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Using the formalism of the Korringa-Kohn-Rostoker method in conjunction with the coherent-
potential approximation (KKR-CPA) for treating substitutional disorder and the embedded-cluster
method, we describe the scattering from single displaced atoms and clusters of displaced atoms em-
bedded in an effective medium. By means of a distribution function this approach leads to a self-
consistent treatment of lattice relaxation. Introducing a supermatrix formulation for the KKR-
CPA method and using the concept of the “renormalized interactor” allows us to reformulate the
diagonal and off-diagonal elements of the Green function such that (i) impurities or clusters of im-
purities in an effective medium, displaced or not, can.be treated properly and (ii) Bloch spectral
functions can be obtained with no further assumptions beyond the level of the KKR CPA. The pro-
posed method, for example, covers the case of lattice relaxation for pure matter at elevated tempera-
tures and treats properly the effects of short-range order in substitutionally disordered materials. In
general, it provides a solution to the problem of embedding impurities in pure materials or alloys
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describable within the muffin-tin approximation for the crystal potential.

I. INTRODUCTION

In the preceding paper!, hereafter referred to as I, the
Korringa-Kohn-Rostoker?~* (KKR) method for calculat-
ing the electronic structure of periodic solids was general-
ized to include deviations from structural periodicity con-
fined to compact clusters of atoms. Specific prescriptions
were given for the evaluation of the Green function for a
single displaced atom and for a cluster of displaced atoms
embedded in a pure host material with atoms fixed at the
positions of a rigid, regular lattice. Two methods for
treating lattice relaxation were presented in I. The first
method relied on the evaluation of the renormalized in-
teractor (RI) associated with a cluster of displaced atoms,
while the second was based on the individual scattering
matrices for displaced muffin-tin (MT) spheres and, as-
suming that a complete basis set of angular-momentum
states is used, it is entirely equivalent to the RI approach.
The generalization of the multiple-scattering formalism
presented in I allows a first-principles study of physical
properties of solid materials that are sensitive to intera-
tomic separation, such as magnetic moments, NMR and
ESR frequencies, and Dingle temperatures.

In this paper the methods presented in I and, in particu-
lar, the renormalized-interactor approach, are extended (i)
to include the calculation of displaced-atom Green func-
tions in concentrated substitutionally disordered alloys
rather than just pure materials, (ii) to provide a self-
consistent treatment of (small) lattice softening in other-
wise pure, translationally invariant materials, and (iii) to
provide a self-consistent treatment of small, but correlat-
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ed, atomic displacements in substitutionally disordered al-
loys. Thus this paper provides a coherent scheme for the
treatment of various and diverse cases involving the
embedding of impurities and deviations from structural
periodicity. In particular, the RI approach reduces the
calculation of impurity Green functions to the evaluation
of integrals over the.first Brillouin zone (BZ) of the undis-
torted lattice. It is hoped that the detailed presentation of
several applications may exemplify the general formalism
given in I and indicate its possible utility.

As was the case in I, a MT-like approximation is em-
ployed. Thus the potentials associated with individual
scattering centers are bounded by nonoverlapping spheres
although they are not necessarily confined to being spheri-
cally symmetric. Deviations from spherical symmetry,
indeed, are necessary if charge-transfer effects and broken
translational and rotational symmetry are to be taken into
account. The formalism presented in this paper allows
the incorporation of charge-transfer effects in a straight-
forward manner.

In addition to the MT approximation, we also retain
the concept of a rigid lattice. Thus we consider structural
disorder confined to compact clusters of atoms or, in the
self-consistent treatment of lattice relaxation, the averaged
atomic positions are assumed to form a regular lattice.
This allows us to reduce the treatment of many cases of
physical interest to the general problem of calculating the
Green functions associated with displaced atoms embed-
ded in a translational invariant medium. A prototype sys-
tem, namely displaced atoms in a pure host material, was
discussed in some detail in the preceding paper. The
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choice of the embedding medium there was simple, being
taken as the host medium itself. In this paper, the con-
struction of the embedding medium is examined in detail
for a variety of cases. Once such a medium has been
specified and the various parameters entering a calcula-
tion properly identified, the formalism of I can be applied
whole to the particular case under study. ‘

The construction of an embedding medium in the case
of substitutionally disordered alloys merits special atten-
tion. For such systems, we choose the effective medium
determined in the coherent-potential approximation’~8
(CPA), particularly as it is applied to potentials of the MT
type (KKR CPA). We now briefly describe the ideas
underlying the CPA and some of its cluster generaliza-
tions.

The CPA has proved to be the best single-site theory
for studying the properties of substitutionally disordered
alloys. In the CPA one considers the real disordered ma-
terial as being replaced by an effective medium that
possesses the translational invariance of the underlying
lattice. The CPA medium is, in general, complex and en-
ergy dependent and is determined through the self-
consistency condition that the scattering off of a real
atom embedded in the medium vanishes on the average.
The CPA has many desirable properties, such as analytici-
ty of calculated self-energies and Green functions, and
yields analytic, physically meaningful results. The
theoretical aspects of the CPA and its many applications
to the calculation of the physical properties of substitu-

tional alloys have been amply discussed in review arti-

cles.b—8

The viability of the CPA as a general theory of substi-
tutionally disordered alloys is severely limited, however,
due to the single-site nature of the method. In order to
take account of statistical correlations, i.e., short-range-
order effects known to affect many of the physical prop-
erties of disordered materials, e.g., magnetic moments, it
is necessary to extend the CPA to a multisite or cluster
theory. Of the many such theories which have been pro-
posed,"’"18 the embedded-cluster method!*—17 (ECM) ap-
pears to be the most satisfactory in terms of analytical
and computational requirements. In particular, the ECM
yields analytic cluster Green functions and hence non-
negative density-of-states (DOS) curves when used in con-
junction with a proper single-site medium, such as the one
determined in the CPA. The advantages as well as the
limitations of the ECM have been discussed in a previous
publication.!* The KKR CPA and the ECM as applied to
MT potentials provide the foundation upon which much
of the formalism for treating lattice relaxation is con-
structed.

Now, a few comments about the potential function
characterizing the impurity clusters as well as those of the
surrounding medium are appropriate. All such potentials
must be made electronically self-consistent within the
context of local-density theory. Self-consistent MT poten-
tials for pure materials have been used extensively in
band-structure calculations.’® The construction of self-
consistent MT potentials for substitutionally disordered
alloys also has been described in detail in the litera-
ture.’>?! The results of numerical calculations?! have
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clearly demonstrated that electronic self-consistency is
essential for a fully satisfactory application of the KKR
CPA. The formalism used in this and the preceding pa-
per yields individual atomic Green functions and can be
used in the construction of self-consistent potentials in
connection with pure systems or substitutionally disor-
dered alloys. However, it is to be expected that cluster
self-consistent potentials will require much greater com-
putational effort than their single-site counterparts.

The remainder of the paper is arranged as follows. In
Sec. II we discuss the evaluation of the Green function for
displaced atoms in substitutionally disordered alloys. A
self-consistent treatment of uncorrelated displacements in
pure materials and correlated displacements in alloys are
given in Secs. III and IV, respectively. Section V contains
a discussion of the non-site-diagonal Green function in a
disordered material with or without distortion. The re-
sults of sample calculations are presented in Sec. VI. A
final discussion of the methods presented in the body of
the paper is given in Sec. VII.

II. DISPLACED ATOMS IN SUBSTITUTIONALLY
DISORDERED ALLOYS

The KKR CPA and the ECM (for a review, see Refs. 7
and 8) are based on the premise of a rigid, translationally
invariant lattice. Using the formal methods presented in
I, it is straightforward to extend the KKR CPA and the
ECM to the calculation of the Green function associated
with either a single displaced atom or with a cluster of
displaced atoms in substitutionally disordered alloys. All
that is formally necessary is the replacement of the pure
host quantities of I, such as 7%°, with the corresponding
quantities evaluated in a KKR-CPA effective medium.
That is to say, in substitutionally disordered alloys the
CPA medium plays the role of a host material. To illus-
trate these comments we will derive the explicit formulas
for the Green functions associated with displaced atoms
in concentrated alloys. As in I, displaced quantities will
be distinguished from their undisplaced counterparts by a
circumflex. We begin by considering a single atom dis-
placed from its equilibrium lattice position and surround-
ed by a KKR-CPA effective medium.

First, note that the quantity of interest is 7%* [ =(2%)*]
corresponding to a single displaced atom of type a. From
Eq. (4.1) in I, we obtain ‘
ree=(m*-A)"", @1

where 4 % [=(£%)~!] and A are, respectively, the inverse
of the displaced MT scattering matrix, and the renormal-
ized interactor for the displaced atom. Note that i * may
indeed be different from its undisplaced counterpart m<
due to charge-transfer effects, and must be determined in
a self-consistent evaluation of the displaced MT potential.
The renormalized interactor A is given by expression (4.3)
of I with 7(k) replaced with the KKR-CPA quantity 7(k).
Having obtained A %, we readily obtain the corresponding
expression for the Green function,
GHE,r,r)= 3 Z¢(E B AE)ZE(E,r)
L,L'
— S ZUEDTET), r'>r. (22)
L
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The averaged Green function is then given by an average
of G ® over all possible components of the alloy. Note
the explicit use of circumflexes in Z and T to denote any
possible differences between the solutions of the
Schrodinger equation between displaced and undisplaced
potentials.

The cluster-diagonal scattering-path operator ECC, and
hence the Green function for a cluster of displaced atoms,
can be calculated in an equally straightforward way
through the use of the formalism of Sec. IV in I. In par-
ticular, 7 CC is given by the expression

T = (2.3)

~CC [(?CC)—]_’& C]—l ,
with 7 C defined in Eq. (4.6) in L, and A € evaluated in the
manner prescribed by Eq. (4.10) of that section. Finally,
the Green functions associated with the cluster C can be
obtained through use of the matrix elements of 7 given in
Eq. (2.3).

It is important to point out the existence of a certain
discrepancy among the various potentials entering the dis-
cussion of this section and which the reader may have al-
ready noticed. These differences are due to the fact that,
because of charge transfer, the displaced MT ¢ matrices
% are, in general, not equal to the undisplaced quantities
1 that enter the construction of the KKR CPA medium.
Thus, the self-consistent treatment of a displaced atom re-
sults in an impurity of a foreign kind, i.e., one whose po-
tential is different from those entering the construction of

<G(P1’P2a- . -,Pj,-..)>= f [Hd3pk
k

[HP(p,-)]G(p,,pz, e aPirees)
j
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the embedding medium. In many cases, such differences
can be safely ignored. Also, for small displacements, such
discrepancies can be removed in a self-consistent treat-
ment of lattice relaxation, as will be shown in Secs. III
and IV.

III. SELF-CONSISTENT TREATMENT
OF LATTICE RELAXATION-UNCORRELATED
DISPLACEMENTS

In this section we present a self-consistent treatment of
lattice relaxation which, for small displacements, leads to
full self-consistency between the potentials of displaced
atoms and those of the surrounding medium. To this end,
we first consider lattice relaxation in pure materials.

Let the position of a displaced atom in the material be
described in terms of a distribution function P(p), with p
measured from the equilibrium position of the atom. In
order to maintain the conditions of validity of multiple-
scattering expressions, the function P(p) is taken as
nonzero only for displacements which restrict the MT po-
tential inside a bounding sphere centered on the lattice
site. For small displacements we can consider lattice dis-
tortion to be isotropic and the atomic displacements un-
correlated. A particular configuration of the material
consists of each atom j being displaced by a vector p;
from its equilibrium lattice position. Any quantity, e.g.,
the Green function, is a function of a particular configu-
ration {p;}, and its exact configurational average is given
formally by the expression

(3.1

As was the case for random substitutional alloys, Eq. (3.1) can be evaluated only appfoximately. Consistent with the
spirit of the CPA, we replace the exact site-diagonal element of (G ) by the quantity

(G(E,r,r’)):fd3pP(p) S ZLpE, D) Ap)Zp;Ex')— 3 Z(p;E,;r) L (p;Ex') |, P>
LL' L

with the following definitions of the various quantities.
The scattering-path operator 7(p;) is associated with the
MT sphere dlsplaced through p; from its equilibrium lat-
tice site, but it is referred to the lattice site rather than the
center of the displaced MT. The solutions Z(p) and J(p)
are those for the individual, displaced MT spheres at p,
expressed in terms of coordinates also centered at the lat-
tice site.

In order to evaluate Eq. (3.2), a method for evaluating
7(p) must be devised. Consider the exact disordered ma-
terial as replaced by an effective medium characterized by
a translationally invariant lattice with an effective single-
site scattering matrix 7 associated with each lattice site.
To determine 7 we 1mpose the CPA condition

(z(p)) =% (3.3)

or, explicitly,

[ d*pP(pm(p)—B°] ' =(E - (3.4)

201,

(3.2)
I
Equation (3.4) also can be written in the form
J &*pP(p)mip)—m +(z%) 1]~
=70= 1@k . (3.5)

It should be noted that 7% in these equations is the
scattering-path operator of the translationally invariant
effective medium determined in the KKR CPA. This ap-
proach leads naturally to the use of the displaced MT ¢
matrix rather than the displaced-atom structure constants.
The CPA self-consistency condition can also be expressed
in terms of the displaced renormalized interactor, but in
that form it is somewhat less transparent and it is less use-
ful for calculational purposes. Note also that, in its
present form, Eq. (3.5) involves only the structure con-
stants of the undistorted lattice, a convenient cir-
cumstance since these constants can be taken as well
known.

The discussion given above for lattice distortion in pure



materials can be extended to random small displacements
in substitutionally disordered alloys. In this case the CPA
condition, Eq. (3.5), takes the form

S C, [ d%pP(p)m™p)—7 +(Z%) ]!

oo__1
‘Q'BZ

=7 [lm-6®1"'d%k, (.6
where m*(p) is the (inverse) scattering matrix of a dis-
placed atom of type a referred to the lattice site rather

than the displaced position corresponding to p.

There are several comments that should be made about

the CPA self-consistency conditions, Egs. (3.5) and (3.6).
First, these equations lead to an effective medium con-
sistent with the potentials of the displaced atoms. Once
such a medium has been constructed, the formalisms of I
can be used to calculate the Green functions associated
with single displaced atoms or clusters of displaced atoms.
Second, the BZ integrals occurring in Egs. (3.5) and (3.6)
should be approached with care; the corresponding quan-
tities for pure materials involve divergent integrands.
Such integrals have been evaluated in the past, however,
using various techniques. Finally, the insistence on com-
plete self-consistency for each position p can quickly lead
to an extraordinarily difficult computational task. It may
be a good approximation for many systems, e.g., metals,
to forego complete self-consistency at each value of p, and
to calculate self-consistent potentials only for selected po-
sitions p to determine 7.

IV. CORRELATED DISPLACEMENTS
IN SUBSTITUTIONALLY DISORDERED
ALLOYS

The formalism of the preceding section provided a
self-consistent treatment of small, random atomic dis-
placements such as may be caused by elevated tempera-
tures in crystalline solids. In this section we consider
correlated displacements that can occur in concentrated,
substitutionally disordered alloys even in zero tempera-
ture. As can be verified experimentally?*?? in many al-
loys, nearest-neighbor (NN) and often next-nearest-
neighbor (NNN) distances are functions of the chemical
nature of the neighbor atoms. Thus, we seek a generaliza-
tion of the KKR CPA equations that takes into account
correlated lattice relaxation.

We begin with the equation of motion for the
scattering-path operator®* [see Eq. (3.8) in IJ,

fj=f5¢'j+£i 2 Gtk |
k (i)

(4.1)

The free-electron propagators GY, as well as the ¢ ma-
trices t‘, depend on the configuration of the disordered
material. In particular, G can take on various values,
G ff,;, for an atom of type « at site i and an atom of type B
at site k. In fact, each alloy configuration is character-
ized by a distribution -of values for _:,’fﬁ, through the
dependence of | R*| on the occupation of the sites in the
alloy. However, we will assume for the sake of simplicity
that G Z‘B depends only on the distance between sites i and
k, which is a function of the chemical occupation of those
sites, and is independent of their local environment. The
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variation of G ZCB with the occupation of sites i and k will
be referred to as off-diagonal disorder (ODD). As it is
usually assumed, ¢’ will be taken to be a function of the
chemical occupation of the site / and independent of the
local environment of that site.

In order to apply the KKR CPA method to the treat-
ment of Eq. (4.1), we follow the approach used by Black-
man, Esterling, and Berk?® (BEB) in their treatment of
ODD within a tight-binding (TB) formulation of the
CPA. For definiteness we consider explicitly the case of
binary A.B;_. alloys; the generalization to multicom-
ponent alloys is straightforward. Thus, we introduce pro-
jection operators x; and y; (=1—x;), where

1 if there is an A atom at site i ,

i~ |0 otherwise. @.2)

X
Now we multiply Eq. (4.1) on the left and on the right by
all combinations of x; and Yj» i.e., consider all possible oc-
cupations of sites i and j, and insert the identity
Xr +yr =1 in the product G*7%. The resulting equations
can be written in the form

=ty+1' 3 G*tH 4.3)
K (s£)
in terms of the following matrix quantities:
xi () x; x, ()P,
= y . 4.4
~ T )P yi()BBy; | “4
x,'_t_A 0
i , 4.5)
~ 0 yut?
and
(@44 GYs :
ij " -
¢ Ghsa G| @6

Note that the projection operators which represent the
disorder are not present in the matrix representing GY,
but occur only in the site-diagonal matrix ¢. Thus, Eq.
(4.5) corresponds to simple diagonal disorder in the ma--
trices t' and can be treated formally in a manner
analagous to that used in the usual formulation of the
CPA. The KKR CPA formalism can be transcribed in its
entirety to the case of 2 X2 supermatrices (n X n superma-
trices for n-component alloys). We will quote some
specific results. The KKR CPA condition”® takes the
form

S Co{l—tof ' — ()1} le=7®, 4.7

a

where 7 is a 2X2 supermatrix, and the site-diagonal ele-
ment fm of the scattering-path operator is given by the
expression



7724
—oo___1 =173
=g [, 7kdk
_ 1 F-1_ ~143
b ful g
B (zoo)AA' 0 -1 A44 R 4B
=————QBZ fBZ 0 (790)BB + AB4 RBB

In this equation the matrix renormalized interactor can be
evaluated from the expression

A=T71—(z)1, 4.9)
as follows easily from the CPA condition, Eq. (4.7).

The matrix structure constants G(k) entering Eq. (4.8)
are the Fourier transforms (FT’s) of G and must be
evaluated using the methods presented in I. For example,
consider G 4,(k). Let the nth-neighbor distance between
two A atoms in the material be given (on the average) by
R,*=R%4+p,44, where R,° denotes the equilibrium
separation and p,“4 are occupation-dependent deviations
from this equilibrium value. The correspondin%Q A4 can
be obtained from the structure constants G " by the
methods discussed in 1. If the p,“4 are nonzero for n ex-
tending to a maximum of Nth-nearest neighbors, usually
N <2, we can write G 44(k) in the form

N .
G =G+ 3 (G —6"e" ™, @10

n=1

where Q l;f, is a displaced-atom structure constant corre-
sponding to the displacement p,“44. Similar expressions
hold for all Gg(k).

Once 7** (omitting the superscripts 0) has been deter-
mined, the full Green function can be obtained through
the expression

(GE,nr))=3 (G*™E,r,r"))
a

> ZHE,x)»51ZF (E,r)
LL'

=2Ca
a

— 3 ZHEJEET) |, (411
L

where Z% and J® correspond to a MT of type a. The ¢
are given by the usual expression,

Iaa=[(_t‘a)——l__§aa]—lz(ma_gaa)—l . 4.12)

Note that even though the off-diagonal element of the
single-site renormalized interactor A 42 is nonzero, corres-
ponding in a sense to the nonphysical situation of a site
being occupied by both 4 and B atoms, it never appears
in a real-space expansion of 7%*. Its main function is to
guarantee the satisfaction of the self-consistency condi-
tion, Eq. (4.7).

There are several features of the formalism just present-
ed which warrant special attention. First, note that each
element AY;. of any matrix entering the expression in
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Q (k) Q (k) -1
3: o d’k . (4.8)
Gj34 Gps ’

] .
Eqgs. (4.3)—(4.12) is a 2X2 matrix in the space of the
operators x and y. Physical quantities are obtained? as
the sum

(A )= (4}, )%, a,B=A or B . (4.13)
a,B
In particular, we have
=)+ 7 )P (4.14)

with a corresponding expression for the Green function.
Finally, in the limit of all G Jg becoming equal to GY, the
formalism of BEB reduces to the usual CPA.

The matrix single-site expressions of the KKR CPA
with ODD can be readily generalized to clusters of impur-
ity atoms. The method of this extension is essentially
identical to that used®® in the cluster generalization of the
BEB formalism in connection with TB Hamiltonians, so
the details will not be given here.

Throughout the discussion of this section it was as-
sumed implicitly that the alloy can be described by a com-
mon Brillouin zone even though the atomic positions in
the direct lattice are correlated with the type of atoms oc-
cupying these sites. This leads to no discrepancies, pro-
vided that the deviations of neighboring positions from
the overall lattice constant of the alloy are small, a few
percent. In this case the formalism is conceptually similar
to that used in I to treat small displacements in pure sys-
tems that may arise from elevated temperatures. Howev-
er, for large displacements the single-site approach of this
section breaks down. It is still possible to take larger posi-
tion correlations into account by considering the behavior
of large clusters embedded in an averaged medium in the
manner discussed in I. Such a procedure, carried to self-
consistency, may yield accurate information about the
behavior of alloy systems with strongly correlated atomic
positions.

V. THE NON-SITE-DIAGONAL GREEN FUNCTION

The discussion in the preceding sections was exclusively
concerned with the calculation of the site-diagonal ele-
ment of the Green function in solid materials in various
cases, characterized by the absence of full translational in-
variance. In many instances, however, a knowledge of the
non-site-diagonal Green function is required. In particu-
lar, a generalization of the Bloch-density function?’ for
periodic solids,

ABE;k)= 3 8(E—E,Kk)), (5.1)

to disordered materials is necessary for a discussion of
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transport properties in such materials. In Eq. (5.1) 8(x) is
the Dirac 8 function and « is a band index, with E,(k)
the energy eigenvalues obtained in a band-structure calcu-
lation.

The appropriate generalization of the Bloch-density
function to substitutionally disordered alloys describable
by MT Hamiltonians has been shown?® to be the trace of
the imaginary part of the. lattice FT, G(E;k,k), of the
averaged Green function (G). The evaluation of
G (E ;k,k) is a simple matter for systems characterized by
TB Hamiltonians due to the fact that the eigenfunctions
associated with an atom in the alloy are independent of
the chemical nature of that atom. This condition is clear-
ly not fulfilled in MT systems. By considering approxi-

|
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mations consistent with the single-site KKR CPA,
Faulkner and Stocks?® derived an expression for the Bloch
spectral density of disordered alloys of the form

ABE; k)= — —;IT—ImG(E;k,k) , (5.2)
where G(E;k,k) is the Fourier transform of G(E:r,r')
obtained in the CPA.

The derivation of Eq. (5.2) given in Ref. 28 was compli-
cated by the circumstance that the wave function associat-
ed with different scatterers in the alloy depends on the
atomic species occupying the scattering centers. The for-
malism presented in the preceding section allows for such
a dependence and leads naturally to the expression

x,Z4/c 0 T44k) 748(k) ] [x;Z24/c, 0
Q‘E;k""=<f 0 wzZBep||zPAM) TPW)|| O ;iZA/cs "3'>
(1—c,)Z 4z 44Z 4 0
+ 0 (1_c3>zﬂz”z"]d3’

gAAIAA( k) §ABIAE( k)
EBATBA(K) EBBrBB(k)

’

for the Fourier transform of G. In this expression,
gaﬁf‘w(k) is a symbolic quantity denoting a matrix de-
fined through its elements

(§2P1%P) = fwsZf(E,r)"i'%g'(k)Zf'(E,r)djr . (5.4)

The Bloch-density function can be obtained directly from
Egs. (5.4) and (4.13),

AME )= —TImTr 3 GAE;kK), a,f=A or B .
a,B

(5.5

It is a matter of some straightforward, although lengthy,
algebra to show that Eq. (5.5) is entirely equivalent to Eq.
(5.2). Thus the results of this section are equivalent to
those of Faulkner and Stocks.? However, the method of
derivation used here is based directly on the KKR CPA
and requires no further arguments than those underlying
that approximation.

One advantage in writing the Bloch spectral density in
the form of Eq. (5.3) is that it allows the species decompo-
sition of the band structure of a substitutionally disor-
dered alloy. In particular, the components G%*E;k,k)
can be compared with the band structure of the pure a
species, which may yield detailed information on the ef-
fects of disorder on each of the constituents of an alloy.

VI. NUMERICAL RESULTS

Of the formalisms presented in this paper, the easiest
one to implement using existing technology is that of the
preceding section. In addition, it is straightforward to
compare the sum of the component Bloch spectral func-

(5.3)

T
tions in Eq. (5.5) to the total Bloch density obtained in the
ordinary version of the KKR CPA using the formalism of
Faulkner and Stocks.?®

Figures 1—3 depict the total and component Bloch

Ago2Pdog

FIG. 1. Total and component (species resolved) Bloch spec-
tral densities discussed in the text for a Ag.Pd;_. alloy, with
c=0.2.
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AgosPdos

FIG. 2. Results analogous to those depicted in Fig. 1, but for
¢ =0.5.

spectral densities on the T XW plane of the Brillouin zone
and at the Fermi energy for several Ag.Pd;_. alloys, with
¢=0.2, 0.5, and 0.8. In these figures, 4 denotes Ag and
B the Pd atoms. The results for the total Bloch spectral
functions were obtained in two ways, using the formalism
of this section as well as that of Ref. 28. In each case the
sum of the component densities, evaluated using Eq. (5.5),
equals exactly the total Bloch density obtained in the
KKR CPA.% ‘

The component Bloch densities 44, 4B, and BB
shown in Figs. 1—3 can be interpreted as the component
band structures associated with an alloy. In each case
they show rather clearly the effect that alloying has on the
band structure of the individual constituents. The results
are consistent with those that can be obtained by calculat-

ing component densities of states, but are much more
descriptive in character. As an example, we may examine
the band structure of the Pd component in these three al-
loys, designated as the BB Bloch density in the figures.
We see that in the Agg,Pdy g alloy the Pd Bloch density
resembles closely that of pure Pd, clearly showing the
presence of the s and d sheets of the Fermi surface. In-
creased concentration. of Ag atoms gradually and con-
sistently transforms the band structure to one resembling
that of pure Ag, in the form of a practically spherical Fer-
.mi surface.

The species decomposition of the Bloch spectral density
opens up an interesting prospect for examining the order-
ing effects that may be present in multicomponent alloys,
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FIG. 3. Results analogous to those depicted in Fig. 1, but for
¢ =0.8.

such as ternary alloys. Although in a binary system the
behavior of either component is tied in intimately with
that of the other, in a multicomponent alloy each species
may behave in a more independent fashion from the oth-
ers. For example, in the so-called pseudobinary alloys one
element forms an ordered sublattice while atoms of two
other elements form a disordered substitutional alloy on a
lattice interpenetrating the first one. One may perform a
KKR CPA calculation as if the entire system formed a
disordered substitutional alloy on a common lattice, and
then use the component Bloch densities to examine the
behavior of the different species separately. Such a calcu-
lation is currently being contemplated by us and any re-
sults obtained will be communicated in a future publica-
tion.

VII. CONCLUSIONS

In the set comprised by this paper and I we have
presented a general and unified multiple-scattering ap-
proach which allows the treatment—on an equal
footing—of a variety of problems associated with defects
in solid materials. The formalism relies on the evaluation
of the renormalized interactor for a MT potential, which
represents the influence of the surrounding material on
the scattering off an individual center. The present for-
mulation encompasses many previous treatments of relat-
ed problems and goes beyond them in several respects.
The method is applicable to a great variety of physical



problems of an embedding character, including substitu-
tional defects in pure materials or concentrated substitu-
tionally disordered alloys with any accompanying lattice
distortion in the region surrounding the impurities, vacan-
cies and interstitial defects in such materials, and the
self-consistent treatment of (small) lattice relaxation
caused by elevated temperatures or substitutional defects.
Many of these problems were treated in detail in these two
papers. Others, for example, lattice distortion due to de-
fects in materials with a polyatomic basis, can be dis-
cussed within a straightforward generalization of the
methods presented here. An extension of the nonrelativis-
tic expressions of this work to include relativistics effects
is also straightforward.

Many quantities of physical interest in solid materials
depend strongly on the effects of local environment and
the formalism presented in these papers was developed
with the objective of determining such quantities. In ad-
dition to the immediate calculation of charge densities
and DOS’s, this approach can be used to obtain more re-
motely related quantities, such as the electron-phonon in-
teraction in metals as well as metallic alloys, interatomic
forces in solid materials, interatomic distances in alloys,
magnetic moments, and others.

32 LATTICE RELAXATION IN HIGH-TEMERATURE ... . I ...

7727

One cannot overemphasize the importance of carrying
all alloy calculations to electronic self-consistency. This is
an essential feature which guarantees that the Green func-
tion is continuous across the boundary of an atomic cell in
the material. Self-consistent potentials for substitutional-
ly disordered alloys have indeed been reported,?! and were,
in fact, used to obtain the numerical results of the preced-
ing section. It is hoped that the day is drawing near when
developments in supercomputer technology will alloy
similar self-consistent calculations to be performed on the
basis of some of the more general, and computationally
more difficult, considerations presented in these papers.
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