(1+ps)][1+P(E)]/[1 —P(E)], where ps is the bulk
magnetization. The theory is applied to both Fe and Ni.

I. INTRODUCTION

There has been an increasing interest in the spin-
dependent properties of magnetic solids over the last few
years. An example is the spin polarization of the secon-
dary electrons in magnetic transition metals and related
glasses. Secondary electrons are produced by an external
beam of monoenergetic electrons incident on the metal.
This beam excites electrons in the solid, which in turn ex-
cite others, thereby producing a cascade of secondary elec-
trons. Those with energies greater than the work function
can escape from the solid and be collected. The
secondary-electron-energy distribution, the number of
electrons per unit energy as a function of energy has been
measured by various workers over a period of many years.
It has a roughly similar shape for all materials; it is larg-
est for small energies and falls rapidly with increasing
secondary energy. Only in recent years has the spin polar-
ization distribution of the secondaries been measured.
The first measurement was carried out by Unguris et al. '

on Fe8~ qB&45Si4 and subsequently measurements were
made on Fe, Co, and Ni, ' as well. The shape of the po-
larization distribution is roughly the same in all cases. At

'

the lowest observable secondary energy, the polarization is
two to three times that of the bulk and it falls to the bulk
value with increasing secondary energy as indicated in
Fig. 1 after Ref. S. This behavior is only understood in a
qualitative way.

It is our purpose to introduce a theory for the
secondary-electron polarization. The present paper is an
elaboration of an earlier letter. The electron-energy dis-
tribution of secondaries is rather insensitive to the details
of the electron-electron interaction.

'

Consequently it has
been difficult to extract detailed information as to the na-
ture of the scattering. In the case of the polarization dis-
tribution, we will see that the experiments are in fact quite
sensitive to the form of the electron-electron scattering.
In particular, it is possible to extract the ratio of the
majority- to minority-spin electron mean-free paths
directly from the experimental measurements. Qualitative
information can also be obtained regarding the relative

magnitude of the exchange matrix element and its energy
dependence relative to that for direct scattering.

Our model is based on the following physics: The elec-
tron cascade process might be expected to produce secon-
daries with the same magnetization as the bulk because
the vast majority of secondaries are electrons scattered out
of the metal ground state rather than redirected primaries.
However, in these materials, there is an excess of unfilled
minority-spin d states over unfilled majority-spin d states
and excited minority-spin electrons can scatter into the
former. 7 Minority-spin electrons are therefore scattered
out of a given energy at a faster rate than majority-spin
electrons. Thus, a net majority polarization is established
due solely to the difference in mean free paths. This ef-
fect increases at low energies where the scattering into
empty d states is emphasized due to the relatively small
number of free s p —like el-ectron states into which
scattering can occur. We wish to emphasize that the con-
nection between the spin polarization of the secondaries
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FIG. 1. Plot of the polarization of the secondary electrons
versus energy for the ferromagnetic glass Fe82Bl2Si6. The zero
of energy corresponds to the vacuum level. At low energy. the
polarization is more than twice the bulk polarization of
pg ——22%. As the energy increases the secondary-electron po-
larization rapidly falls to a value close to that of the bulk polari-
zation. This behavior is typical of the magnetic transition met-
als and glasses; see Figs. 5 and 6 also.
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When a solid is bombarded with electrons of sufficient
energy it will emit secondary electrons. The primary elec-
trons penetrate the solid and lose energy creating
electron-hole pairs. Those in turn can excite other
electron-hole pairs and a cascade of secondary electrons is
developed inside the solid. Some of these undergo large-
angle scattering, primarily elastic, and can be collected
outside the solid in the form of a secondary electron dis-
tribution if they have sufficient energy to surmount the
surface barrier. In a classic paper, Wolff has developed a
formalism using the Boltzmann equation for describing
this cascade process. In this section we will repeat some
of the basic arguments of Wolff and generalize his theory
to include spin.

Inspired by the neutron absorption work of Marshak,
Wolff recognized that a Boltzmann transport equation
can be used to describe the electron cascade process, via

1 1

gt
+ P'~f =S—

I p l ~ + &f(p')to(P P)

where f =f (x,p, t) is the electron distribution function, S
is the source function which describes the rate at which
electrons are injected into the solid, A, =A,(p) the mean free
path, and to(p', p) is the probability for an electron to
scatter from p' to p.

In general f is spatially dependent but we will consider
the situation in which the penetration of the primaries is
such that the production of secondaries takes place uni-
formly in the bulk over a region which is large compared
to that in which surface effects are important. For the en-

ergies of interest in the secondary-electron distribution the
electron mean-free path is tens of angstroms and neglect-
ing the spatial dependence in f should therefore be a good
approximation. This has also been found to be the case in
an explicit calculation by Wolff. 8 Moreover we study the
situation when we have reached steady state so that
Bf/dt=O. This gives the following equation for the
space- and time-independent secondary-electron distribu-
tion f=f(p):

f(p)/~(E)=S+ g f(p')co(p', p),
P

(2a)

and the empty d states has been discussed in the experi-
mental papers. ' Our results confirm the importance of
this effect. The main result of this paper is given in Eq.
(27) which relates the difference in scattering time to the
polarization.

The outline of the paper is as follows. In Sec. II, the
Wolff model describing the electron cascade process is in-

troduced and generalized to include spin. In Sec. III ap-
proximations are introduced for the single scattering
probabilities that enter the generalized Wolff theory. In
Sec. IV numerical results are presented for the spin polari-
zation distribution and the ratio of the majority to minori-
ty spin lifetimes. In Sec. V a simple model for the transi-
tion probabilities is introduced. This model allows an an-
alytic solution of the generalized Wolff equation and pro-
vides insight into the numerical calculations. Finally, Sec.
VI contains the conclusions of the paper.

II. RATE EQUATION FOR THE ELECTRON
CASCADE

W(E', E)= f co(p', p),dQ
4m

f(E)= f f(p),

(3b)

(3c)

and S is the spherical average of S.
Since we are studying electrons injected high above the

Fermi level (EF) and looking for secondaries a distance in
energy of at least the work function above Ez, p', and p
are assumed to be free-electron-like and p(E) is their cor-
responding density of states. Because p and p' are free-
electron-like, the average in Eq. (3b) is possible (otherwise
it would be difficult to define the angle between them).
However, during the scattering process electrons are being
excited from occupied to unoccupied bands of different
symmetries. This is accounted for by an internal summa-
tion in ~ which includes a band summation. This will be
dealt with below when we write down the explicit form
for co. Multiplying Eq. (3a) by p(E) and defining

gf(p)—= f dEN(E), (4a)
P

where

&(E)=f(E)p(E) (4b)

where we have introduced the isotropic lifetime,

II I (2b)
~(E) m X( l pl )

Using the semiclassical Boltzmann approach the phase-
space cell must be large in comparison to a lattice cell.
We thus ignore the effects of local fields on A, and have
therefore replaced A, (p) by the isotropic form A, (E) with
E =R p /2m denoting a free-electron-like state. The
transition probability co(p, p) tapes explicit account of
both electrons scattered "down" to p from p' as well as
electrons being scattered "up" from the occupied states to
p. Equation (2a) thus represents a detailed-balance equa-
tion where the rate at which electrons are kicked down to
or up to the state p is balanced by the rate electrons are
scattered out of the state p as represented by f/r. A fur-
ther simplification of Eq. (2a) comes about by considering
the scattering process in detail. Any special angular dis-
tribution is soon smeared out by the scattering, especially
the elastic large-angle scattering. The net effect is then
that the distribution of secondaries at very low energies is
almost spherical since these electrons have scattered very
many times both inelastically and elastically. Thus to a
good approximation we can take the spherical average of
Eq. (2a). In doing so we will inevitably discard any con-
tribution from the elastic scattering to the polarization of
the secondaries. However, experiment shows this to be a
few percent and is thus almost an order of magnitude
smaller than the polarization produced in the inelastic col-
lision.

With to(p', p) depending only on the angle between p'
and p the above discussion leads to the following averaged
detailed balance:

f(E)/r(E) =S+ f dE'p(E')f( E')W(E', E)', (3a)

where W is the spherical average of co,
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is the number of secondaries per unit energy range, we can
write

polarization of the sample. In both cases this defines the
spin-polarization P (E) of the secondaries at energy E as

g(E)=S(E)+ f dE'f(E')F(E', E),
where

(5a) Xt(E) N—,(E)
P(E)=

Nt(E)+N, (E)

and

P(E)=&(E)Ir(E), (5b)

F(E',E)= W(E', E)p(E)r(E') (5c)

where

F ~ =r (E')p (E)W(E', o';E, cr) (6b)

in an obvious notation. It is necessary to sum over all
spins cr since F now describes the possibility of spin-flip
as well as non-spin-flip processes. For example F„(E',E)
is the probability that an electron E'& scatters and excites
a ground-state electron to El. The spin dependence in the
source function reflects the possibility of bombarding the
sample with electrons of arbitrary polarization. Measure-
ments are normally carried out in one of two main spin
modes. One is to subject the metal to electrons of a par-
ticular spin direction and measure the number of electrons
coming out of the sample, then to reverse the spin direc-
tion and again measure the number of secondaries. Form-
ing the difference between these two populations and di-
viding by their sum this gives the so-called spin asym-
metry. Another method which is the one we will base our
calculations on is to have an, unpolarized source, that is
S,(E):S,(E) and then me—asure the number of spin-up
secondaries Xt(E) and spin-down secondaries X,(E) exit-
ing the solid at the particular energy E. This method is
also utilized when photon excitation rather than electron
excitation is used, but in that case the source function
representing the photoelectrons is polarized with the bulk

I

is the probability per unit energy that an electron at E'
scatters and an electron is scattered to energy E. This can
happen in two ways; the electron at E' can scatter to E or
the electron at E' can scatter to some other energy and a
ground-state electron is excited to E'. Since our source
function is a 5 function in energy (the primary beam) the
manipulations we have performed in going from Eq. (1) to
Eq. (5) only changes its strength, which does not affect
the final result since we are interested in quantities such
as the polarization where the absolute magnitude of S
drops out.

We now include spin, denoted o (= 1' or l) where the
majority-spin direction of the sample is taken to be t. De-
fining X (E) as the number of secondary electrons per
unit energy interval at energy E with spin cr and w~(E) the
lifetime of electrons with spin o and energy E, Eq. (5) is
immediately generalized to

@~(E)=S~(E)+g f dE' g~ (E')F~ ~(E',E), (6a)

For later purposes it is convenient to separate out the part
of P(E) which depends directly on the difference in life-
time between spin-up and spin-down electrons, since as we
will show later that this is the key factor responsible for
the polarization buildup at low secondary-electron ener-
gies. Because of the difference in the available density of
states for a spin-up and a spin-down electron in a fer-
romagnetic material to scatter into, ~t(E) is in general dif-
ferent from r, (E) especially at low energies where the den-
sity of states in the vicinity of the Fermi level for spin-up
and spin-down electrons are very different. We thus de-
fine

and

+(E)=rt—(E)+~,(E)

+(E)=gt(E-)+gt(E) .

(8a)

where

S+(E)=S,(E)+S,(E) .

Notice that S:—0 for an unpolarized source.

(10c)

III. MODEL FOR THE SCATTERING
PROBABILITIES

In order to solve Eq. (10) we need to specify
F~ (E',E), i.e., to calculate the scattering probability
co(p'o', po) that an electron in the state p'o' scatters and
produces an electron in the state po. For nonflip scatter-
ing we can write (cr'=o )

We can then write Eq. (7) as

q-Zy++~ Xr+-
(9)

1+(g lg+)(~ l~+)
Therefore the polarization of the secondaries is given sim-
ply by the ratio of lifetimes which is calculated directly
from the pertinent transition probabilities and the explicit
solution to Eq. (6) which when expressed in terms of P
and g+ becomes

P+«)=S+«)+ f~ cIE'[0+—(Ftt+Ftt+Ftt+Ftt)
+Q (F„F„+F„F—,„)], —

(10a)

0 (E)=S (E)+ 2 f ~-E'l0 (Ftt+FLt —Fit —Ftt)

+0+(F» —F» —F»+Fit )]

(10b)

co(p', cr;p, cr) = gf~(Ek)I:I —f~«k )] I ~f ~ i,'~™t~,',"~
I
'&«p ~+Ek~ Ek ~ Et~)— —

k, k'

+
~

gf-(Ek)[1—f-(Ek)] I~,', i, I'&«p~+Ekr EI~- —
k, k'

(11a)
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where o is the spin opposite to o, f is the Fermi distribu-
tion factor and k and k' are wave vectors in a reduced-
zone scheme incorporating a band index. The matrix ele-
ment is

P 0

M~ I, ~ =—(p'o, ko'
~

V ~po, k'o'), (1 lb)

where V is the screened electron-electron interaction. The
first term in Eq. (11a) describes the direct and exchange
scattering, as shown in Fig. 2(a) and the second term, Fig.
2(b), is a direct term where the electron in the Fermi sea is
of opposite spin to the electron in p'o. .

In the same manner we can write for the scattering
probability per unit time for a spin-flip process, from
(p', o.) to (p, o),

~(p', ~;p, ~)= gf«1, -)fl —f«a~)j IMI', ,
',; i'

k, k'

x5(E& +E& EI, -E— ), —(1 l-c)

EI
= —,

' g J dEp~(E)W(E', o';E, rr), (12)

where the factor —, arises because co describes two ways of
finding an electron at E: it can fall down to E from
above or be kicked up to E from below yielding an identi-
cal final state. We show in Appendix A that Eq. (12)
indeed gives the proper expression for the lifetime. An
important constraint comes from Eq. (12). Multiplying it
by r (E') on both sides we identify

F ~(E',E):W(E', cr', E,o)p—(E)r (E')

on the right-hand side, and the following sum rule for the
terms entering the kernel in Eq. (10) is obtained:

Q f dEF~~(E', E)=2. (13)

As recognized by Wolff the sum being two rather than
unity accounts for the electron multiplication.

Having thus formulated the necessary ingredients we
now proceed to the required transition probabilities. In
doing this we make the explicit assumption that the rna-
trix elements invoked are momentum independent. This

I

which is an exchange type term shown in Fig. 2(c). Since
we neglect spin-orbit interactions the spin of an electron
cannot change; however, it can be "replaced" by an elec-
tron of opposite spin from the occupied states as indicated
in Fig. 2(c).

Given the transition probabilities we can also calculate
the lifetime r~(E). However some care must be exerted
since the transition probabilities co in Eq. (11) depend not
only on the incoming electron but on the one being scat-
tered up as well. It is this conversion from one initial
electron to two which is the basis for the electron multi-
plication. Therefore ~ is given by

/

(b)
k o

(c)
FIG. 2. (a) Direct and exchange scattering of a high-energy

electron with momentum p' and spin cr from a ground-state
electron ko. resulting in electrons in the states (p, o. ) and (k', o ).
(b) Scattering between opposite spin electrons (o. is opposite to
o.), only direct scattering is possible. (c) Scattering that simu-
lates a spin flip. The ground-state electron (k, o.) is scattered
into the state (p, o.).

"random" k approximation has been used easier by
Berglund and Spicer' and notably by Kane" who ob-
tained a very good agreement between the random k ap-
proximation and a calculation keeping the full
momentum-conservation condition inherent in the matrix
elements. This random k approximation moreover has an
additional justification when calculations are performed
for ferromagnetic glasses which are amorphous in struc-
ture and therefore do not give rise to a strict momentum
conservation.

In our case this model receives further justification be-
cause we perform an explicit angular average, cf. Eq. (3b).
In Kane's treatment, the matrix element Mz I,

"
~ is re-

placed by its average value which will be characterized by
the energy loss of the primary electron transferred in the
collision and the nature of the states p, p', k, and k',
whether they are free-electron-like (denoted by s) or d-like
(denoted by d). For example,

~

MI' '~
~

is taken to be
( ~Mg '~" (E' E)

~
) if an elect—ron is scattered from

E'(s, o) to E(l,o); thus in Eq. (11a) the first matrix ele-
ments are replaced by (

~
M(E& E&) M(Ez EI, )

~

—). ——
The cross terms of this matrix element will be neglected

in what follows. This is partly based on the fact that if
the momentum dependence is kept in full, the cross term
will indeed be small compared to the other terms. ' For
the lifetime where we sum over a/l states p this is a
reasonable approximation, but when calculating
F ~ (E',E), especially for low energies, this approxima-
tion breaks down and has to be seen as a computational
simplification which does not significantly change the
outcome of the calculation.

Within the random k approximation, the averaged Eqs.
(1 la) and (1 lc) become

W(E', o;E,o) = I dEIp~ (s)p~ (E' E+e)[ [
M(E'—E)

[
'+

(
M(E —e)

[
']—

+p- (s)p —(E' —E+e)
~

M(E' E)
~

2)— (14a)
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W (E',cT;E,cr)

I dep~(e)p (E' E—+s) ~M(E —e)
~

(14b)

where it is to be understood that the M's should be desig-
nated with the band labels for the states involved and we
have defined

and

po =f(r—pn (14c)

(14d)

n, —n,
Pa=

n, +n, (16)

It is 6%%uo (17%%uo and 27%) for Ni (Co and Fe). X:n„+n-,
is 10 (9 and 8) for Ni (Co and Fe) and roughly S% of X
comes from the s-p band which justifies not distinguish-
ing it from the d's. An additional simplification is that
there are unfilled d states only for minority ( t) spin band.
This is strictly true for Ni and Co and approximately true
for Fe where the majority-spin unfilled d states hold only
about 0.2 of an electron. In Fig. 3 we show the density of
states as used for Ni in the present calculation indicating
our labeling of the occupied and unoccupied states. This
density of states is taken from the band-structure calcula-
tion Moruzzi et ctl. ' and for energies greater than those
reported in their calculation a free-electron density of
states po(E) is used. Thus in Eq. (14),

f~ being the Fermi occupation factor which in our calcu-
lation is taken to be the zero temperature version, i.e., a
sharp Fermi level. p is the density of states for spin cr

electrons.
Because the primary concern is with magnetic proper-

ties and because the number of s-p electrons below EF is
small compared to the number of d's, the occupied s-p
states will not be distinguished from the occupied d's
whose densities of states will be denoted by p, and p,
and the total number of spin-up (down) electrons is

Ez
n (() )

——f dE p, ( i )(E), (15)

where the integration extends over the occupied s-p and d
bands. A characteristic feature of a ferromagnetic materi-
al is its bulk polarization p~ given in terms of n, and n,
as

V7
LJ
I—
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J
—I-—CO

C5

2. 5

1.5

0.5 po

0.5

1.5
I i ( i I i I r I s2 5—15 —15 —11 —9 -7 —5

Energy (ev)
FIG. 3. Densities of majority- (up-) spin and minority-

(down-) spin electrons in Ni (states per atomfeV). The Fermi
energy is at —5 eV. The occupied states are taken to be d states
as are the unoccupied states just above the Fermi energy indicat-
ed by the shaded area (pd). The states denoted by po are as-
sumed to be free-electron states.

and

p, =po(E) [1 f&
(E)]— (17a)

pi' =[po«)+pd«) ][1 f)«)]=—po +pd— (17b)

(18)

and setting

co =E' —E
aI1d (19a)

co =E —E,

we can write

where pd(E) is the important unfilled minority d-electron
density of states. pd(E) is large only in a very small ener-

gy range above EF (shaded area in Fig. 3), and since we
will eventually only be interested in the electrons leaving
the material we will not consider the scattering which
puts the state p in the unoccupied d states since these can-
not escape. However, these states have to be included
when calculating the lifetime.

Having specified the electronic levels involved we now
consider in turn the four possible scattering probabilities
F ~ (E',E) needed to specify the electron scattering pro-
cess. Defining

F„(E',E) = I «[p, (e)po (e+co)[ ~M,',"(co) ~'+ ~M,', (co') (, ']

+p( (E)[po (E+co)
~
M,',"(co)

~ +pd (e+co)
~
M,'d(co) ]I . (19b)

The matrix elements are now labeled according to the nature of the states involved in the scattering event.
For E well above Ez (E Ez at least equal to the wo—rk function) we can approximate co'—:E E=E Ez and we c—an-

therefore take all matrix elements in Eq. (19) outside of the energy integration leaving a joint density of states. Defining
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P.,t(~)= f dsp.'(s)pt (s+~),
1 being s or d, Eq. (19b) can be rewritten yielding

(E' E) =
I M'. (~)

I '[pt, .(~)+pi,.(~)]+
I M:."(E E~—) I p&,.(~)+

I
M:a(~) I 'p~, a(~)

(20)

(21a)

Proceeding in the same manner

F„(E',E) = IM,', ( ) I'[p, ,(~)+p&,,(~)]+ IM,', (E —Ep) I'p, ,(~)

+ Isa(~) I 'pi, a(~)+
I

Ma"«' EF)—
I
's i,a(~) (21b)

(E' E) —
I

M'"(E E~)
I

—~P, ,(co), (21c)

F„(E',E) sdIM„(E EF)
I

p—t,,(co)+
I Ma, (E' EF)

I p~,—a(co) . (21d)

In Fig. 4 we show diagramatically, in order of appearance in Eq. (21b), the four possible spin-down to spin-down scatter-
ing events contributing to F when distinguishing s- and d-electrons. Notice that of all terms contributing to the F ~ s it
is only the Ma, terms of F»(E', E) which leaves the solid with a hole in the spin-up occupied states and an electron in
the spin-down unoccupied states, i.e., a Stoner excitation. However, Mas&0 means that F„differs from F» in general,
creating a polarization of the secondaries that does not involve Stoner excitations. We therefore see no justification in re-
cent claims' that the Stoner excitation is the dominating source for the low-energy polarization rise in the secondaries;
for every event in which a spin-l electron falls into an empty spin-l d state and excites a spin-t electron there is an event
in which a spin-& electron is excited and the net polarization produced cannot be large compared to ps. In fact it is the
empty minority d states which are the common crucial factor, enabling Stoner-type excitations and also other spin-
polarizing scattering events. We will see that it is the difference in r(E, ) and r(E, ) which produces the polarization rise
at low energies.

To be able to calculate the distribution of secondaries the lifetimes for spin-up and spin-down electrons are required.
From the expression for the lifetime given in Appendix A, Eq. (Al), and the approximati'on of momentum-independent
matrix elements (in reality their angular average) we can write

El

r (E') fi ~Ff dEp (E) f ds'p (s') f dip (s)[—,
I

M(E' E)
I

+ —,
I
M(E ——s)

I ]

+ f ds'p (s') f dip (s)
I

M(E' E)
I

5(E'+s ——s' —E), (22)

again neglecting the interference term between direct and exchange scattering. Now letting E~E' E+c. in the se—cond
term, it becomes equal to the first and we have the much simpler expression

E'f dEp (E) f dip (e)p (s+co)+p (s)p- (a+co) IM(co)
I

1

r (E')

The integrand represents a process in which the spin o. electron at E - is scattered to E and a spin cr or o electron in the
occupied state c is excited to c+ro. For cr = ), we then obtain

E'f dEpo (E) f dsj[p, (s)+p, (s)]pa (a+co) IM,*,"(co)
I +p, (s)pa (a+co) IMa(co)

I j . (24a)

In a similar way
E'

=
q f~ dEpo'E) f «[pP(e)+p~'e)]po (s+~) IM."~)

I +p~ (s)pa (s+~) IM'a(~)
I

Et
+ f dEpa (E) f de[p, (s)+p, (s))po (s+co)

I Ma, (co)
IEF

(24b)

Notice that. it is mainly due to the two last terms in Eq.
(24b) which are proportional to Ma,

" that v, is less than ~, .
Of these two terms one is a Stoner term involving a spin

flip in the ground state.
For energies up to about 40 eV we find the energy

dependence of the spin-averaged mean free path to be al-
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FIG. 4. Terms in Eq. (21b) that contribute to I »(E',E), the
probability that a spin & electron with energy E' scatters and an
electron is produced with spin & and energy E. (a) The incident
electron s&,E' (where s denotes a free-electron state) scatters
from a ground-state d electron of spin o. into the state (s&E')
and the ground state electron is scattered into an empty (s, o.)

state. (b) The exchange term corresponding to (a) when o
denotes a spin g. (c) Same as (a) except that the ground-state
electron d & is scattered into an empty d & state rather than an
s g state. (d) Exchange scattering process in which the electron
in the state (s &,E') is scattered into an empty d $ state (near the
Fermi energy) and a ground-state electron is scattered to (s &,E).
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FIG. 5. Polarization of the secondary electrons versus energy
in Fe. The experimental results are represented by the vertical
lines (Ref. 2). The large error bars are due to the use of photon
excitation rather than electron excitation which results in a relace

tively low number of initially excited electrons. The dashed
curve gives the results of the theory using energy-independent
matrix elements adjusted to agree with the experimental polari-
zation at zero energy. The solid curve allows for an energy-
dependent exchange matrix element, Eq. (26).

most identical to that calculated with the statistical
model. '

IV. NUMERICAL RESULTS

In this section we discuss numerical results. Combining
the above results we can calculate the lifetimes from Eq.
(24) and solve Eq. (10) numerically yielding P /g+. The
matrix elements M,', (co) and M,', (co') are taken to
be energy independent, in which case they are equal
and the polarization depends on

~
M,'d(co)/M, ',"~ and

~

Mg(E' EF)/M, ',
~

. —We find empirically that the IIio-
iarisation is very insensitive to the choice of ) M,*s/M,*,

~

but depends directly on
~

Md,"(E' EF)/M~
~

as—is evi-
dent from the spin dependence of Eq. (21). This ratio
determines the relative probability that an excited
minority-spin electron is scattered into an empty d
state. Because of the small effect the size of M,'d has on
the polarization, the somewhat arbitrary choice

~
M,'d/M, ',

~

=0.3 in made. The calculations are carried
out for a source function that is monoenergetic and polar-
ized with the bulk polarization ps if photoexcitation has
been used (as for Fe) with

S~"=n 5(E —Eo), (25a)

Eo being the photon frequency. If electron bombardment
at energy Eo is used as in the experiment for Ni, the
source function is chosen to be unpolarized, i.e.,

S~ =S05(E—Eo) . (25b)

For the case that M~ is also energy independent, the
choices

~ Md, /M~
~

=0.13 for Fe and 0.19 for Ni result
in the dashed lines in Figs. 5 and 6. These magnitudes of

~
M&/M~

~

are consistent with Md, being an exchange-

A
) M~(E)/M„ I

(E EF)z+g~
(26)

remembering that over the relevant energy range Md,
"falls

off much faster than M,', . Recall that M,', =M,', (E' E)—
20
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FIG. 6. Polarization of the secondary electrons versus energy
in Ni. The experimental results (dots) are from Ref. 3. There is
currently no explanation for the peak at 16 eV. The solid and
dashed curves have the same meaning as in Fig. 5.

type matrix element. It is apparent from the calculations
that the energy dependence of the joint density of states

p~ ~ is not sufficient to explain the energy dependence of
the polarization and the exchange matrix element Md,
needs to be taken as energy dependent. Md, is extremely
difficult to calculate at low energies because of the impor-
tance of screening and correction effects and so we
parametrized Md,

"
by
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1 Pa 1+P—(E)
r, (E) 1+pg 1 P(E)— (27)

Thus, this ratio can be obtained directly from experimen-
tal measurements and is largely model independent. This
is our central result. The ratio ~, /~, versus energy is
shown in Fig. 7 for Fe and Ni. The ratio is larger in the
case of Fe because its ratio of unfilled d states to unfilled
free-electron-like states is larger than in the case of Ni,
which means that there is an enhanced scattering of
minority-spin electrons into empty minority d states.

The results shown in Fig. 7 are in disagreement with
previous theories which have neglected the selective
scattering of minority spin electrons into empty minority
d states. Those that consider exchange only predict' '
almost no difference between the up- and down-spin life-
times while that of Bringer et al. ' assumes 7., /~,

while M~ has the argument E' —Ez. Since in general
E' E—«E' E—F, when small energy losses are favored
M„ is essentially "static" compared with M~ which in-
volves a,high energy change. Since the matrix elements in
general vanish for very large energy transfers Eq. (26)
mimics this behavior.

For Fe (Ni) the choice A =1.8 eV (2.9 eV) and B=3.2
eV (3.5 eV) results in the solid curve shown in Fig. 5 (6).
Thus the model we are using with its simplifications, is
capable of reproducing the experimental results while re-
taining as many of the Ni and Fe characteristics as possi-
ble and adding no unphysical or unmotivated features.

A more accurate estimate of the ratio of r, (E)lr, (E)
than the calculated from Eq. (24) can now be obtained
from Eq. (9) by using the experimental values of P(E)
and the calculated values of g (E)/P+(E), a quantity
that is relatively insensitive to the choice of matrix ele-
ments. The quantity g (E)/g+(E) is found to have a
value very close to p~ for values of the parameters dis-
cussed above and for E&0. It is found empirically and
will be justified below that g /P+ =p~ holds if

~
M~, /M, ',

~

&&1. Replacing P /g+ in Eq. (9) by pz we
obtain r, /r, in terms of the measured polarization

=(1+p~)/(1 —pz) independent of energy. We also note
that the Stoner excitations observed recently' ' in very-
low-energy-loss scattering are contained without our
theory but are not important to the anomalous
secondary-electron polarization because they produce ap-
preciable polarization only for very-small-energy-loss pro-
cesses.

V. ANALYTIC SOLUTION USING A SIMPLE
MODEL FOR SCATTERING PROBABILITIES

p z(ro)=p~( ro)(n, —n, )=n —5(ro)(n„n, ), —(29c)

We now introduce a simple analytical model to gain in-
sight into the numerical calculations, such as the way in
which the polarization depends on the energy of the in-
coming electrons and the bulk polarization of the sample.
We will give explicit results for Ni but the model is easily
implemented to treat Fe, Co, and spin glasses as well.

All three of the ferromagnetic metals Fe, Co, and Ni
are characterized by a large unfilled minority d-electron
peak close to the Fermi level with room for roughly
n„n; elec—trons. This peak is replaced with a 5 function
whose strength is chosen to yield the same area:

pz(E) =(n, n, )5—(E Ez ), — (28)
I

where Eq-Ez and n, n, =0.6 f—or Ni.
With constant matrix elements and a free-electron den-

sity of states for the unfilled levels which are assumed to
be constant ( =po) we obtain the following approximate
form for the scattering function F ~ (E',E):

P (E' E)
=M po(2n, +n, )+M (n, n, )n, 5(r—o),

t

(29a)

where 2, = (2m /A') por, (E'), co=E' —E,
M =M,'~, and we have used

p, (co)= f dip (E)po (E+ro)=pp f dip (~)=pan

(29b)

1.6

1.4—

1.2

1.0

Fe
LLL

where Eq. (29c) is obtained by concentrating all the d
states at energy ro =0. In Eq. (29b) we have neglected the
fact that for ro &E~ the integration is not over the whole
bandwidth which implies p, is proportional to co for
very small ro. This will influence the lifetime and other
quantities very strongly close to the Fermi level but since
we deal with energies larger than the work function this
has negligible influence on our conclusions.

For F,&(E',E) we find

(E' E)
A~

=M po(n, +2n, )+M (n, n, )n, 5(co)—

Energy (eV)
FIG. 7. Ratio of majority- to minority-spin lifetimes for Fe

and Ni as determined from Eq. (27) using the experimental po-
larization data shown in Figs. 5 and 6. The larger ratio for Fe
reflects the larger number of unfilled d states in Fe as opposed
to Ni.

+M (n, n, )n, 5(ro—),
where A, =(2m/A')pox, (E') and M=M~, . Also,

(E' E)
=poM n,

and

(29d)

(29e)
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where the characteristic energy scales associated with M
and M are

The structure of the F's is evident from considering the
possible scattering processes. For example, in the case of
F»(E',E}, the probability that an up-spin electron is ex-
cited to E when a down-spin electron scatters is propor-
tional to the number of t-spin electrons present in the oc-
cupied states, i.e., n, . The M term describes an electron
falling into an empty d state (there are roughly n, n—, of
those) and kicking up an t electron, i.e., proportional to
n, . Similarly the M term is always proportional to n,
since it corresponds to kicking a & electron into an empty
d state. The 5 function in those terms reflects the narrow
width of the occupied 1 states.

Inserting these expressions for the F's into the sum-
rule equation, Eq. (13), we find for the lifetimes in the
present model (measuring energies from Ez)

M 4E M
4po M M

M M
E2 —— — -4'

4pp M M

(33b)

(33c)

The factor of 2 in front of the integration is the manifes-
tation of the electron multiplication yielding the secon-
dary electron cascade. The solution to Eq. (34) is

where poEz is approximately the number of s-p electrons
in the filled states, which is =0.6 electrons for Ni.

For the paramagnetic equation for lt+ we have, letting
n, =n, =N/2 in the F's,

g+ =S05(E —Ep)+2 f dE', p+(E'') .

and

I

w, (E}

=aE+b +c,1

b = N(n, —n, )p—oM

and

where we have defined

a= WM po,=2~ 22

(30a)

(30b)

(3 la)

(31b)

2SoEog+ =S05(E Eo)+-E2

which, within the same approximation (paramagnetism)
corresponds to a secondary yield Y'-r1(+-SOEO/E3,
which increases dramatically at low energies. %'e also see
that we can increase the yield in an obvious fashion by
having a stronger source or by letting the incident electron
beam have a higher energy Eo.

As mentioned above P scales with pz, and working to
first order in ps, defining

(36a)

we find the following equation for f(E):
2c =—n, (n, n, )poM— (31c) f(E)= f &E', f(E')+ f dE', 1+, g+(E')

+ =psE (E E }
—~s E +O( (33a)

X=n, +n, and we see that it is M which causes ~, to be
different from r„ the scattering process where a spin-
down electron falls into the empty minority d states.

The lifetimes in Eq. (30) do not scale as E when E ap-
proaches E~ as must be the case from phase space argu-
ments. This is, as pointed out earlier, because of the ap-
proximations made in the joint density of states in Eq.
(29). However we are only interested in ~ (E) for E larger
than the work function in which case Eq. (30) introduces
a negligible error. %'hen calculating the spin polarization
according to Eq. (9) we will only work to lowest order in
pg ( « 1 for Ni). This means

(32)

because it is evident from Eq. (30) that 7 /w+ is of
0 (ps). An inspection of the kernels in Eq. (10), with the
F's given by Eq. (29) shows that

hatt
is of O(p~) since

S =0 for an unpolarized source. Thus it is sufficient to
evaluate g+ to lowest order in ps, i.e., for n, =n„ the
paramagnetic solution.

We find from Eq. (30}and the expressions for a, b, and
C7

Thus we obtain for the total polarization, Eq. (32)
(E &Eo),

E
( )

0
(38)

where the first part is the lifetime difference in Eq. (32)
and the second comes from solving for g /P+. There are
several notable features of Eq. (38). It scales with ps,
without a bulk polarization, i.e., n, =n, the secondaries
will not be polarized. The lifetime difference dominates
for small energies. In fact the E&/2E in the g /tP+ part
is also a direct consequence of r„bei gdnifferent from w&

entering through A, ~, ~
of Eq. (29). It is not the M and M

terms in F/A which yield this term Gf course, it .is these

(36b)

1/E' is the kernel and f(E) has no multiplication factor
in front of the integral. f(E) is instead a measure of the
spin contrast in the system. Notice that P+ plays the role
of a source function for f(E).

The solution to Eq. (36) is easily found to be

+~o EoziSo
E3 (37)
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terms which make wr&r, when calculating the lifetime
but they contribute nothing to 0 (pz) in the multiplication
equation. Furthermore the p~(1 E/—2EO) term which
arises from P /P+ is what we would expect from the fol-
lowing consideration: Inject a spin-up and spin-down
electron into the solid (unpolarized source), after one
scattering "event we have four electrons. The two electrons
being kicked up should, for large energies, reflect the bulk
polarization pz. In other words, we should start out with
a polarization being (2 X 0+2p~ )/4=p~/2. However the
exchange scattering coming in through Er(M) gives a
correction to this =Er/Eo, which in general is small
since E& -7 eV for Ni. After the second scattering event
there are two unpolarized and six polarized electrons
yielding a polarization (20 +6p~ )/8 =pz( —,

' + —, ), etc.
Finally, at very low energies we approach p~ ( —,+ —,

+ —, + ) =p~. The exact energy dependence between
P(EO, E& ——0)=pz/2 and P(0, E& 0)=p~——, being linear
in this case, can only come from a detailed calculation
where the energy dependence of the scattering kernel
determines the interpolation between the two limiting re-
sults which we have found.

In Fig. 8 we show a calculation of P(E) from Eq. (38)
for Ni (solid line), comparing it with the full numerical
solution (for constant matrix elements) as elaborated upon
earlier in this paper (dashed line). Er is calculated from
Eq. (33b) using Ef 9eV and M——/M =0.19 in accor-
dance with the full numerical solution. The agreement is
very satisfying and we note that the dramatic rise in the
secondaries at low energies is evident in the model calcu-
lation through Er ( ~M /M ) and to this order in pz it
is entirely a lifetime difference effect. Out of the two M
terms contributing to F„[Eq.(29d)] and F» [Eq. (29f)],
it is only the latter one which is a Stoner excitation. Thus
of the 18% low-energy secondary-electron polarization —,

'

is due to the background bulk polarization, —,
' is from

Stoner excitations and the other —, is from excitations of
spin-down d electrons to spin-down unoccupied d states
(making F» and F» different). So we again stress that

I

20

O

10
N

D
O

CL
0

0 5 10 15 20 25 30
Kinetic Energy (eV)

FIG. 8. Comparison of the theoretical results for the polari-
zation of the secondary electrons in Ni assuming constant ma-
trix elements (dashed line) with the results of the simple analytic
model, Eq. (38), indicated by the solid line.

P+(E)=f+(E) S+(E), —

and let

&(E)=[/ (E)/g+(E)] —pg

(39a)

(39b)

The following equation for b,(E) is obtained from Eq.
(lob):

the necessary condition for having an increased polariza-
tion in the secondaries at low energies is to have unfilled
minority d states above the Fermi level.

We now return to the full Eq. (10) in order to carry out
manipulations which shed light on a feature which was
first found in the numerical calculations; that apart from
energies close to Eo or below the work function the ratio

/g+ stays very close to pz. From Eq. (9) this implies
that in this energy interval the polarization increase is
mainly due to the difference in lifetime, which grows rap-
idly as E +0. We co—nsider Eq. (10) for an unpolarized
source, i.e., S =0 and S+ 5(E —Eo).——In order to
avoid the singularity connected with S+ we introduce

Eo
b(E)= F(EO,E) pgD(EO, E)+—f dE'g+(E')(Frr+F„F„F„)b(E—')—

Eo
+ f dE' P+(E')[F(E',E) 2p~(F„+F„)]—2g+(E), (40a)

where

F(E' E)=F» Fir +Fr r
—F»—

D(E',E) =Fr r +Fbi+Fr r +Fr),
(40b)

(40c)

where it is understood that F ~ =F (E',E) in Eq. (40).
D(E',E) is proportional to the total single scattering cross
section. The quantity g+(E) in Eq. (40) is given by

Eo
tP+(E)= ,'D(E,E)+ —,

' f d—E'P+(E')D(E',E) .
E

(41)

Equation (41) is derived by neglecting a contribution from
because g+ carries the electron multiplication infor-

mation while P contains the spin asymmetry [e.g., Eqs.
(35) and (37)). In the sense of a lowest-order calculation,
P+ is only needed to lowest order, i.e., the paramagnetic
result, since it is multiplied by F(E,E) in Eq. (40a) which
vanishes in this limit because E„=F«and F« ——F».
Therefore we have neglected the g contribution to Eq.
(41).

We will also introduce another simplification in what
follows. We are interested in an energy range between the
work function of the material and roughly 10—15 eV
above that, which in much less than the typical energies
Eo used for the incoming electrons in the experiments we
consider. We thus work in the limit where E «Eo.

Having introduced b,(E), our main objective is to show
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P,=r /r+=(r, r,—)/(r„+r, ), (42)

we show in Appendixes 8—D how Eq. (40a) can be re-
duced to

that over the pertinent energy range b,(E) is indeed small
compared to p~. In fact, this will turn out to be a conse-
quence of the electron multiplication and the condition
Md, /M, ',"«1. In order to focus on the lifetime differ-
ence

mately connected to Md, /M, ',".and since in Eq. (43b) we
are integrating from E which is larger than the work
function we have a cutoff already built in which means
that as long as Er &@, Eq. (44) is a reasonable estimate.
Inserting this into Eq. (43b} we find [assuming W»+ 8'»
to be a constant over the range where N(E') varies rapid-
ly]

(45)

f dE' N (E')( 8'„—W'„)h(E')
&(E)=&,(E)+

f dE'N(E')(W„+ W„)

provided there is an electron cascade and Md,"~&M,', . In
Eq. (43a), N(E) is the number of electrons at energy E
and W~~—:W~ (E',E) is given by Eq. (14) and is the
probability per unit time that an electron scatters out of
the state E'a'' and an electron is scattered into Eo. b,,(E)
in Eq. (43a) is given by

f dE'N(E')P, (E')( W„+W„)
b,,(E)= —

E . (43b)

f dE'N(E')(W'„, —W„)
We now focus on b,,(E) in order to estimate the size of

b, (E). We see that the condition for g /f+ being close
to p~, i.e., b &&pz is intimately con~ected to the average,
of the normalized lifetime difference P„as defined in Eq.
(42) being small compared to p~. It should be mentioned
here, that in the simple model considered earlier in this
section, N (E)—1/E, W~ ~ is a constant, and
P, =p~E&/E. This yields h, (E)= ,'P, (E) wh—ich when
iterated through the kernel of Eq. (43a) gives
h(E)= —,'P, (E) in accord with our previous calculations
of Eq. (38) when E «Eo. In the present model, Md,

" is
responsible for the lifetime difference and because the life-
time sum is roughly proportional to M,', we see again that
in order for b,,(E) to be small Md, has to be a small frac-
tion of M,', . However the matrix elements are, in general,
energy dependent which means that the particular weight-
ing in Eq. (43b} can change the prefactor. In Appendix E
this is treated in more detail while we give here a more
heuristic plausibility argument that demonstrates
&,(E) &p~ (or P ).

It is well known that the secondary-electron cascade
goes as E ~ for low energies. We believe that the P=3
obtained from the simple model is a very realistic value.
This calculation yielding P=3 only depends on the
paramagnetic solution and is moreover constrained by the
"sum rule" in Eq. (13). For P, the situation is less clear
(see Appendix E) but we know that P, vanishes for high
energies and that by construction and the physical pro-
cesses involved it rises as E decreases to a maximum value
of one. We therefore assume P, to be of the form

(44)

since it has to vanish when n „=n, (pz ——0). Er is a typi-
cal energy below which we can expect P to exhibit a
saturated behavior (by construction P, &1). Er is inti-

Thus, P, when it enters the integral Eq. (43) is a algebrai-
cally diminished compared to the direct P, term entering
Eq. (9). Iterating Eq. (43) yields

b,(E)= P,(E) .P—1

—1+2y
(46)

VI. SUMMARY AND CONCLUSIONS

Our theory is based on an equation of detailed balance,
Eq. (6), to describe the electron cascade. It simply states
that the rate at which electrons are scatterd out of a state
Eo is equal to the rate at which they are scattered into
that state. Equation (6) is a straightforward generaliza-
tion of a spin-independent theory due to Wolff. It has
been assumed that the secondary-electron distribution is
isotropic due to elastic scattering. The electron-electron
scattering probabilities which enter the theory are ex-
tremely difficult to calculate due to correlation and
screening effects. The greatest uncertainties are at low en-
ergies where even the Born approximation fails. We have
parametrized the cross sections by following Kane in as-
suming momentum-independent matrix elements for the
screened Coulomb interactions. This leads to scattering
probabilities that are expressed as squares of matrix ele-
ments times joint densities of states. The matrix elements
are characterized by the nature of the states involved in
the collision, free-electron like or d like, and the energy
transferred in the collision.

Our principal result is Eq. (27), in which the ratio of
the majority- to minority-spin lifetime is related directly
to the measured polarization. The inelastic mean free
path (or equivalently the lifetime) is a fundamental quan-
tity in the characterization of a solid. A difference be-
tween the majority- and minority-spin mean free paths
has important implications for the interpretation of many
types of spin polarized experiments, including spin-
polarized photoemission and inverse photoemission, spin-
polarized low-energy electron diffraction, and spin-

This result is consistent with experiment as can be seen
from the following arguments. Assume b, (E)«P, .
Then we can obtain P, directly from the experimental re-
sults by subtracting off pz from the polarization of the
secondary electrons as in Eq. (27). For Ni this gives a
y-3 which together with the reasonable choice P=3
gives h(E) =

~ P, which is consistent with our original as-
sumption. We also see that, the faster P, increases the
smaller b, is (the larger y). This means the approximation
6 «ps, i.e., P /g+=pz, should be particularly good for
Ni where P, has to go from -6% to 100% over an ener-

gy interval where iron has to go from -20% to 100%.
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polarized elastic scattering from amorphous materials.
This is because a difference in mean free paths implies
that the polarization Po of electrons at a given energy in
the bulk of a material differs from that measured outside
the material PM, and this is because in traveling to the
surface, more of one spin than the other is scattered out of
the beam,

1Vqz) —iV qw)

&~&~+&~&~

Po+ r lr+
1+P,r /r+

(47)

where Po (N „——N, ) l—(N, +N, ).
Our results (Fig. 7) show that this effect is important

only for very low energies. In this low-energy regime, it
has not proved possible to carry out low-energy electron
diffraction experiments on Fe and Ni due to stray mag-
netic fields. The most relevant experiment performed so
far is threshold spin polarized photoemission on Ni. ' As
the photon energy is increased from a value equal to the
work function, the polarization of the escaping electrons
is measured. Electrons scattered to energies below the
work function do not escape and the measured polariza-
tion is given by Eq. (47). Kisker et al. ' fit their experi-
mental data for Ni (assuming PM Po) to a——bulk band-
structure calculation in which the exchange splitting 6
was taken to be an adjustable parameter and a value of
5=0.33 eV was obtained. Using Eq. (27) with r lr+
determined from Fig. 7 and Ref. 19, we estimate b,=0.37
eV is required to fit the data. A more interesting case
where the correction to the value of 6 would be greater is
that of Fe for which r /r+ is significantly larger. An
analysis similar to that of Ni could provide an indepen-
dent test of the values of r, /r, presented here. Another
interesting feature of Fe is that calculations by Victora,
Falicov, and Ishida show a significant enhancement of
the magnetization at and just below the surface which
would affect the spin polarization of the photoemission.
It would be useful if the appropriate threshold spin polar-
ized photoemission experiments were carried out in Fe.

There have been two recent experimental papers' ' as
well as a theoretical paper ' that studied low energy loss
single scattering of electrons from Fe and Ni. All three
papers discuss the observed phenomena in terms of Stoner
excitations, the scattering of a minority-spin electron and
the simultaneous appearance of a majority-spin electron.
In general, the Stoner mechanism in which a minority-
spin d electron falls into an empty spin-down d state and
a spin-up electron is scattered back to high energy is "bal-

anced" by a process in which a spin-down electron is scat-
tered back to high energy. These two processes together
can be expected to result only in a spin polarization equal
to that of the bulk and are completely taken into account
by our theory. The case of very small net energy' '
loss involves the excitation of electrons very near the Fer-
mi energy and for that case there can be a large imbalance
in the number of up- and down-spin electrons and Stoner
excitations can dominate.

With the model described above we find;
(1) The rise of the secondary-electron polarization at

low energies is due to the scattering of minority-spin elec-
trons into empty minority-spin d states as discussed in
Sec. I. This idea has been in the literature for a number of
years but has never been employed in a quantitative model
of the secondary polarization.

(2) A rough fit to the experimental data can be obtained
by assuming energy-independent matrix elements. The
exchange-type matrix element that governs the rate at
which minority-spin electrons are scattered into empty
minority-spin d states Md, must be small compared to
that describing direct scattering M,', in order to fit the
data.

(3) To obtain a quantitative fit to the data, the
exchange-matrix element must be strongly energy depen-
dent as described by Eq. (26) and must be small compared
to the matrix element for direct scattering.

(4) For the case that the exchange-matrix element is
small compared to the direct one, as in (2) and (3) above,
we find, empirically as well as analytically (in Sec. V),
that the measured polarization can be related directly to
the ratio of minority to majority electron life times (or
equivalently the ratio of mean free paths) which is the
main result of the paper [Eq. (27)]. This equation allows
the determination of the mean-free-path ratio directly
from the experimental data for the polarization without
any fitting of matrix elements.

(5) The lifetime difference between minority- and
majority-spin electrons is small at energies greater than a
few eV above the work function. Thus the experimentally
measured polarization is in fact equal to the polarization
in the bulk for electrons with energies greater than a few
eV.
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APPENDIX A

Consider the lifetime of an electron in state p with spin 0., its life time can be written

g tfo(Ek)[1 —fo(Ek )]f 1 —fo«p)] 2 I ~p'o, k'o —Mk'o'Jo
I
'@&,o+Eko Et o Ek'o)

k, k', p

+f~(Ek)[1—f (Ek )][1 f (E~)] ~M~ k,
~

5(—Ep +Ek Ep Ek, )I, — —-(A1)

where the factor —, in the first term of Eq. (Al) is to prevent double counting since the two M's represent the same final
state and we are summing over all p. Now in the last term we rewrite

~

M~ k, —
~

as —,(
~

.
~

+
~ ~

) and in one
of the terms we exchange p and k'. This then gives
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[f (E )[1—f (E )][1 f—(E )]—, [M „' —M„'
[

'6(E ~ +E E— E— )

k, k', p

+f «k -}[1—f;«k )][1—f~«p)]2 l
Mp'. ,

k";
l

'o(EJ ~+Eke &—p~ E—k'o) J

+ g f-(Ek}[1—f~(Ek )][1—f-(E~ }]—,
~
Mk ~'p~ '~(E~ ~+Ek~ E—k'n

k, k', p

(A2)

which we immediately recognize as

r (Ep}
= g z~(p' &;p ~)[l—f~(E, )l

+ g —,'co(p', o.;p, o)[1—f (E~)],
P

(A3)

r~(Ep )
= —,

' g g [1 f (E~)—]co(p', o';p, cr),

or in terms of our spherical average W(E', o',E,o ),

(A4)

E= —, g J dE'p (E')W(E', o';E,o), .(A5)

with co(p', cr;p, o) and co(p', o",p, o) defined in Eqs. (11a)
and (1 lc), respectively. This then immediately leads to

dE'X E' 8 „—8'„6E'
~(E)=&,(E)+

J dE'N(E')(W, „+W„)

+R(+R2, (84)

where b„(E) is dealt with in Appendix D and where the
remainder terms R ~ and Rz are defined as

F(E,E) pD (E—O, E)
R) ——

2g+(E)
and

R2 ——J dE'N(E')[ W„—W„+W, „—W„
—2ps( Wgt + W)g )]pp(E)/2/+(E) .

which is Eq. (12), hereby proved.

APPENDIX 8

In order to focus on the lifetime difference P,
(=r /r+) in Eq. (42) we explicitly decompose the F's
involved according to [cf. Eq. (6b) where

p, (E)=p, (E)=po since E & P, the work function.

~+F(E',E)=po(E) (W„—W„+Wgg —Wgg)
2

~+
+pa(E) P ( W +W„—W„—W, „), (81)

~+
D(E',E)=pa(E) (W„+W„+W, &+ W»)

2

~+
+pa(E) P, ( W„—W„+W„—W„}, (82)

and

F~~+F~i —F» —F»
~+

=po(E) (W„+W„—W„—W„)
2

where

D (EO,E)
[p.«o E}—pa]2P+(E) (87)

p, (E',E)=F(E',E)/D (E',E)

is the polarization at E created in a single scattering event
by an electron initially at E' provided E' is sufficiently
large that the lifetime difference between r, and r, can be
neglected. Now because of the electron multiplication we
have from Eq. (41) that 2g+(E) »D(E0,E) which means
that R~ &&[p, (EO,E)—ps]. Now p, (E0,E) the single
scattering probability is constructed in such a way that

~ p, (EO,E) &1 which means that p, (EO,E) p~ is at-
most of 0 (1).

In the case of the simple model studied in Sec. V,
R& ——R& is given by

R
&

and R2 will be shown to be negligible provided there
is electron multiplication and that the matrix elements in-
volved have a certain relationship. We start with R &. Ex-
tracting D (EO,E), we can write R

&
as

~+
+po(E) P (W„—W„+W,„—W„), (83)

R i ———,ps(E/Eo)— (88)

with the transition probabilities W ~ defined in Eq. (14).
In light of our lowest-order approximation we only

need the first terms in Eqs. (82) and (83), but both of
them in Eq. (Bl). In addition we replace P+=(N&lr&)
+(N, /r, ) by its lowest-order paramagnetic result ( t =.&)
N/~ and r+ by 2r (note N does not contain source func-
tion electrons). This yields for h(E)

which indeed is much less than pz for E «Eo. In Ap-
pendix C the term R2 is also shown to be negligible com-
pared to p~ yielding Eq. (43a) for b,(E).

APPENDIX C

We want to show that R2 is small compared to p~.
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E
R2 ——f dE'N(E')[W'„—W„+W„—W„

—2ps( W„+W„)]po(E)/2' + .

(Cl)

and

e p, c —p, c. p~ a+co M~ E' —Ez

(C5)

In order to place things on an equal footing we replace
g+ with —,

' f dE' f+(E')D (E',E) from the multiple

scattering [see Appendix 8 and Eq. (41)]. Rewritten in
terms of W's and working in the paramagnetic limit, we
have

g +(E)= f dE' N (E')( W„+W„)po(E) . (C2)

This term is also used for f +(E) to arrive at Eq. (43a) for

With the expressions for W(E'cr, Ecr) in Eq. (14) we

can write

2%W'„—W„+W„—W„= (Hi+22),

~e have used the fact that pP =pi~ =po(e) when e is
above the spin-down d-band peak and that

p, =p~ (s)+po (e) when c, is below, while pt. stays un-
changed A. lso M~ (E' e)=M—~(E' EF ) —since pq&0
only very close to E~.

In the same fashion we obtain

W»+ W» —— de[p, (s)+p, (e)]po (a+co)

)& )M~(E —e)
~

+ Ai,

where

where

A, =2 f de[p, (e)—p, (s)]po (s+co) iM,', (E —s) i'
(C4)

I

33= f dept (e)pg (a+co)
I
Mg(E' —EF)

~

Dividing R into the regular (po) and the "irregular" (p~)
piece writing R R=o+R~ we have for Ro

Rp —— f dE'N(E') f de[p, (e) —p, (e)]po (a+co) ~~,', (E—e) ~'

—pa d&pg &+pg & po c+
'

I

f dE'N(E')(W'„+ W„) . (C7)

and

~,=p,'( ~)
~

M—~(E' EF )
~

' f ds—p, (E+~), (C9)

where we notice that for co & W they both vanish. Now f dip~ (a+co):n„—n, —by definition. Changing the integration

in Eq. (Cl) to go over every transfer co we can write Rq as
0

—8 d~N(E —~) IM~(E EF co)
I [pi —(~) pi (~) 2rapr (co)](n& n, )——

Rg —— g
2 f« f, dE'N«')[pi'(e)+pi'(e)][ IM «' —E) I'+ IM"« —e) I']po'(s+~)

(Clo)

For the simple model po and M,', are constants and we see that Ro vanishes identically. But even for slowly varying
functions Ro has to be very small. p, pi~ only exists over the baiidwidth W and with no significant change in po
( —Wc) and M,',"(E—e) over an energy scale of W we can safely neglect Ro, Eq. (C7). Or to turn it the other way. In
case the final free-electron density of states or the matrix element M,'," has a major variation over the bandwidth of the
solid we do not expect, in general, that Ro has to be small and in this case f /g cannot be expected to stay close to pz.

Since p~ is a very narrow function in energy we can approximate A2 and A3 as

A2-[p, ( co) —pi~( ——co)]
~

M~(E' E~)
~

~ f dept~—(a+co) (C&)

neglecting the p~ contribution in the denominator, work-
ing in the paramagnetic limit. We immediately see from
its structure that it scales with M~/M, ', (they are both
evaluated at a very low energy), so if this ratio is small R~
is indeed small compared to p&.

Because N(E) strongly weights small E we can take
out all the matrix elements evaluated at a very small ener-

gy, provided they do not vary strongly over W (the e in-
tegration). Performing the integration over the bandwidth
and extracting the least favorable N(E) gives

sd SCfn, n, N(E) —M~, M~,

4Wp, (E,) N(E+ W)

(Cl 1)

where the estimate is for N —E with E—8'
2Wpo(EF)-1 and pz —10% Thus as .long as M~, (0) is
negligible compared with M,', (0)R~ is small compared to
ps. Since R~-O(pz) it should work better for Ni than
for Fe.
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APPENDIX D

We will justify the form of the source function in Eq.
(43b). From Appendix B we have

E'N E' P~ E' 8'„—8 „pp E
h, (E)= (Dl)

y+(E)
Using the electron multiplication to replace f + by

E' + E' D E',E we can write

to M(E —s). In the same spirit the first term in Eq. (D4)
is of first order in t minus t and multiplied by P, be-
comes of second order in small quantities, the other factor
being Md,"/M,', and should consequently be dropped.

APPENDIX E

In this appendix we will write down the expression for
P, in terms of the basic densities of states and matrix ele-
ments we have been working with. P, is defined as

f dE'N(E')P, (E')( W„+W„)
b,,(E)= +83,

2 f dE'N(E')(W„+W„)
(D2) P =

Tt+7 $

(1/r, ) (1—/~, )

(1/w, )+(1/r, )
(El)

where

f dE'N(E )P,(E')(w„3w„)—
2 EKE ~„+~„ (D3)

Using Eq. (24) we find

E'
7T E ) E ( + (

xp(~)(a+to) IM~(to) I'.
Now W» —3W« is equal to [cf. Eq. (14)]

W„—3W„= f dsp„(E)p(~)(a+to)

x[
I
M(to)

I
+

I
M(E —s)

I
']

+ f dsp, (s)p(~)(E+co)

X [ I
M(to)

I

—3
I
M(E —s)

I ],

(E2)

For the ferromagnetic materials p~ is a very sharply
peaked function just above the Fermi level yielding

{E' EF)—2K sd 2

X [p, ,(E' EF)+p, ,—(E' E~)], —(E3)

where we stay in the paramagnetic limit because P is al-
ready a lowest-order quantity. We can rewrite Eq. (D3) as

W» —3W„= f dE[p((e) —p~(e)]po~(a+co)

X [ I
M (to)

I

'+
I
M (E —s)

I
2]

+2 f dEp, (c)po (8+to)

x[ IM(to)
I

—IM(E —E)
I ] .

p, being the joint density of states [Eq. (29)], and we
have used cpd c —=n, —n„when E' is outside o the
peak. (1/r, )+(1/v, ) can be evaluated in the paramagnet-
ic limit and with the same approximations as above we get

E'
+ = 2 f dE po (E) f «[p& (E)+p, (s)]

F

Xpo~(a+to)
I
M,',"(to)

I

'

Again for a model where poM is constant or varies slowly
over the bandwidth this gives 8'» —38'„~pz and R3 is
of second order in pz. Because of the strong weighting of
X and I' toward lower energies both m=E' —E and
E —E will be small energies and M(to) must be very close

pp
~sd E E 2

F

X [p, ,,(E' E)+pg, ,(E' E—)] . (E4)—

and clearly P, is strongly related to Md,"/M,',".
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